Kontingencia táblák. Khi-négyzet teszt. A nullhipotézis felállítása. Kapcsolatvizsgálat kategorikus változók között.

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Kontingencia táblák. Khi-négyzet teszt. A nullhipotézis felállítása. Kapcsolatvizsgálat kategorikus változók között."

Átírás

1 Kotigecia táblák. Khi-égyzet tet 1. Függetleségvizsgálat. Illekedésvizsgálat 3. Homogeitásvizsgálat Példa 1 em ő Ismétlés: változók, mérési skálák típusai jeles (5) jó (4) közepes (3) elégséges () KAD elégtele (1)? Kapcsolatvizsgálat kategorikus változók között. Khi-égyzet tet gyakorisági táblázat (kotigecia táblázat): két változó közös gyakoriságáak táblázatos ábrázolása X (pl. em) és Y (ség) em ő a8 b Függetleségvizsgálat c48 d kérdés: külöbözik-e egy rögzített tulajdoság gyakorisága a két csoportba? 3 H : em és ség egymástól függetleek (ics külöbség a csoportokba) mekkora lee a várt gyakoriság (expected frequecy) a bal felső (a) cellába, ha a ullhipotézis igaz? a ők áma: a + b 13 a emélyek áma: a + c 76 A ullhipotézis felállítása a ők aráya a mitába: p(ő) (a + b)/ 13/ a ek aráya a mitába : p() (a + c)/ 76/ a c, vagy b d a c em b d ő a8 b75 13 ösese ösese ösese c48 d a megfigyelt (observed) gyakoriságok táblázata 4

2 Várt gyakoriságok. feltevés: H igaz a em és a ség függetle tulajdoságok várt gyakoriság a várt gyakoriság a a + b a + c a + b b + d jobb felső cellába : c + d a + c c + d b + d jobb alsó cellába : várt gyakoriság a bal felső cellába : várt gyakoriság a bal alsó cellába : em ös a8 b75 13 f c48 d megfigyelt (observed) kotigecia táblázat ( a + b) ( a + c) ( a + b) ( b + d ) ( c + d ) ( a + c) ( c + d ) ( b + d ) em ös 13*76/ 13*14/ 13 f 97*76/ 97*14/ várt (expected) A várt gyakoriságok a megfigyelt gyakoriságokból em ös a8 b75 13 f c48 d megfigyelt (observed) kotigecia táblázat ( várt gyakoriság) ( olopöseg) ( soröseg) ( a mita elemáma) kotigecia táblázat 5 6 em ös 13*76/ 13*14/ 13 f 97*76/ 97*14/ várt (expected) kotigecia táblázat Próbastatitika Ha a ullhipotézis igaz: A megfigyelt és a várt gyakoriságokat tartalmazó kotigecia táblázatok megfelelő celláiba levő értékek agyjából egyformák. A következő próbastatitika (súlyozott égyzetes közép) khi-égyzet elolású: ( Oi Ei ), i Ei ahol O i a megfigyelt (observed) E i a(z el)várt gyariságok az i-dik cellába. Szabadsági fok: (sorok áma 1)*(olopok áma 1) A tet végrehajthatóságáak feltételei (a mita elemáma) elegedőe agy: a várt gyakoriságokat tartalmazó kotigecia táblázatba mide cellatartalomak 1-él agyobbak kell lei a várt gyakoriságokat tartalmazó kotigecia táblázatba azokak a cellákak a áma, amelyekbe a cellatartalom 1 és 5 közötti csak a cellák %-a lehet (pl. égymezős táblázat: mide cellába a cellatartalomak 5-él agyobbak kell lei) pl. * (égymezős-) táblázat: 1 7 8

3 Speciális eset: égymezős táblázat (gyakorlati jegyzet.b.9) a vizsgált tulajdoság ösese megva ics meg A csoport a b a+b B csoport c d c+d ösese a+c b+d M ( ad bc) ( a + b)( c + d )( a + c)( b + d ) a végrehajthatóság felétele: a két legkisebb réöseg orzata legye agyobb, mit 5 a b c d ad bc f 1 ( ) 1 f ( ) f. 1 f. 1 módu, ha f.1 vagy Khi-égyzet elolások f 3 ( ) f. 3 1 f 4 ( ) f módu (f.-), ha f. >..1 f 5 ( ) f. 5 1 f 6 ( ) f. 6 f.: 1 f.: 3 f 1 ( ) (5%) ( ) f 1 f 3 ( ) (5%) ( ) f 3 1 % 95 % 1 % 95 % az eredeti elolás 3.84-él levágott elolás kimaradó terület: 5 % az eredeti elolás 7.81-él levágott elolás kimaradó terület: 5 % 11 1

4 Példa 1 A tet alkalmazhatóságáak feltétele: a két legkisebb réöseg orzata legye agyobb, mit 5 em ő a8 b75 13 c48 d ( ) M 1.54 > krit 3,84 H hamis 76* > 5* 1 a khi-égyzet tet haálható 1.54 va kapcsolat a em és a ség (emüvegviselési hajladóság!) között 13 ( ) M > krit 3.84 H hamis 1.54 > krit 6.63 H hamis elvetjük a ullhipotézist, igifikacia it: <.1 14 példa em ösese öes ő ámolás Excel-lel agol magyar SUM SZUM CHITEST KHI.PRÓBA CHIDIST KHI.ELOSZLÁS CHIINV INVERZ.KHI? 4*6 4 < 5*1 6 a khi-égyzet tet em haálható (helyette: Fisher egzakt tet) 15

5 em ös ő em em sejtésük va, de em tudjuk igazoli a mita elemámáak övelése 1 ők ak em ös ő em em övelésével (1 ): a sejtés igazolható le 17 Példa 3 (biofizika jegyzet 1. példa). Nem artériás típusú ischaemiás opticus europathia sikeres műtéti korrekciójáról jelet meg 1989-be egy közleméy. Mithogy e betegségbe korábba semmiféle hatásos kezelési móder em volt ismert, ezt a műtétet sok helye alkalmazi kezdték. Rövidese eredméytele beavatkozásokról is megjeletek beámolók, ezért ámbavették 5 kliikai cetrum 44 ilye betegét, akik közül 119 fő elvégezték a műtétet, 15 betege em. A felmérés eredméye: megfigyelt gyakoriságok várt gyakoriságok műtött em m. ös műtött em m. ös javult javult változatla változatla romlott romlott öses öses khi ( ) /44.87+( ) / (5 5.67) /5.67+( ) / (8 1.46) /1.46+(16.54) / Mivel 5.47 < krit, f., ezért em vethetjük el a ullhipotézist. Azaz a miták alapjá ics okuk feltételezi külöbséget a két móder (műtét ill. em műtét) hatásossága között. 18 egydimeziós kotigecia táblázatokkal kapcsolatos kérdés: a megfigyelt értékek illekedek-e egy feltételezett eloláshoz?. Illekedésvizsgálat (goodess of fit). Khi-égyzet tet tita illekedésvizsgálat (a gyakoriságokat ismert valóíűségekből kapott gyakoriságokkal hasolítjuk öse) egyeletes elolásra törtéő i.v. kockafeldobás eredméye egyéb ismert paraméterű elolásra törtéő i.v. becsléses illekedésvizsgálat (az elolás típusa alapjá a megfigyelt gyakoriságokból becsüljük az elolás paramétereit) ormalitásvizsgálat egyéb becsült paraméteres i.v. 19 Egyeletes elolásra törtéő illekedésvizsgálat A megfigyelt gyakoriságokat tartalmazó kotigecia táblázatot (bekeretezett ré, O) kibővítjük a várt gyakoriságokat tartalmazó segéd-kotigecia táblázattal (E). Feltételezzük, hogy a kocka em cikelt (H ), ezért a 6 lehetséges eseméy egyforma gyakoriságú: 1/ a kockafeldobás eredméye ös O E khi (1 16.7) /16.7 +( ) / ( ) / ( ) / ( ) /16.7 +( ) / < 11.7 krit, f.5, a ullhipotézist megtartjuk. A kocka em cikelt.

6 6 Normalitásvizsgálat Δ / Δ d A O Ecot megfigyelt gyakoriságok becsült elolás sűrűségfüggvéy 1 H : a béka vörösvérsejt hosabbik átmérője ormálelolású Δ / Δ d Az elméleti értékeket a mitából ámolt tapatalati értékekkel becsüljük. Sz.f. -m-1, m: a becsült paraméterek áma (itt: )... p.9 >.5 H : megtartjuk Δ / Δ d Δ / Δ d d (μm) B d (μm) 1 C O E d (μm) D (O E)^/E d (μm) 4-1 O E megfigyelt gyakoriságok lépcsőssé tett becsült elolás ss. fv. megfigyelt és várt függvéyek külöbségei khi-égyzet érték emléletes ábrlázolása (a görbe alatti terület) 3. Homogeitásvigálat, (test for homogeeity) H : a biofizika kollokviumjegyek elolása* a ői hallgatók között ugyaolya mit a hallgatók között (az elolások homogéek) kollokviumjegy, ő biofizika megfigyelt (observed) gyakoriságok *adatok: 9 ői emeter p.7 >.5 kollokviumjegy, ő biofizika várt (expected) gyakoriságok H : megtartjuk 3 IQ m függetleség testmagasság Függőségi vioyok lehetőségei korrelációs testmagasság ámerű tochatikus vioy vegyes íz íezettség ordiális függőség asociációs omiális determiitikus vioy kocetráció ámerű 4

Hipotézis-ellenırzés (Statisztikai próbák)

Hipotézis-ellenırzés (Statisztikai próbák) Következtetı statisztika 5. Hipotézis-elleırzés (Statisztikai próbák) 1 Egymitás próbák Átlagra, aráyra, Szórásra Hipotézis-vizsgálat Áttekités Egymitás em paraméteres próbák Függetleségvizsgálat Illeszkedésvizsgálat

Részletesebben

7. el adás Becslések és minta elemszámok. 7-1. fejezet Áttekintés

7. el adás Becslések és minta elemszámok. 7-1. fejezet Áttekintés 7. el adás Becslések és mita elemszámok 7-1. fejezet Áttekités 7-1 Áttekités 7- A populáció aráy becslése 7-3 A populáció átlag becslése: σismert 7-4 A populáció átlag becslése: σem ismert 7-5 A populáció

Részletesebben

é é ő é í ő é ő ő é ő é é é ő é ő í ü é é é é í é ő é ő é é í ő é é ő é ü ő ű ő ő é ő é é é é é ő é é é Ú é ő í é é é í ő é ő ő é é é ü ő é é é í ü ő í é é é é ü é ő é é é ü é í é é é ő é é ő é é ő ü é

Részletesebben

Ő Ö é Ü Ö é Ö é ő ü ó ü é é ő ü é ö é ö ó é ő é ő Ő ó ő é ó í ő ő ü é ő ő é ö ö ö ü Ü Ö Ö ö ö ö é ö ö Ö ő é é ő í ü é é ü é ő ö ő ő é ő ö é í é éé ő í ó ő ő ő ö í í ő é ó ó é ó é é Í ü ő Ó ő é é ó ő é

Részletesebben

Á é ó ö ó é é é é ö é é ó é é ó ö ö ő é é é ó é é é é ü é ö é é ó é ő ú ó é ü é é ó é í ü ő é ö í é é ü ő é ö ű ú é é é é ü é ű ü ö ö ó ő ú ó é é ő é é é é ö é ü É é ű é é í ö é ü é ü ő í é ó é ő ó é é

Részletesebben

Statisztika, próbák Mérési hiba

Statisztika, próbák Mérési hiba Statisztika, próbák Mérési hiba ÁTLAG SZÓRÁS KICSI, NAGY MIN, MAX LIN.ILL LOG.ILL MEREDEKSÉG METSZ T.PROBA TREND NÖV Statisztikai függvények Statisztikailag fontos értékek Számtani átlag: ŷ= i y i /n Medián:

Részletesebben

é ő ü é ö ü é é ú é ö í ő ü é ó ó ó é ö é Ó ú ő ő é ö é ü ü ö ő Ü É É ü é ő ü é ö ü é é ú é ü é Á ü ű ö ú é ő é é é ő ü é ö ü é ú é ü ő é é ö ö ő é ű é é ö é ö é é ű ö ü ö ú é é ó ö é é é ó é é ó é ó ö

Részletesebben

ő Á ó ü É Á Á é ó í É ú í Ú é ó Á ú ő ü é ó ü ö ű é ü é ó ö ú ó ű ö é é ő é ó ó ó é ö é ö ö é ö é ő ó ó é ö é ú Á Á é ü ő ü ö í é ö ü í é ü é ó ü ü ö ú é é é ő ü é ü é ö ó é ó í ó é é ő ü ö é ö ö ó é ö

Részletesebben

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov.

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov. Pályázat címe: Új geerációs sorttudomáyi kézés és tartalomfejlesztés, hazai és emzetközi hálózatfejlesztés és társadalmasítás a Szegedi Tudomáyegyeteme Pályázati azoosító: TÁMOP-4...E-5//KONV-05-000 Sortstatisztika

Részletesebben

1.1 Példa. Polinomok és egyenletek. Jaroslav Zhouf. Első rész. Lineáris egyenletek. 1 A lineáris egyenlet definíciója

1.1 Példa. Polinomok és egyenletek. Jaroslav Zhouf. Első rész. Lineáris egyenletek. 1 A lineáris egyenlet definíciója Poliomok és egyeletek Jaroslav Zhouf Első rész Lieáris egyeletek A lieáris egyelet defiíciója A következő formájú egyeleteket: ahol a, b valós számok és a + b 0, a 0, lieáris egyeletek hívjuk, az ismeretle

Részletesebben

é é ó ű ó í é é é ő í ő é ö ó é é é é ó í é ó ó ó ú ő é é é ö ü é é é é ú í é é ő í é ő é é ú é é é ó ő é ú é ó é ő é é é é é é ő ó ó é é ő é ú ó ő é é é é é ö ö é ú ö ő é é ő ő ó ú ö ő í ő ó ű é é ő é

Részletesebben

Ö ő ü ő Í ó ő ü ó ó ó ó ó ő ő ü ő ó ó ő ő ü ó ó ő í ó ó ó ó ó ü ü ó í ő ő ő ü í í ő í í ó í í ó ő ő ú ó ó ő ú Í í í ó í í ó ő í ő ő ü í í ü í ó í ő ü ő ó í ó í í ü ő í í í ó í í í í í ó ü í ő ó ú ő ó ő

Részletesebben

ö ö É É É É Á ö ö é ö é é ö é é é í é é ö Ö Ö É É ö é ö é Ö é ö é ö é ö é é é é é é ó é é ö é é é í é ő é é ö é é é é Í í í ö é Á é Ö ö é é é ö é é ő í Ö é ö é é ö é ö Ó é é é é ő é é é é ó é é é í ó Ö

Részletesebben

Á Ö É Ö Á É Ő Ü É é ü é é ö é ö é é ó é ó í í ü é é é ö é é é óé ü ó Í ö ó é é ü ó é é é ü ó é óé í é Í Ú ö í é ü ö é í é ü é é í ü é é í í É ó é Ö ö é ó é ó ó é ü é é ö ö ö í ü ü é é é ö ü í é é é é é

Részletesebben

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása Rudas Tamás: A hibahatár a becsült meyiség függvéyébe a mért ártrefereciák téves értelmezéséek egyik forrása Megjelet: Agelusz Róbert és Tardos Róbert szerk.: Mérésről mérésre. A választáskutatás módszertai

Részletesebben

Minőségirányítási rendszerek 8. előadás 2013.05.03.

Minőségirányítási rendszerek 8. előadás 2013.05.03. Miőségiráyítási redszerek 8. előadás 2013.05.03. Miőségtartó szabályozás Elleőrző kártyák miősítéses jellemzőkre Két esete: A termékre voatkozó adat: - valamely jellemző alapjá megfelelő em megfelelő:

Részletesebben

A statisztika részei. Példa:

A statisztika részei. Példa: STATISZTIKA Miért tauljuk statisztikát? Mire haszálhatjuk? Szakirodalom értő és kritikus olvasásához Mit állít egyáltalá a cikk? Korrektek-e a megállaítások? Vizsgálatok (kísérletek és felmérések) tervezéséhez,

Részletesebben

TENYÉSZTÉSES MIKROBIOLÓGIAI VIZSGÁLATOK II. 1. Mikroorganizmusok számának meghatározása telepszámlálásos módszerrel

TENYÉSZTÉSES MIKROBIOLÓGIAI VIZSGÁLATOK II. 1. Mikroorganizmusok számának meghatározása telepszámlálásos módszerrel TENYÉSZTÉSES MIKROBIOLÓGIAI VIZSGÁLATOK II. 1. Mikroorgaizmusok számáak meghatározása telepszámlálásos módszerrel A telepszámlálásos módszerek esetébe a teyésztést szilárd táptalajo végezzük, így - szembe

Részletesebben

18. Differenciálszámítás

18. Differenciálszámítás 8. Differeciálszámítás I. Elméleti összefoglaló Függvéy határértéke Defiíció: Az köryezetei az ] ε, ε[ + yílt itervallumok, ahol ε > tetszőleges. Defiíció: Az f függvéyek az véges helye vett határértéke

Részletesebben

FELADATOK a Bevezetés a matematikába I tárgyhoz

FELADATOK a Bevezetés a matematikába I tárgyhoz FELADATOK a Bevezetés a matematiába I tárgyhoz a számítástechia taár főisolai és a programozó matematius szao számára 2004 ovember 4 FIGYELEM: a számtech szaosoa csa a övetező feladato ellee: 2,6,7,8,9-13,16-25,27,31-33

Részletesebben

é é ő ü é ó é é ő ü í ő ő ő é é é é é é í é ő Á é é é ő í é é é é é é ő í ó ő é é ű ő ü é ó ú ó ű é é ő é í ő ő ő é é é é é ő í é í é é é é é é é ú ő é ő ő é é é ő ő é é ő ü é é é í é é ü é ű é é é é é

Részletesebben

1. Adatok közelítése. Bevezetés. 1-1 A közelítő függvény

1. Adatok közelítése. Bevezetés. 1-1 A közelítő függvény Palácz Béla - Soft Computig - 11-1. Adatok közelítése 1. Adatok közelítése Bevezetés A természettudomáyos feladatok megoldásához, a vizsgált jeleségek, folyamatok főbb jellemzői közötti összefüggések ismeretére,

Részletesebben

Walltherm rendszer. Magyar termék. 5 év rendszergaranciával. Felületfûtés-hûtés Épületszerkezet-temperálás padlófûtés

Walltherm rendszer. Magyar termék. 5 év rendszergaranciával. Felületfûtés-hûtés Épületszerkezet-temperálás padlófûtés Walltherm redszer 5 év redszergaraciával Felületfûtés-hûtés Épületszerkezet-temperálás padlófûtés Magyar termék WALLTHERM felületfûtés-hûtési redszer Egy fûtési- (hûtési) redszer kialakítása elôtt számtala

Részletesebben

Í Á Ó É é ü ö ö é Ö é ü é ő ő é ő ő é é ő ö ó é ó é é é ő í ő ő ö ö é é í ő ú é ő é ü ö ö é ó é é í é é ő é é ü í ő í é í é ő é ü ö é ő é é í é é í é é ó ő ő é ö é ő é ő í í é ő ő ó ö É ó É Á É Í É ü ú

Részletesebben

A PÉNZ IDİÉRTÉKE. Egy jövıbeni pénzösszeg jelenértéke:

A PÉNZ IDİÉRTÉKE. Egy jövıbeni pénzösszeg jelenértéke: A PÉNZ IDİÉRTÉKE A péz értéke többek között az idı függvéye. Ha idıbe késıbb jutuk hozzá egy jövedelemhez, akkor elveszítjük aak lehetıségét, hogy az eltelt idıbe azt befektessük, azaz elesük aak hozamától,

Részletesebben

ö í ü ü ö ö í ú í ö ö ű ö ö ö í ö ö í í ü ö ö ü í ö ö ú ö ö ö ö í í í ü ö ű í í ü ö ö í ö ö í ú ü ö ü ö ö í ö í ü í ö ü ö ö ű ö ö ü ö í ö ö ö ö ü ö ű ü í ö ö ű í í í ú ű ö í ö ö í í ö ö ö ö ü É í ö ű ö

Részletesebben

Ó ó ű ő ű ő Ó ő É ő ő ó ű ő ó ó ű ü í ü ű í ü ő ő ő ű ó ő ó ü ő ő ő ó í í ő ó ű ő ó ű ő ó ü ó ő ő ó ő í ü ő ó ó Á ó ő ó í ű ú ő ő ó ő ó ü ő ő Á í ó ó í ő í ó ő ő ő É ő ü ó ü ő í Á ó ó ő ü ő ó ű ű ó í ü

Részletesebben

ű í í ű í őí ő ű í í ő í í í í ő í í í ő ő ő ő í í í ú ő í ő ú ő í ú í í í ű í Á í ő ő í ő í ő ű ő ű í ő ú í ú í ű ő ű ú í í í ő í ő í ő ő ű ú ő í ő ő ő ű ő Ö ő ű ő í ő ú í ő í í ú ú É ő Ö ú ő ú ú Ő ő

Részletesebben

ü ű í Í íí ü ü ű í ú Ó í Ó ú ő ü ü őí ű í í ő Í ő ő ü í Ő í ő ü ü ü í ü ú ő ú ü ő í í ú ú í í ű í ő í ő ű Ü ü Ü ü ü ü ú Í í í ű ü ő ü í ű ő ü ü ü í ü ü Í í ü ü ű í í ő ő ü ü ü ü ü ő ő ű Í ü ü ü ú ú ü ü

Részletesebben

Ú Ó í ó ú ú ó ő ü ó ő ó ó ü ú ó ő ü í ó ó ó ő ó ő ő ú ó ú ó ú ú ó ú ó ú ó ó ó ó őí ő ú í ó í ő ő ü ő ú ó ó ó ó ó í ő ő í ú ü ó í ő ő ű ü ű ü ó í ü ő ű ü ü ű ő ő ó ú ü ó ú ó ú í ü ő ő ő ó í ó ó ő ű ó ő

Részletesebben

ö Ö ö ő ö ü ö Ö ő í ü ő ü Ö ő ő ő ő ő ő ó ő ő ü ő ő Á í ó ő ö ö ü ö ö ö í ü ü ő ö ö ő ő ö í ő ő ő ő ü í ő ő ő ü ő ü í ő ö ő ö ő Á ó ü ó ö í ó ö Ö ö ő Ö ű ö ő ö í ó ó ó ö í í ó í ü ő ő í ó í í í í ö ő ü

Részletesebben

í ő ü ö ú ü ö í ő ü í ó í í ü í ó ő ű ö ö ó ü ö Á ü ö ű ő ö ü ö ű ü ü ó ő ő ö ö ű ő Í ö ő ö ü ü ö ő ó ő ő ő ó ú ó ü Í ó ó ó ó ó ö ű ó őí ő ü ö ú ű í ő ő ő ö ő ö ú ű í ó ő ö ő ö ú ű í ó ü ó ő ö ö ö í í

Részletesebben

Ü Íí É Ü Í É É Á ü ü ű ő í ó ó ó ő ó ó Í É É É É Á É ó ő í ó í ü ó ó ő ő í ű í í ó í í ő ő í ó ő ó í ü í ő ü ő í í ő ő ú ű ü ó í ő ő ó ú ó ó ő í ü ő ű ő ő ú ő í í ő ü í ő É É É Á Ó É Á Á ó í ő ó ó ó ü

Részletesebben

ö ü ö ú ü Ó ö ú ü ö ó ö ü ö ö ö ö ö í í ó ó ó ö ú ó ö ó ö ö ö ö í ö ú ó ö ó ü ö í ó ű ö ó í ó ö ü ü ű ö í ú í ó ó ú í ó ö ü ö ö í ö ö ö í í ü ó Ó ö ö ó í í ö ö ó ó ö ó í í ó ö í í í ö í ü í ű ö ó í ö í

Részletesebben

í É É í É ő É ő ö É Á É Á Á Ó ö ő ő ö É ó ő ó ő ó ő ú ó ó ö ő ö ö ő ő ö í ő ő íí ö Ő É í ő ú ó ű ö í ó ő ú ó ű ú ő ő ő í ü ő ö ő ű ö í ő ü ő í ó ó ó ó Ü É Ü Ü ő ó í ő ó ó ó ő í ó ó ő ő í Á Á ő É É ő Í

Részletesebben

Á É Í ő ő ő ó ő ó ő í ü ó í ó í Í ő í ó í í í ö ő ő ű í ő ö ő ő ó ó ő í ő ő ó í ő ó ő í ü ü ó ú ő í ő ó ö ö ő ü ö ő í ő ő í í ő ö ő ü ö ő ő ő í ó ő ő í ő í ő ü ü ö ö ü ó ő í í Í í í Ó ö ö ő ő ó ö í ö ö

Részletesebben

ő ő ö ő ü ö ő ő ö Ö ő ü ő ő ő ö ő ü ő ö í ö ő ő ö ö ö ő ő ő ü ő ő ü í ő ő ö ő ü ő ö ő ü ö ő ü ö ő ü ü í Ő ü ö ö ö í Ő ü ö ő ö ö í ö ü í í ö í ő í ö ö ö ő ő ü ö ő ü ő ü ú í ü ö ő ö í ö í ö ö í őí ü í ü

Részletesebben

ú ő ú ú í ö ú ö ű ű ö ő í í Ú ó í ö í ő ő ü ű ö ő í ü ü ű ö ő ű ó í ö ö ü ú ö ö ő ó ü ú ő ű í ő ű í ü ö ú ó ő ü ő ü ö ö ő í ő ü ö ú ö ö ő í ü í ő ú ő í ö ö ú í í í ú ő í ö ú ő ő Á Á ó ö ú í ó ö ó ó őí

Részletesebben

ő ő ő ü É Á Á É ő ő ő ü í ő ű í í í í í í í í Í Í ű Í ü Í ű í ü í ő ő ü ő í í í ő ű í ő ő ü ő ő ü í ő í í ő ü í ő ő őí í í ő í ő í Ü ü í ő ü í í í ő í ő í ü ú í ő ü Í ő ő ő ő É Ó Ó É Í É í Í Í őí ő ő Ó

Részletesebben

ö ú Á ő ö í ő ú í ő ö Ö ő ü ö Ö ő í ő ü ő ő í ő ő ü ü í í ő ü ű í ö ú í ö ö Ö ü ű ő ő í ö ő ű ő ö ő ü ö í Í ü ö ő ö ö ő í ű ö ö ű ö ü ö ő í ú ű ű ű ö ő ü ő ü ö ő í í í ő ö í ő Í Ö Ö Ü ő ő í ő Ő ő ő í ü

Részletesebben

ü í í ű ű í ü ü í ő ú ü í ő ú í í ü í ü í ő ü í í ő ő ü í í ú ú ő ő ü ú ü ű ű í ű í ü ű ú ü í ü í ő ő ű ő ő í ű í ő í ő ü ő ű ű í ű ú ű í ú í ő ü ú ú ő ő í ü ú ü ő ő ő ü í ú ő ő í í ő ú ú ő ú ő ü ő í ő

Részletesebben

Á í Á í ó í í ó ö ö ő ő ő ö í í ó É Á í ó í ó ó ü ű ö í ó í ő ö ö ö ü í ó ü ü ü ö í í ő í ő í í Á í í í í ő ő í í ú í ó ö ö ö í ó í í ő ó í ű ö ö ó í ö ő ö ú ö ö ű ő ő ő ö ö ó í ő ó í ű ű ö ő ű ó í ű ő

Részletesebben

ó ü Á Ó Ó ó ó ú ó ú í ó ű ü í ú í ő í ú í ó ö ó ó ő ő ö É í ú í ű ő ű í ü í ó ö í í í ő ó ö í ú ó ó ö í ó í ó í ü í ó í í í ű í ú ű í ö ő í í í í í í ő ö ö í í í í í í ó ö ő í ü ü ö í í ó ó ó í ö ű ű ó

Részletesebben

ő Ú Ú ú ó ú Ó í ő ő ű ú ó ő ú ü ü ő ő ő ó í ó ü ó ő í ű ő ű í ó ü ű ő Ü ő ő ű ő ó í í ű ű ó í ű Ü ó ű Ü ű ű ó Ü ő ű ő í ó ó í ó ó Ü ó ó ó ó í ő ú ű ó ó ő ő ő ő ó í ő ó ó ó í ó í Ü ő ó ú í ó ő ü ú ő ű í

Részletesebben

Ü Á í É Ü Ó Ü Ü ú ú Ó í Ű Ó ö ű Ö Ó Ó Ú ű Ü í ö Ó Ó ö Ü ü ő Ó Ó í í Ú í Ú Ü Ö ő Ő ő ú Ó Ó ü ö ö ö ö ú í ő ő ő ú í ü ő ő ő ő ő Á Ő ú í í ő ü ö ö ö ü ü ü ő í ő ű ö Í ú ü ú ú ö ü ö ő ü ü Ó Ó ö ö ö ú ő ő

Részletesebben

ű ö ö ő ő ő ö í ő ö ö Ö Ö ő ő ö ő ö ű í ő ö ö í ő ö ü í ő ö í ű ő ö ő ő ő ö ő ü ü Í ő ö í ő í ö ö í ö ö ű ö ő ő ő ő í ü ö ö ő ü ő ő ő ö ő í ö ö ö í ő ű ő í í ö ü í ő ő ö ű Á í ö ö ö ü í ő ö ü ő ő ö ő í

Részletesebben

É í Í Í ő ö í ű ö í í ö öí í ö ő ő ő ő ő ő í ő ő í í ő í ő ü í Ő ő Á Á É Á Ö Ö Á Á Á É Á É É Ö É É Á Ö ö Á Ő É Í É Á Ö Ö Á Ó ö ö ö í ö őí ő í ú ö ő ö ö ő ö ö Ö ő ő ő ő ő ő ő ö ő í ő ö ö ö ő í í ű ő ö ü

Részletesebben

í ő í ü í í í ú ű í í í ü í ő í Í í í ő í ő Í ü Ó ő í ő í Ü í í í ú ű í í í í Ó í Ö ő ü í ü Ö Ö ő í ő í ü ő í ő ü ő ü ü í í ü í ü í ő ő őí í í í í ü í ő ú ű í í ő ü ü í Ö Ú ú í Á É Ö Ö ű Ü í Ö í Ö ő ő

Részletesebben

ő ö ő ő ö ő ő ö ö ő ő ü ő ö ő í ő í ö ő ö ö ü í ő ö ö ü ö Í ő ö ő ú ő ü ü ő ő ű í ö ö í ü Ö ő í ö ő ő ö ű ö ű ö ö ü ő ö ő ő ö ö ű ú ö ű ő ő í ő í ő ú ő ő ö í ő ú í ő ő ö ű í ö ő ú í ü ö ű í ú ö ű í ő í

Részletesebben

ó ó É Á É ü ű ő ő ó í ő ő ő í ó ó ő í ő ő ő Í ő ő í ü ü Í í ő ó í ő ő ó ű ü ő ó í ő ó ó í ó í ű ő ő ő í í ő ő ó ő í ü ű ó í ő í ú ő ó ő ű í ő ő ú ő ó í ő ű ó í ő ő í ő ó í ő ő Í ű í ó ő ó ő ő í ű ó í ó

Részletesebben

Á É É Í Ü É É Á Ú É É É É Í Ü Ü ő É Ü Ü Ú ő í í ő í ü Á í Í ü ű í í í í í ő ö í ü í ú í í í ő ü ő Ü í ö ő ű ó ű ü ú í í ú ő ő ő í ó ő ő ő í ő í í í ő í ő ű ő ő ö ü ő ő ú í Ü ő ü Í ő ö ö í ó ó ó í í í ú

Részletesebben

Á Ü Ü ó É ű ö ő Á ű ö ó í Á í ó ó ö ő Á ö ó í ó ö í ó ó ó Á í ó ő ő ü ó í ó ü ü ő ó í ü ű ö ó í ó ő ű ö ó ű ö ő ő ó ű ö ó ű ö ő ű ő í ü ó í í ó ó ó ü í í ő í ö ő ü ü ü ü ó ó ö ő ö ö ü ü ő ő ű ö í Á ű ö

Részletesebben

ö Ö ő ö ó ö Ö ő ö ó ö ő ő ó ó ö ö ó ó ó ö ö Á ó ö ű ő ű ő ő ö Ö ö É ő ő Á ű ő ú Ú ő ó ö ő ó ö ú ő ő ó ó ó ó ő ó ö ö ö ö ö ú ő ö ö ű ó ó ö ő ó ó ó ő ő ó ó ó ö ő ó ó ó ó ö ő ó ö ő ő ö Á ő ó ó ó ó ó ö ő ő

Részletesebben

ö ő ü Ö ö ő ö ó ö Ö ő ü ö ő ő ő ö ö ö ö ő í ő ő ő í ő ö ü ö ö ü ő ó ö ü ő Ö ö ü ó í ő ő ő ő ő ő ő í ő ö ó ö ó ó ó í í í ó ő ő ö ő ő ú ó í ö ü í í ő í ő ő ó ó ü í ő ő ö ű ó ó ö ő ő í ó í í ő ú ö ö í í ü

Részletesebben

Ü ű ő Á Í ü ű ő ő ő ő ó ó ü ü ő ű í ő ó ü ű ő ó ó ü í ó ó ő ő ő ű ő í í í í ó ő ú ó í ű ü í ü ő ő í í ó ó ó ó ő ő ő ő ü ő í ő ó ó ő ő ó ó ü ú ó ő ő í ó ü ó í ő ó ü ű ő í ő ü ő í ő í ő ő ó ü í ü Í í ü í

Részletesebben

ó ó ó ű ó í ő í Á ő ű ő ő í í ű ó ú ő ű ő ő ú ő ő ó í ő ű í ű ű ő ó ó ő ő ó ó í ű ú ű í ű ű ű í ó í ó ó í ő ó ű ű í ő ű ő ó ű ű í ű í í í ó ű ő í í ó ű ő ő í ű ű ű í ú í ó ó í ű ó ú ű ó ő ó ő ő ó ó ó ó

Részletesebben

Ú Ö Ú Ü ú í í ú í ú í í ú ő í í ő ú í ű í ő í ő ő ő ő í í Ö í Ü í Ö í Í Í í Ö Ö Í ő Ö Ö Ö ú í ű í í ő ő ő ő í ő Ő Ó Ö Ö í Ú Ú Ö Ú Ö í í Í í ő ú Í ű í í ő ő ő ő í í í í ű í ű í í í ű ű í í Í í í Ó Ó ú Ü

Részletesebben

Í Ö ő ő ó Í ü ü ü ó ű ő ó ű ű ü ü ü ó ó ü ó ó ü ú ó ó ü ó ó ó É ó Ö Í ó ü ó ű ó ó ü ő ó ü ü ó Í ó Í ó ó ó ó ó ű ó É ó ű ő ó ő ó ű Í ó ó ő ü ő ó ó Í ő ó ő ő Á Ö ő ő ü ő ú ó ú ü ő ü ő ó Í ú ő ő ű Á ü ü ó

Részletesebben

ú í ő ö ö ö ö ö ő í ö ö ö ő ő ö ő ö ú ö ő ö ú í ő ö ö ő őí ü ú ő ü ő ö ü í ő ü ü í ő ö ő ü í ő ö ö í ű ú ö ö ö ő ő í ő Ű ő ü ő ő ö ö ő í í ö ö ü ö ű ö ö ö ü ő ö ö ü Á í ő ö í ü ő ő ü ö ű ö ö ö ű ö ö ö

Részletesebben

Ü Ú ő É É í ü íí ő ö ö Ö Á É ő ö ö ö ö ő ú ő ó ö í ó ő ú ö ó í í ó ö ö ö ü ö ó ö ö ő ö ő í ú ő ü ö ö ö ö ó ó í ű ő ö ö í ö ö ő ö ö ö ö ö ö ű ö ö ű ő ö ő í ö ő ú ö ö ö ó ű ö ő ű ö ő ú ü ő í ü ü ü ü ő ó

Részletesebben

Ü Í ö ő Í í ö ű ő ú ó ő í ó Ö í ü ő ó ó ő í í ö ö ő í ó ö í Í ú í ő Á ő ö ő ő ö ö ó ö ö Í ő í ó í ő ö ú ö ö ő í ö ú í ó ö ö ő í í ő ő ő ő ö ő í ő ő Ó í ü ú ú ő í ö ö ö ő ü ű ö í ő ö ó í ő ő ú í ó ő í ó

Részletesebben

Á Á Ü Ö Ú Á É í Ú Á Ö Á Ü É ó ü ó ó ó őí ő ű í ó í ő ü ő ú ó í ő ő ő í ü ü í í ő ú ő ú ő ő ó í ú í ü ő ő ú ő ü í ó ó ü ó ő ü ő í ú ú ő ő ú ő ő ü ú ő ó í ü ű í í í ü ú ó ő ő ő ő ő ő ű í ó í í ó ő í ó ő

Részletesebben

Á Á Á í ő Ö Ö Á Á Ó Ö Á Ő ő ü ő ő ő Ö Í ő ő ő ő Ö ú Ö ő í ő Ö ü ű ú ő í Ü Ö Í Ö Ö ő ő ű Ő ű ő ü ű ő í ő í ő ü Ö Ü Ö ő Ö ő Ő ő í ű É Ű Ö ő ő í ő ü ő í ű ü ő ő ü ő Ü ő ő ü ű ő ú ü í ő ü ü Ö ő í Ü ő í ü ő

Részletesebben

Á Á É ö ú Ö ó ú ó ó É ó ó ö öí ú Ö ö ú ú ó ü ö Í ó ö ú Í ö ó ó Ú Ö ö Ö ö ú ö Ó ú ú ú ö ó Í ó É ú ú ü ö ö ó ü ö ó ü ö ö ű ó ó ó ö ö ö ű ú Á ó ö ö ü ó ó ó ó ó ö ű ö ö Á ó ö Á ó ö ó ó Á Ö Í ó ü ű ó ó ó ó

Részletesebben

Ö Ő Ő Ő Ő Ö Ö Ő Í Í Á Ö Ő Ö Ú ŐÍ Ú Í Ő É É Í Í Í É Ő ö Ú Í Ő ö É É É Í É Ő Í Í Í Í ö Í Í Ö Í Ö É Í É É É Í Í ö É Ö Ö Í Í É É Ő Í É Ő Ö É ÖÍ Í Í Ő Í Í Ö Í É Ő Í Í ü É É É ö É É É ö Í É ö Í Ő Ő Ö É É Í Í

Részletesebben

ö ű é ö é é é é é ő Ö é ö é í ű ö é é é é é é é ö é é é ű ö é í ű ö é é í é í é é é é é é ő ö é é é ő é ö ő ő Ü ő ö é Ü ő é í é ö ö é é Ü ő é Ü é ö ű é í ö é é ü ű ö é é ö Ü ö ű é é Ü Ü ö í é ö é ö ű é

Részletesebben

ö Ö ö Ö ő ü ö ö ő ö Ö ő í ó ó ó ö ö ő ő ő ö ö Á ü ö ö ü ö ö ü ő ü ű í ő ü ó ő ó ö ó ő ü ü í ő ö ö ö ö í ö ő í ő ö í ő ó ö ü ö ű ö ü ő ó ó ö ő ö í ö í ö ü ö ő ö í í í ó ö ö ő í ő í ö ő ű ö í ő ő í ó ö í

Részletesebben

É É ó í í ö ö Í ö ó ó ó ó ó Á ö ú í ó Ö ó ö ö ó ó ö ö í ö É ö Á ú Á ö ú ö ú ű ú ú í ö ö í Ü í í Ó ö ú Ü í Ü í í Ú ö ö í Í ü Ó ö Ü ú ü ü í Ó í ö í ó Ó ó ö ó ö ó ű ö ú Í í ü ö í í Í í ü í ó Ó í ó Ó Ó Í Ó

Részletesebben

Ó Ü ö ö ö ö ö ű ö ü ü ö í ö ö Ü ö í ű ö í ö Ö í ü ö ö ö ü ü ü í ú ö ú ú í ö ö í ö ö ö ö í í ú ö í ö í ö ü ú í í í í ú í ü ö ö í í í ö í ú í í í í ö ö ö ö í ú ö ö ü ö ö ö ö ö ö Ö ú ü í ü ü ü ö ö í ü í ö

Részletesebben

Ö ó Ö í ó ú ő ö ó Ö ő ü ú ü ő ü ő ő ő ö Ö ö ó ő ü Ö ö ó ó ó í ő ő ó Ö ö ö ő ó í ő ó ó ö Ö ő ú ö ő ó ó ó ő ú í ö ó ú ö ü ü í í Ö ü ü ö ő í ó ő í ö ő ü ö ő ö ü ö í ö ö ö ú í ö ő ö ő ó ö Ö ü í ö í ő ő ű ö

Részletesebben

ö ő ü É Ü É ö ö ő ö Ö ő ü ó Í ö ő ő ő ö ö ö ő ó ó ö í ö ó ö ő ö ő Á ö ó ü ő ő ó ö ő Í í ö ű ó ö ű í ó ö ő Í ü ö ö ó ü ő ü ü ó ü ő ó ü ö ü ö ü í ö í ó ő ó ó ö ü ö ő ö ü ú ö ü í ó í í í ö ü ő ö ö ő í ő ö

Részletesebben

ü Í Á É ö ő Í í ö ű ő ú ó í ő í í Í í ű Í ő ü ő ó í í ö ö í í ő í ó ö í ó Í ú í Í ő Á ő ö ő ő ő ö ü ó ö ö ő í ó í ő ö ö ö ő í ö ü ú í ó ö ö ő í í ő ő ő ő ö ő í ő ő ö í ü ő í ö ö ö ő ü ű ö í ő ó í ő ő ú

Részletesebben

Ü Ú ö ö ö ö ö ö ö Ó Ó Ó ö Í Ó ö Ó ö ö Ó ö ö Ó ű Ó ő Ó Í ű ö Ó ú ő Í ö Ó ű ö ö Ó ő ő ő ű Í ő ö ö ű Ű ú ő ö ö ú ö ű ő Í ő Ó Í Ú ő Ó ő ö ő ö ü Ó Ó ö Í Ú ő ű ű ő ő Ó Í ú Ú ú ú Ó Ó Ó Ó ö ú ö ü ö Í ö Ü ö Í Í

Részletesebben

ö ő ő ő ó ő ő ü ó ü ö ö ó í ö ö ü ő ű ö ő ő ö ő Ó ő ó ó ü ű ö ó í ö ő ő ü í ú ö ú ü ó ó ő í ú ó ö ö ü í ő ő í ő í í ó ő ő í ő ű ő ó ü ű ő í ő ü ő í ő í ű ő í ű ő ű ű ű ó ü ő í ü ő ó ó ó ó í ő ő ö ó ó ü

Részletesebben

ö ó ü ö ö ű ö ű ű ó ö ó ö Ö ü ö Ö Ű ö ű ű ó ö ó Ö Ö ó ó ó ö ö ö ó ó ó ö ó ö ö ó ü ö ö ü ö ű ö ű ö ö ö ö ö ü Ó ö ű ó ö Ö Ö ö ó ö ö ó ó ö ö ü ö ű ö ű ö ö ö ö ö ó ö ö ö ü ö ű Ö ö ű ó ö ó ö ö ö ö ö ö ö ö ö

Részletesebben

í Ó ú Ö í ó ó ó í ú ő ó ű ö ö ő ó ó ö ó ó ó ö ö ú ó ó ö í ő ó ű ö Ú ő ű í í ő ű ű ö í ű í Á ó í ó ú Ö ó í í ó í í í í ú ó í ű í ú í ű ö ó í í Í ű Ó ő ő ű ó ö ö ű í í ö ö ö ö ő ó ó ó í ú í ő í í í ú ó ó

Részletesebben

Ü ő ö ő í ö Ö ó ó ö Í ó ő ő ő Á Ú í í ő ú ó ö ü ő ó ő ó ő ó ü ö ö ö Ö ő ö ő ő ő ö ö í í ú ú í ü ö í ó í É ö É í ő ö ő ő Á Ú í í ő ő ü í ö ö ő í ó í ő ó í ő ő ö Ő É Á ő í ú í í í ö ö ő ő ó ő í ó ő ó ő í

Részletesebben

Á Á ö Á ö ö ö ő őí ö ö ö ő ö ö ő ü ö ó ő ő ö í Ö ö ő í ó ö ő ő ö ö ö ő í í ó ó ö ö ő ó ő ö í ő ö ö ő ő ö ő ö ü ü Ö Ö Ö Ö ö ó ő í ő ő ő ö ö ő őí ő ő ö ö ú ö ő í ő í í ó ó ö ö í Á Á ó ö ó ö ó ö ő ö ö ó ö

Részletesebben

í ű ü ű ó í Ü ö ö ó ó í ü ü Í ú ő ő ő í ó ő í ő ó ó ú ő ó ó ö ő ó ö Ü ö ú ő ö ó ő ó ó ó ű ó ó ü Ü ó ó í ő ó í ő í ő ó őí ü ő ó ő ő í Í ö ő ó ö ő ő í ó Ü ö ö ő ó í ó ő ó ó í ö ü ö ő ö ü ő í Ü ő í ü ö ő

Részletesebben

ó ő ő í ó ó í í ő ó ő ő Á ü ó Á Á Á Á Ö Á É Ó ó Á É í É Á É É í ó É ó É ü É Á í í ő ó ü í ú í í ó ő ő ü ü ó ó ü ű ó ő ő ő í ű ő ú ő í í í ü ő ű ő í í ű ő ő í ő ó ő ő í ó í ő ü í ó ő ű ó ű ő ó őí ü í őí

Részletesebben

ó É ő ö ü ö ú ü ö ű ő ú ú ő í ö ü ü ó ó ö ű ü ő ö ö ö ö ő í ö íí ü ó í ó ö ő ő ü ó ö ű ü ó ö í ó ö ő ö ű ö í ú ó í ü ő ú ő í ó ú í ó ö ó ö ö ű ö ó ö ó ö ő ö í ó ő ő ú ő ő ű ú ó ö ú ó Ó ó ú ü í ó ő í í

Részletesebben

Ó É É ö É ö É Ó ó Í ő í ó í Ó í í Ó í Ö í ó Ó Í í Ó ő í í ó Ö í ö í ó í ó ö í Í ö ö í Ő ó ó ó Í í ó ö ó í ö í í ó ó í ó Ö ó ó í Ó Í Í ó í í í í ö í óí óí í í í ö íí íí ó Ő í Ó í Ő Ö í ó í í í ó í í Ó í

Részletesebben

ő ú Á Á É ö ő ő ő É í ő ő ő ő ö ö ő ö ö í ő ő í í ő ű ö ű ő ű í ő í ő ö ü ü í ű í ő ü ö ü í ü ü í ő ő í ű í ő ö Á ö ö í í ő ő ő í ő ö ő ű ú ö ü ö ö ö ö ö ő ü ö ö ő í ü ö ú ö ü ő í ö ö ő ő ő í ö Á ö í ű

Részletesebben

ő ő ő ő Í Ó Á Ó Á Ó Ő Ü ű ő ő ó Á ő ú Ö Ó Á Á ő í ű ó ó ő ó ó ó ü í ű Ö Á ő őí í ő ő í ő í ü ó ő ő ó ő ő ő ő ő ő ő ő Ö ő í ű ő ő í ű ó ó Ö ű ő ő í ő ü í ű ó ó ó ő í ő ő Ü ű ó ó ó ő ő ő ó ő ó ő ő ó ó ő

Részletesebben

Á Ő í ö ő ő ő ő ő ő ő ó ó ő ó ő ő ó ő ö í í ő ő ő ö ő ó ő ő ő ő ő ö ö ő ő ő ó í í ő ó ó ő ő ő í ó ó ő í ó ű ő ó ö ő ő őí ő őí ő ő ű í ó í ő ő í ő ő ó ű ö ő ó Á ó ő ö ö ö í ő ó ő őí ó ő í ö ő ö ő őí ó ő

Részletesebben

Á Ö ő ő ö Ö Á Í Á É ÉÉ í ő ö Í í őí í ú ú ö í í ö Í Í Í í ú í ú ő ú í Ö Ö ú ü í ű Ö í ű Í ő Ö í í í ü Ö í í ú í ő ú í í í ő í ő ü í í ű Ö ő í ő í Í ö Ő ü ő í í ö í ő í Á í ö ü ö Ő ü ü ő ü ü Íő Í Í Í í

Részletesebben

ó ó ú ú ó ó ó ü ó ü Á Á ü É ó ü ü ü ú ü ó ó ü ó ü ó ó ú ú ú ü Ü ú ú ó ó ü ó ü ü Ü ü ú ó Ü ü ű ű ü ó ü ű ü ó ú ó ú ú ú ó ú ü ü ű ó ú ó ó ü ó ó ó ó ú ó ü ó ó ü ü ó ü ü Ü ü ó ü ü ü ó Ü ó ű ü ó ü ü ü ú ó ü

Részletesebben

Á ű ő ö Í é é ő Ö Ö é ő Ö ő ö é é Ö ü é ó Ő é é ó é ó é é é é Ö ó ó ő é Ü é ó ö ó ö é é Ő ú é é é é ő Ú é ó Ő ö Ő é é é é ű ö é Ö é é ó ű ö é ő é é é é é é é é é Ö é Ö ü é é é é ö ü é ó é ó ó é ü ó é é

Részletesebben

Ü Ö Á Á Á Á Á É ű Ü Ú ű ű Á É ű Ú Ü ű Ü Ü Ü Ü Ü Ü Ü Ü Ü Á Ü Ü Ü Ö Ö Ú Ö Ü Ö ű ű ű ű ű Á ű Ú ű ű ű ű ű É Á Ö Ö Ö ű ű ű Á ű ű ű ű ű ű ű ű ű ű Ü Ü Ü Ü ű ű ű ű ű ű ű ű ű ű ű Ú ű ű ű ű ű ű Ü Ö Ü Ó Ö ű ű ű

Részletesebben

Ö Ó ú É ű É Ö Ö Ö Ü Ó Ú É ú É Ü Ú ú Ü ű ú Ü Ö Ö ú ű Ú ű ű ú Ö Ö Ö Ö É ú ú Ő Ö ú Ü Ó ú Ú Ü Ö ű ű ű Ö ű ú Ó ű Ö Ü ű ú ú ú ú É ú Ö ú ú Ü ú Ó ú ú ú ú ú ú ű ű ú ű ú ú ű Ö ú ú ú ű Ö ú ű ú ű Ü Ö Ü ű Ü Ö ú ú Ü

Részletesebben

ű Ő ű Ü Ü Ü ű ű Ú ű ű ű ű ű ű ű ű ű ű ű ű ű Ú ű ű ű Ú Ü Ő ű Ö ű Ü ű Ö ű Ú ű ű Ű É É ű ű ű ű ű ű ű Ü ű ű ű ű ű ű ű Ú ű ű ű É Ű É Ü Ü Ú É É ű ű ű Ü ű É É Ű É ű ű ű ű ű ű ű Ö Ó ű ű ű ű ű ű Ö É Ó É É É Ü

Részletesebben

Á Á Ó É ö ó ó ó ő ő ó ö ő ő ű ó ú ö ó ó ő ó ü ó ó ő ó ó ő ó ü ó ő ő ő ó ő ő ö ó ó ó ö ö ü ö Á Á Ó ü ó ö ó ő ó ő ő Á É Á Ó ű ü ö ó ő ó ú ÉÉ ó ú ő ö ó ó ó ó ó ö ö ő ü ó ö ö ü ó ű ö ó ó ó ó ú ó ü ó ó ö ó

Részletesebben

É É É ü É ó ó É ű ó ÉÉ ó É ó É É ó É ü ó ó Ó ű ó ó ó ó ü É ü ű ó É É É É ü ü ó ó ó ü É ó É ó É ó ó ó ü ü ü ü ó ü ü ü ü ó ű ű É Í Ó Ü Ö ó ó ó Ó ó ü ü ü ű ó ü ü ű ü ü ó ü ű ü ó ü ó ó ó ó ó ó ó ü ó ó ó ű

Részletesebben

:.::-r:,: DlMENZI0l szoc!0toolnl ránsnnat0m A HELYI,:.:l:. * [:inln.itri lú.6lrl ri:rnl:iilki t*kill[mnt.ml Kilírirlrln K!.,,o,.r*,u, é é é ő é é é ő é ő ő ú í í é é é ő é í é ű é é ő ő é ü é é é í é ő

Részletesebben

Villamos gépek tantárgy tételei

Villamos gépek tantárgy tételei Villamos gépek tatárgy tételei 7. tétel Mi a szerepe az áram- és feszültségváltókak? Hogya kapcsolódak a hálózathoz, milye előírások voatkozak a biztoságos üzemeltetésükre, kiválasztásukál milye adatot

Részletesebben

Í É Ő Á í é í é í é é é ü Üé ó ú ó é é ő é é ó ó ő ű ö ő ó ö é é ó é óö éí é é ó é í óö éü é é é Í é ő é é ü ű é ö é é í ú é ő é é é é í é ő ö í ó é í é é é ü ő é í ő í é é é é é ö ó ó őí é é ő é é é ó

Részletesebben

FANTASZTIKUS KOMBINATORIKA. Adva van n különböző elem. A kiválasztás sorrendje számít VARIÁCIÓ. mateking.hu

FANTASZTIKUS KOMBINATORIKA. Adva van n különböző elem. A kiválasztás sorrendje számít VARIÁCIÓ. mateking.hu FANTASZTIKUS KOMBINATORIKA Adva va külöböző elem Kiválasztuk k darabot Vesszük az összes elemet és sorba rakjuk A kiválasztás sorredje számít A kiválasztás sorredje em számít PERMUTÁCIÓ P matekig.hu Ha

Részletesebben

ő Ö ő ü ő ó Ó Ő ü ü ő Ö ó ó ű ó ó ó ó ő ő ő ó ó ő ő ő ó ő ő ő Ö ő ü Ő Ö ü ő Ö ó ő ü ü ő ő ő ő ő Ö ó ü ő ő ő ü ü ó ó ó ó ü ő ő ő Ő ü í ő ü ő ü í ó ő í ő Ö ő ó Ö ő ó Ó Ö Ö Ű ő ó Ö Ö ő ő ő ó ő ő ó Ó ó ő ő

Részletesebben

ó í í Ö í í ó ó Ö Ö ű É í í ü üé É ü É ü Á Éí ó É É ü Éü É ü ü ü ü ó ű ü í ü ü ó ó Ö Ü í ü ü ü ü ű É ó ó ú Í Á ű í í Ő Í í ó í Ú í ó í ú í ú ó í ü ü ü ü ü ó ü ü ü ü í ó ó ó ü í ó ó ó í Í í í ó í í í í

Részletesebben