Az univerzum szerkezete

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Az univerzum szerkezete"

Átírás

1 Az univerzum szerkezete Dobos László É május 16.

2 Szatellitgalaxisok és galaxiscsoportok Szatellitgalaxisok a Tejút körül számos szatellitet találni alacsony felületi fényességűek nehéz őket azonosítani kevesebbet látunk, mint amennyit az elmélet jósol Extragalaxisok szatellitjeti minden nagyobb galaxis körül kell, hogy legyenek nagyon halványak, nem lehet megfigyelni Galaxiscsoportok galaxisok gravitációsan kötött összessége 2 10 nagyobb galaxis + szatellitek

3

4

5 Galaxishalmazok Galaxisok gravitációsan kötött halmaza nagyobb galaxis alkotja a számosság az egyik fő paraméter 1 4 Mpc átmérő középen a BCG 1 galaxis nagy mennyiségű sötét anyag: M/L 500M /L nagy sebességdiszperzió, akár 1000 km s 1 Abell-katalógus: kb. 4000, szemmel azonosított galaxishalmaz Ismert halmazok Virgo-halmaz, Coma-halmaz stb. 1 legfényesebb klasztergalaxis: brightest cluster galaxy

6

7

8 Galaxishalmazok tulajdonságai A galaxisokhalmazok középpontja dinamikailag relaxált rendszer a gyakori galaxisütközések során virializálódott ezért itt kizárólag nagy elliptikus galaxisok vannak külsőbb régiókban behulló galaxisok itt vannak spirálok is sűrűség morfológia reláció Forró galaxisközi gáz 2 nagyon forró, ritka, fémeket tartalmazó gáz a galaxisokból fújta ki valami 10 milló K röntgensugárzás a gáz nagyon gyorsan hűlne valami folyamatosan fűti aktív galaxismagok 2 Intra-cluster medium (ICM)

9

10 Gravitációs lencsézés A nagy tömegkoncentrációk elhajĺıtják a fénysugarakat lencseként működik felnagyítja a háttérobjektum képét az háttérobjektum fényesebbnek látszik eltorzul a képe, megnyúlik, több kép jelenik meg

11 A gravitációs lencsézés típusai Mikrolencsézés a háttérben levő csillag előtt elhalad egy fekete lyuk a csillag rövid időre felfényesedik ld. MACHO-k keresése Erős gravitációs lencsézés nagy tömegű galaxisok, galaxishalmazok erősen torzulhat a kép ívek, Einstein-gyűrű, Einstein-kereszt Gyenge gravitációs lencsézés statisztikai módszerekkel mutatható ki a sötét anyag keresésének egyik lehetősége

12

13 Az univerzum szerkezete nek felta ra sa Vo ro seltolo da s-felme re sek I to bb millio galaxis e gi pozı cio ja I ta volsa g spektroszko piai vo ro seltolo da sbo l fontosabb vo ro seltolo da s-felme re sek: I I I I CfA e gte rke p 2dF e gfelme re s Sloan Digital Sky Survey (SDSS)

14 A galaxisok nagy skálás eloszlása A galaxisok eloszlása nem egyenletes láthatóak a nagy skálás szerkezet struktúrái szuperklaszterek, kozmikus üregek, filamentumok falak: Nagy Fal, Sloan Nagy Fal stb. az eloszlás csak kb. 150 Mpc fölötti skálákon homogén

15 A Laniakea-szuperhalmaz

16 A Hubble-tágulás Hubble szerint a galaxisok távolsága arányos a vöröseltolódással minél távolabb van egy galaxis, annál gyorsabban távolodik mi nem lehetünk az univerzum közepe a Hubble-törvény bármilyen nézőpontból igaz mondhatjuk úgy, hogy tágul a galaxisok közötti tér Mi okozza a tér tágulását? az univerzum kezdetekor az anyag kezdősebességet kapott nagy bumm, big bang, ősrobbanás stb. azóta minden mindentől távolodik a gravitáció hatására a távolodási sebesség lassul A kozmológiai skálafaktor: a(t) hogyan változott a galaxisok távolsága a múltban értéke ma a(t = 0) = 1, régebben kisebb volt

17 A tágulás sebességének változása A tágulási ütem változása az univerzum sűrűségétől függ kevés anyag: a tágulás lassan lassul sok anyag: a tágulás visszafordul és az univerzum összeomlik kritikus sűrűség: ahol a tágulás még pont örökké tart Ω M = ρ ρ kritikus GYORSULVA TÁGUL Ω=0 Ω<1 GALAXISOK KÖZTI TÁVOLSÁG MA Ω=1 Ω>1 IDŐ

18 Az univerzum görbülete Az Einstein egyenletek kimondják, hogy az anyag (energia) meggörbíti a teret bevezetünk egy Ω K számot Ω M + Ω K = 1 a tér Ω K -tól függően lehet: Ω K = 0: sík Ω K > 0: gömbi geometriájú ΩK < 1: hiperbolikus geometriájú

19 Ia típusú szupernóvák Egy fehér törpe és egy közeli vörös óriás kettőséből a csillagról folyamatosan anyag áramlik a fehér törpére amikor eléri az M = 1,4M tömeget, felrobban a robbanás fényessége mindig ugyanakkora standard gyertya, ami Gpc-ekre ellátszik

20 A tágulási ütem és a lassulás kimérése Az univerzum sűrűsége galaxisklaszterek megszámlálásából a nagy skálás szerkezet anaĺıziséből Ω M meghatározható az anyag nagy része sötét anyag! Ia típusú szupernóvák segítségével a fluxus F = L, de mi is az a D 4πDL 2 L? luminozitástávolság a D L (z) összefüggés függ az Ω paraméterekről távolságmoduluszt és vöröseltolódást mérünk illesztésből Ω M, Ω K... megkapható

21 Meglepetés: a gyorsulva táguló univerzum az univerzum nem lassulva, hanem gyorsulva tágul valaminek hajtania kell a tágulást sötét energia, mennyisége: Ω Λ

22 A ΛCDM 3 kozmológia paraméterei Ω M + Ω K + Ω Λ 1 Ω M = 0,315 Ω Λ = 0,685 Ω K = 0,000 H 0 = 67,4 km s 1 Mpc 1 t 0 = 13,8 md év 3 sötét energia + hideg sötét anyag

23 A korai univerzum rövid története Az univerzum kezdetben forró, de tágul és így hűl: t = 10 s: létre jönnek az elektronok, protonok és neutronok t = 20 min: létre jönnek a D, He és Li atommagok (Gamow 1946) az univerzumot átlátszatlan forró plazma tölti ki z = 1100; t = 300 ezer év: az atommagok befogják a szabad elektronokat az univerzum hirtelen átlátszóvá válik nincsenek még csillagok, az univerzum sötét de a plazma fénye még sokáig ellátszik...

24 A kozmikus mikrohullámú háttérsugárzás az elektronok befogódásával az univerzum átlátszóvá válik T 3000 K hőmérsékleten történik meg a plazma által utoljára kibocsátott fotonok nem nyelődnek el mi is, még ma is tudjuk detektálni z = 1100 miatt a mikrohullámú tartományban ez ma 2,7 K hőmérsékletnek felel meg a hőmérsékletben 10 5 K nagyságú ingadozások A háttérsugárzás megfigyelése Penzias és Wilson (1964) - 3 K rádió zaj COBE űrtávcső (1990) - rossz felbontású térkép BOOMERANG, WMAP (2003) - jó felbontású térkép Planck űrtávcső (2015) - precíziós térkép

25 COBE űrtávcső

26 WMAP űrtávcső

27 Planck u rta vcso

28 A kozmikus háttérsugárzás teljesítményspektruma

29 Galaxisok csillagainak kialakulása z = 10; t = 500 millió év: az első csillagok és kvazárok III. populációs csillagok, újra ionizálják a hidrogént legyártják az első nehéz elemeket z = 2; t = 3 md év: a nagy csillagképődés és a kvazárok kora z = 1; t = 6 md év: a galaxishalmazok kialakulása összeáll a nagy skálás szerkezet dominálni kezd a sötét energia okozta tágulás

Galaxishalmazok. Komplex Rendszerek Fizikája Tanszék március 17.

Galaxishalmazok. Komplex Rendszerek Fizikája Tanszék március 17. Galaxishalmazok Dobos László Komplex Rendszerek Fizikája Tanszék dobos@complex.elte.hu É 5.60 2017. március 17. Szatellitgalaxisok Nagy galaxisok körül keringő törpegalaxisok a Tejút körül 14-16 szatellit,

Részletesebben

Kozmológia egzakt tudomány vagy modern vallás?

Kozmológia egzakt tudomány vagy modern vallás? Kozmológia egzakt tudomány vagy modern vallás? MOEV 2010. április 10. Előadó: Szécsi Dorottya ELTE Fizika Bsc III. Hit és tudomány Mit gondoltak őseink a Világról? A kozmológia a civilizációval egyidős

Részletesebben

Galaxisfelmérések: az Univerzum térképei. Bevezetés a csillagászatba május 12.

Galaxisfelmérések: az Univerzum térképei. Bevezetés a csillagászatba május 12. Galaxisfelmérések: az Univerzum térképei Bevezetés a csillagászatba 4. 2015. május 12. Miről lesz szó? Hubble vagy nem Hubble? Galaxisok, galaxishalmazok és az Univerzum szerkezete A műszerfejlődés útjai

Részletesebben

A világegyetem elképzelt kialakulása.

A világegyetem elképzelt kialakulása. A világegyetem elképzelt kialakulása. Régi-régi kérdés: Mi volt előbb? A tyúk vagy a tojás? Talán ez a gondolat járhatott Georges Lamaitre (1894-1966) belga abbénak és fizikusnak a fejében, amikor kijelentette,

Részletesebben

Trócsányi Zoltán. Kozmológia alapfokon

Trócsányi Zoltán. Kozmológia alapfokon Magyar fizikatanárok a CERN-ben 2013. augusztus 12-17. Trócsányi Zoltán Kozmológia alapfokon Részecskefizikai vonatkozásokkal Hogy kerül a csizma az asztalra? Az elmúlt negyedszázad a kozmológia forradalmát,

Részletesebben

Csillagászat. A csillagok születése, fejlődése. A világegyetem kialakulása 12/C. -Mészáros Erik -Polányi Kristóf

Csillagászat. A csillagok születése, fejlődése. A világegyetem kialakulása 12/C. -Mészáros Erik -Polányi Kristóf Csillagászat. A csillagok születése, fejlődése. A világegyetem kialakulása 12/C -Mészáros Erik -Polányi Kristóf - Vöröseltolódás - Hubble-törvény: Edwin P. Hubble (1889-1953) - Ősrobbanás-elmélete (Big

Részletesebben

2011 Fizikai Nobel-díj

2011 Fizikai Nobel-díj 2011 Fizikai Nobel-díj MTA WFK SZFKI kollokvium SZFKI kollokvium 1 SZFKI kollokvium 2 SZFKI kollokvium 3 Galaxisunk rekonstruált képe SZFKI kollokvium 4 SZFKI kollokvium 5 SZFKI kollokvium 6 Cefeidák 1784

Részletesebben

Komplex Rendszerek Fizikája Tanszék április 28.

Komplex Rendszerek Fizikája Tanszék április 28. A nagyléptékű szerkezet kialakulása, fejlődése Dobos László Komplex Rendszerek Fizikája Tanszék dobos@complex.elte.hu É 5.60 2017. április 28. Az Univerzum sűrűségfluktuációinak fejlődése A struktúra kis

Részletesebben

A sötét anyag és sötét energia rejtélye

A sötét anyag és sötét energia rejtélye A sötét anyag és sötét energia rejtélye Cynolter Gábor MTA-ELTE Elméleti Fizikai Kutatócsoport Részecskefizika Határok Nélkül 2018. november 17. ELTE TTK Cynolter Gábor Sötét anyag és energia... A Standard

Részletesebben

A világegyetem szerkezete és fejlődése. Összeállította: Kiss László

A világegyetem szerkezete és fejlődése. Összeállította: Kiss László A világegyetem szerkezete és fejlődése Összeállította: Kiss László Szerkezeti felépítés A világegyetem galaxisokból és galaxis halmazokból áll. A galaxis halmaz, gravitációsan kötött objektumok halmaza.

Részletesebben

Fekete lyukak, gravitációs hullámok és az Einstein-teleszkóp

Fekete lyukak, gravitációs hullámok és az Einstein-teleszkóp Fekete lyukak, gravitációs hullámok és az Einstein-teleszkóp GERGELY Árpád László Fizikai Intézet, Szegedi Tudományegyetem 10. Bolyai-Gauss-Lobachevsky Konferencia, 2017, Eszterházy Károly Egyetem, Gyöngyös

Részletesebben

Modern kozmológia. Horváth István. NKE HHK Katonai Logisztikai Intézet Természettudományi Tanszék

Modern kozmológia. Horváth István. NKE HHK Katonai Logisztikai Intézet Természettudományi Tanszék Modern kozmológia Horváth István NKE HHK Katonai Logisztikai Intézet Természettudományi Tanszék 2015 a fény nemzetközi éve 1015 Ibn Al-Haytham optika 1815 Fresnel fény hullámelmélete 1865 Maxwell egyenletek

Részletesebben

Kozmológiai n-test-szimulációk

Kozmológiai n-test-szimulációk Kozmológiai n-test-szimulációk Dobos László Komplex Rendszerek Fizikája Tanszék dobos@complex.elte.hu É 5.60 2017. április 21. Inhomogenitások az Univerzumban A háttérsugárzás lecsatolódásakor (z 1100)

Részletesebben

BevCsil1 (Petrovay) A Föld alakja. Égbolt elfordul világtengely.

BevCsil1 (Petrovay) A Föld alakja. Égbolt elfordul világtengely. A FÖLD GÖMB ALAKJA, MÉRETE, FORGÁSA A Föld alakja Égbolt elfordul világtengely. Vízszintessel bezárt szöge helyfüggő földfelszín görbült. Dupla távolság - dupla szögváltozás A Föld gömb alakú További bizonyítékok:

Részletesebben

KÖSZÖNTJÜK HALLGATÓINKAT!

KÖSZÖNTJÜK HALLGATÓINKAT! KÖSZÖNTJÜK HALLGATÓINKAT! Önök Dr. Horváth András: Az Univerzum keletkezése Amit tudunk a kezdetekről és amit nem c. előadását hallhatják! 2010. február 10. Az Univerzum keletkezése Amit tudunk a kezdetekről,

Részletesebben

A TételWiki wikiből. A Big Bang modell a kozmológia Standard modellje. Elsősorban megfigyelésekre és az általános relativitáselméletre épül.

A TételWiki wikiből. A Big Bang modell a kozmológia Standard modellje. Elsősorban megfigyelésekre és az általános relativitáselméletre épül. 1 / 5 A TételWiki wikiből 1 Newton-féle gravitációs erőtörvény 2 Az ősrobbanás elmélet alapvető feltevései 3 Friedmann-egyenletek szemléletes értelme 4 Galaxisok kialakulása, morfológiája, Hubble törvény

Részletesebben

KÖSZÖNTJÜK HALLGATÓINKAT!

KÖSZÖNTJÜK HALLGATÓINKAT! KÖSZÖNTJÜK HALLGATÓINKAT! Önök Dr. Horváth András: Az Univerzum keletkezése Amit tudunk a kezdetekről és amit nem c. előadását hallhatják! 2010. február 10. 1 Az Univerzum keletkezése Amit tudunk a kezdetekről,

Részletesebben

Trócsányi Zoltán. Kozmológia alapfokon

Trócsányi Zoltán. Kozmológia alapfokon Magyar fizikatanárok a CERN-ben 2015. augusztus 16-22. Trócsányi Zoltán Kozmológia alapfokon Részecskefizikai vonatkozásokkal Hogy kerül a csizma az asztalra? Az elmúlt negyedszázad a kozmológia forradalmát,

Részletesebben

Nemzetközi Csillagászati és Asztrofizikai Diákolimpia Szakkör Távcsövek és kozmológia Megoldások

Nemzetközi Csillagászati és Asztrofizikai Diákolimpia Szakkör Távcsövek és kozmológia Megoldások Nemzetközi Csillagászati és Asztrofizikai Diákolimpia Szakkör 2015-16 7. Távcsövek és kozmológia Megoldások Bécsy Bence, Dálya Gergely 1. Bemelegítő feladatok B1. feladat A nagyítást az objektív és az

Részletesebben

AZ UNIVERZUM GYORSULÓ TÁGULÁSA

AZ UNIVERZUM GYORSULÓ TÁGULÁSA bességet adunk irányukat pedig a helyvektorokkal ugyanakkora szöget bezárónak vesszük A rendszert ily módon elindítva a testek Kepler-mozgást végeznek miközben konfigurációjuk önmagához hasonló (konvex

Részletesebben

Trócsányi Zoltán. Kozmológia alapfokon

Trócsányi Zoltán. Kozmológia alapfokon Magyar fizikatanárok a CERN-ben 2007. augusztus 12-19. Trócsányi Zoltán Kozmológia alapfokon Részecskefizikai vonatkozásokkal l úl d á d Az elmúlt negyedszázad a mikro- és makrokozmosz fizikájának összefonódását

Részletesebben

Komplex Rendszerek Fizikája Tanszék március 3.

Komplex Rendszerek Fizikája Tanszék március 3. Extragalaxisok és távolságuk mérése Dobos László Komplex Rendszerek Fizikája Tanszék dobos@complex.elte.hu É 5.60 2014. március 3. Galaxisok észlelése Alapvető technikák IR, optikai és UV tartományokban

Részletesebben

A FÖLD KÖRNYEZETE ÉS A NAPRENDSZER

A FÖLD KÖRNYEZETE ÉS A NAPRENDSZER A FÖLD KÖRNYEZETE ÉS A NAPRENDSZER 1. Mértékegységek: Fényév: az a távolság, amelyet a fény egy év alatt tesz meg. A fény terjedési sebessége: 300.000 km/s, így egy év alatt 60*60*24*365*300 000 km-t,

Részletesebben

Csillagok parallaxisa

Csillagok parallaxisa Csillagok parallaxisa Csillagok megfigyelése elég fényesek, így nem túl nehéz, de por = erős extinkció, ami irányfüggő Parallaxis mérése spektroszkópiailag a mért spektrumra modellt illesztünk (kettőscsillagokra

Részletesebben

Gravitational lenses as cosmic rulers: Ωm, ΩΛ from time delays and velocity dispersions

Gravitational lenses as cosmic rulers: Ωm, ΩΛ from time delays and velocity dispersions Gravitational lenses as cosmic rulers: Ωm, ΩΛ from time delays and velocity dispersions D. Paraficz & J. Hjorth Gravitációs lencsék mint kozmikus vonalzók: Ω, Ω az idő késésből és a sebesség m Λ diszperzióból

Részletesebben

Válaszok a feltett kérdésekre

Válaszok a feltett kérdésekre Válaszok a feltett kérdésekre Megmarad-e az energia a VE tágulása során? Tapasztalatunk szerint az energia helyileg (tehát az energiasűrűség) megmaradó mennyiség Hol? Mit értünk energia alatt? Biztosan

Részletesebben

egyetemi állások a relativitáselmélet általánosítása (1915) napfogyatkozás (1919) az Einstein-mítosz (1920-tól) emigráció 1935: Einstein-Podolsky-

egyetemi állások a relativitáselmélet általánosítása (1915) napfogyatkozás (1919) az Einstein-mítosz (1920-tól) emigráció 1935: Einstein-Podolsky- egyetemi állások a relativitáselmélet általánosítása (1915) napfogyatkozás (1919) az Einstein-mítosz (1920-tól) emigráció 1935: Einstein-Podolsky- Rosen cikk törekvés az egységes térelmélet létrehozására

Részletesebben

A Föld helye a Világegyetemben. A Naprendszer

A Föld helye a Világegyetemben. A Naprendszer A Föld helye a Világegyetemben A Naprendszer Mértékegységek: Fényév: az a távolság, amelyet a fény egy év alatt tesz meg. (A fény terjedési sebessége: 300.000 km.s -1.) Egy év alatt: 60.60.24.365.300 000

Részletesebben

Csillagászati földrajz december 13. Kitekintés a Naprendszerből

Csillagászati földrajz december 13. Kitekintés a Naprendszerből Csillagászati földrajz 2018. december 13. Kitekintés a Naprendszerből Csillag: saját fénnyel világító égitest A csillagok tehát nem más fényét veri vissza (mint a bolygók, holdak, stb.) a gravitációs összehúzó

Részletesebben

Kozmikus mikrohullámú háttérsugárzás anizotrópiája

Kozmikus mikrohullámú háttérsugárzás anizotrópiája Kozmikus mikrohullámú háttérsugárzás anizotrópiája Bántó Balázs Eötvös Loránd University Bántó Balázs (ELTE) CMB 1 / 23 Történelmi áttekintés Robert Henry Dicke 1941-ben, az M.I.T. sugárlaboratóriumában

Részletesebben

Komplex Rendszerek Fizikája Tanszék április 28.

Komplex Rendszerek Fizikája Tanszék április 28. A kozmikus mikrohullámú háttérsugárzás Dobos László Komplex Rendszerek Fizikája Tanszék dobos@complex.elte.hu É 5.60 2017. április 28. A kozmikus háttérsugárzás eredete Az ősi plazmában a fotonok folyamatosan

Részletesebben

TRIGONOMETRIKUS PARALLAXIS. Közeli objektum, hosszú bázisvonal nagyobb elmozdulás.

TRIGONOMETRIKUS PARALLAXIS. Közeli objektum, hosszú bázisvonal nagyobb elmozdulás. TRIGONOMETRIKUS PARALLAXIS Közeli objektum, hosszú bázisvonal nagyobb elmozdulás. Napi parallaxis: a bázisvonal a földfelszín két pontja Évi parallaxis: a bázisvonal a földpálya két átellenes pontja. A

Részletesebben

A galaxisok csoportjai.

A galaxisok csoportjai. A galaxisok csoportjai. Hubble ismerte fel és bizonyította, hogy a megfigyelhető ködök jelentős része a Tejútrendszeren kívül található. Mivel több galaxis távolságát határozta meg, ezért úgy gondolta,

Részletesebben

Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 4. (e) Kvantummechanika Utolsó módosítás: 2014. december 3. 1 A Klein-Gordon-egyenlet (1) A relativisztikus dinamikából a tömegnövekedésre és impulzusra vonatkozó

Részletesebben

Az ősrobbanás elmélete

Az ősrobbanás elmélete Az ősrobbanás elmélete Kozmológia és kozmogónia Kozmológia: a világmindenséggel mint összefüggő, egységes egésszel, tér- és időbeli szerkezetével, keletkezésével, fejlődésével foglalkozó tudomány. Kozmogónia:

Részletesebben

Bevezetés a kozmológiába 1: a Világegyetem tágulása

Bevezetés a kozmológiába 1: a Világegyetem tágulása Horváth Dezső: Kozmológia-1 HTP-2011, CERN, 2011.08.17. p. 1/24 Bevezetés a kozmológiába 1: a Világegyetem tágulása HTP-2011, CERN, 2011 augusztus 17. Horváth Dezső horvath@rmki.kfki.hu MTA KFKI Részecske

Részletesebben

Újabb eredmények a kozmológiában

Újabb eredmények a kozmológiában Kovách Ádám Újabb eredmények a kozmológiában A 2006. évben immár századik alkalommal kiadott fizikai Nobel-díjat a díj odaítélésében illetékes Svéd Királyi Tudományos Akadémia egyenlő arányban megosztva

Részletesebben

Bevezetés a kozmológiába 1: a Világegyetem tágulása

Bevezetés a kozmológiába 1: a Világegyetem tágulása Horváth Dezső: Kozmológia-1 HTP-2016, CERN, 2016.08.16. p. 1 Bevezetés a kozmológiába 1: a Világegyetem tágulása HTP-2016, CERN, 2016 augusztus 16. Horváth Dezső horvath.dezso@wigner.mta.hu MTA KFKI Wigner

Részletesebben

Aktív magvú galaxisok és kvazárok

Aktív magvú galaxisok és kvazárok Aktív magvú galaxisok és kvazárok Dobos László Komplex Rendszerek Fizikája Tanszék dobos@complex.elte.hu É 5.60 2015. március 3. Tipikus vörös galaxis spektruma F λ 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 4000

Részletesebben

A nagy skálás szerkezet statisztikus leírása

A nagy skálás szerkezet statisztikus leírása A nagy skálás szerkezet statisztikus leírása Dobos László Komplex Rendszerek Fizikája Tanszék dobos@complex.elte.hu É 5.60 2014. április 7. A nagy skálás szerkezet statisztikus leírása Össze akarjuk hasonĺıtani

Részletesebben

Bevezető kozmológia az asztrofizikus szemével. Gyöngyöstarján, 2004 május

Bevezető kozmológia az asztrofizikus szemével. Gyöngyöstarján, 2004 május Bevezető kozmológia az asztrofizikus szemével Gyöngyöstarján, 2004 május Tartalmi áttekintés A tágulás klasszikus megközelítése Ált. rel. analógiák Az Ősrobbanás pillérei A problémák és a megoldás, az

Részletesebben

A csillagok fénye 1. Az atomoktól a csillagokig. Dávid Gyula 2016. 01. 21. Az atomoktól a csillagokig dgy 2015. 01. 21.

A csillagok fénye 1. Az atomoktól a csillagokig. Dávid Gyula 2016. 01. 21. Az atomoktól a csillagokig dgy 2015. 01. 21. A csillagok fénye 1. Az atomoktól a csillagokig Dávid Gyula 2016. 01. 21. Az atomoktól a csillagokig dgy 2015. 01. 21. A csillagok fénye 1 Az atomoktól a csillagokig sorozat 150. előadása 2016. 01. 21.

Részletesebben

A relativitáselmélet története

A relativitáselmélet története A relativitáselmélet története a parallaxis keresése közben felfedezik az aberrációt (1725-1728) James Bradley (1693-1762) ennek alapján becsülhető a fény sebessége a csillagfény ugyanúgy törik meg a prizmán,

Részletesebben

Aktív galaxismagok, szupermasszív fekete lyukak

Aktív galaxismagok, szupermasszív fekete lyukak Aktív galaxismagok, szupermasszív fekete lyukak Dobos László Komplex Rendszerek Fizikája Tanszék dobos@complex.elte.hu É 5.60 2015. március 17. Aktív magvú galaxisok egyesített modellje 2 Úgy gondoljuk,

Részletesebben

A csillagközi anyag. Interstellar medium (ISM) Bonyolult dinamika. turbulens áramlások MHD

A csillagközi anyag. Interstellar medium (ISM) Bonyolult dinamika. turbulens áramlások MHD A csillagközi anyag Interstellar medium (ISM) gáz + por Ebből jönnek létre az újabb és újabb csillagok Bonyolult dinamika turbulens áramlások lökéshullámok MHD Speciális kémia porszemcsék képződése, bomlása

Részletesebben

A KOZMIKUS HÁTTÉRSUGÁRZÁS KUTATÁSÁNAK TÖRTÉNETE ÉS KILÁTÁSAI

A KOZMIKUS HÁTTÉRSUGÁRZÁS KUTATÁSÁNAK TÖRTÉNETE ÉS KILÁTÁSAI A kölcsönhatásokat egyesítô elméletek közül ma a szuperszimmetria (SUSY) a legnépszerûbb, bár igazát egyelôre semmiféle kísérleti megfigyelés nem bizonyítja. Szimmetriát feltételez a fermionok és bozonok

Részletesebben

Részecskefizika 2: kozmológia

Részecskefizika 2: kozmológia Horváth Dezső: Kozmológia Debreceni Egyetem, BSc, 2014.04.22. p. 1/41 Részecskefizika 2: kozmológia Debreceni Egyetem, BSc, 2014.04.22. Horváth Dezső horvath.dezso@wigner.mta.hu MTA Wigner Fizikai Kutatóközpont,

Részletesebben

Komplex Rendszerek Fizikája Tanszék április 28.

Komplex Rendszerek Fizikája Tanszék április 28. A kozmikus mikrohullámú háttérsugárzás Dobos László Komplex Rendszerek Fizikája Tanszék dobos@complex.elte.hu É 5.60 2014. április 28. A korai Univerzumot kitöltő plazma Az Univerzum kezdetén egzotikus

Részletesebben

Ősrobbanás: a Világ teremtése?

Ősrobbanás: a Világ teremtése? Horváth Dezső: A kozmológia alapjai Telki, 2010.01.14 p. 1/37 Ősrobbanás: a Világ teremtése? (A kozmológia alapjai) Horváth Dezső horvath@rmki.kfki.hu MTA KFKI Részecske és Magfizikai Kutatóintézet, Budapest

Részletesebben

2. Rész A kozmikus háttérsugárzás

2. Rész A kozmikus háttérsugárzás 2. Rész A kozmikus háttérsugárzás A kozmikus sugárzás felfedezése 1965: A. Penzias és R. Wilson (Bell Lab) érzékeny mikrohullámú antennája A kozmikus sugárzás 1965: A. Penzias és R. Wilson érzékeny mikrohullámú

Részletesebben

FIZIKAI NOBEL-DÍJ 2011: SZUPERNÓVÁK ÉS A GYORSULVA TÁGULÓ UNIVERZUM Szalai Tamás SZTE Optikai és Kvantumelektronikai Tanszék, Szeged

FIZIKAI NOBEL-DÍJ 2011: SZUPERNÓVÁK ÉS A GYORSULVA TÁGULÓ UNIVERZUM Szalai Tamás SZTE Optikai és Kvantumelektronikai Tanszék, Szeged FIZIKAI NOBEL-DÍJ 2011: SZUPERNÓVÁK ÉS A GYORSULVA TÁGULÓ UNIVERZUM Szalai Tamás SZTE Optikai és Kvantumelektronikai Tanszék, Szeged A fizikai Nobel-díjat mintegy 115 éves történelme során több alkalommal

Részletesebben

Spektrográf elvi felépítése. B: maszk. A: távcső. Ø maszk. Rés Itt lencse, de általában komplex tükörrendszer

Spektrográf elvi felépítése. B: maszk. A: távcső. Ø maszk. Rés Itt lencse, de általában komplex tükörrendszer Spektrográf elvi felépítése A: távcső Itt lencse, de általában komplex tükörrendszer Kis kromatikus aberráció fontos Leképezés a fókuszsíkban: sugarak itt metszik egymást B: maszk Fókuszsíkba kerül (kamera

Részletesebben

Bevezetés az asztrofizikába

Bevezetés az asztrofizikába Bevezetés az asztrofizikába Balog Dániel 2011. 10. 17 Morfológia: Hubble a huszas évek végén, harmincas évek elején nagyon sok galaxis lefényképezett, és észrevette, hogy morfológiailag két különböző galaxis

Részletesebben

Az elemek eredete I.

Az elemek eredete I. Az elemek eredete I. A Föld kontinentális kérgében ma 90 elem (H U), de 112 ismert: - az első 82 (H Pb) stabil nuklid is (Tc és Pm nincs a természetben), - a 83-92 (Bi U) csak radioaktív nuklid ( 209 Bi,

Részletesebben

2016. április 5. Balogh Gáspár Sámuel Kvazárok április 5. 1 / 28

2016. április 5. Balogh Gáspár Sámuel Kvazárok április 5. 1 / 28 Kvazárok Balogh Gáspár Sámuel 2016. április 5. Balogh Gáspár Sámuel Kvazárok 2016. április 5. 1 / 28 Jellemző sűrűségadatok ρ universe 10 27 kg Balogh Gáspár Sámuel Kvazárok 2016. április 5. 2 / 28 Jellemző

Részletesebben

Pósfay Péter. ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G.

Pósfay Péter. ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G. Pósfay Péter ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G. A Naphoz hasonló tömegű csillagok A Napnál 4-8-szor nagyobb tömegű csillagok 8 naptömegnél nagyobb csillagok Vörös óriás Szupernóva

Részletesebben

Asztrofizika az Interneten: a Világtávcső

Asztrofizika az Interneten: a Világtávcső Asztrofizika az Interneten: a Világtávcső Szalay Sándor Johns Hopkins University, Baltimore Az ég első térképei Kinai, 940 A.D. Tycho Brahe 1600 A.D. Uranometria, Johannes Beyer, Tycho Brahe csillagtérképéből

Részletesebben

Az Univerzum szerkezete

Az Univerzum szerkezete Az Univerzum szerkezete Készítette: Szalai Tamás (csillagász, PhD-hallgató, SZTE) Lektorálta: Dr. Szatmáry Károly (egy. docens, SZTE Kísérleti Fizikai Tsz.) 2011. március Kifelé a Naprendszerből: A Kuiper(-Edgeworth)-öv

Részletesebben

Aktív galaxismagok, szupermasszív fekete lyukak

Aktív galaxismagok, szupermasszív fekete lyukak Aktív galaxismagok, szupermasszív fekete lyukak Dobos László Komplex Rendszerek Fizikája Tanszék dobos@complex.elte.hu É 5.60 2017. március 10. Aktív magvú galaxisok egyesített modellje 2 Úgy gondoljuk,

Részletesebben

A világ keletkezése: Ősrobbanás és teremtés

A világ keletkezése: Ősrobbanás és teremtés Horváth Dezső: A világ keletkezése Biatorbágy, 2013.04.26. p. 1/49 A világ keletkezése: Ősrobbanás és teremtés Mini Mindentudás Egyeteme, Biatorbágy, 2013.04.26. Horváth Dezső horvath.dezso@wigner.mta.hu

Részletesebben

Természettudományos Önképző Kör. Helyszín: Berze Nagy János Gimnázium, Kiss Lajos terem V. 25, péntek, 14:45-15:45

Természettudományos Önképző Kör. Helyszín: Berze Nagy János Gimnázium, Kiss Lajos terem V. 25, péntek, 14:45-15:45 Természettudományos Önképző Kör Helyszín: Berze Nagy János Gimnázium, Kiss Lajos terem 2007. V. 25, péntek, 14:45-15:45 Sok szeretettel köszöntünk minden kedves érdeklődőt Csörgő Tamás iskolánk öregdiákja,

Részletesebben

Axion sötét anyag. Katz Sándor. ELTE Elméleti Fizikai Tanszék

Axion sötét anyag. Katz Sándor. ELTE Elméleti Fizikai Tanszék Az axion mint sötét anyag ELTE Elméleti Fizikai Tanszék Borsányi Sz., Fodor Z., J. Günther, K-H. Kampert, T. Kawanai, Kovács T., S.W. Mages, Pásztor A., Pittler F., J. Redondo, A. Ringwald, Szabó K. Nature

Részletesebben

Kozmológia és vallás - a világ keletkezése: ősrobbanás és teremtés

Kozmológia és vallás - a világ keletkezése: ősrobbanás és teremtés Horváth Dezső: Kozmológia és vallás Semmelweiss Egyetem, Budapest, 2018.02.14. p. 1 Kozmológia és vallás - a világ keletkezése: ősrobbanás és teremtés Tudomány és Művészet Kórélettana, Semmelweiss Egyetem,

Részletesebben

AZ UNIVERZUM SZÜLETÉSE. Nagy Bumm elmélet 13,7 milliárd évvel ezelőtt A Világegyetem egy rendkívül sűrű, forró állapotból fejlődött ki

AZ UNIVERZUM SZÜLETÉSE. Nagy Bumm elmélet 13,7 milliárd évvel ezelőtt A Világegyetem egy rendkívül sűrű, forró állapotból fejlődött ki Az Univerzum titkai AZ UNIVERZUM SZÜLETÉSE Nagy Bumm elmélet 13,7 milliárd évvel ezelőtt A Világegyetem egy rendkívül sűrű, forró állapotból fejlődött ki Georges Lemaître (1894-1966) belga pap, a Leuven-i

Részletesebben

Az Univerzum kezdeti állapotáról biztosat nem tudunk, elméletekben azonban nincs hiány. A ma leginkább elfogadott modell, amelyet G.

Az Univerzum kezdeti állapotáról biztosat nem tudunk, elméletekben azonban nincs hiány. A ma leginkább elfogadott modell, amelyet G. A világ keletkezése Az Univerzum kezdeti állapotáról biztosat nem tudunk, elméletekben azonban nincs hiány. A ma leginkább elfogadott modell, amelyet G.Gamov elméleti fizikus dolgozott ki az, ún. "Big-bang",

Részletesebben

A csillagc. Szenkovits Ferenc 2010.03.26. 1

A csillagc. Szenkovits Ferenc 2010.03.26. 1 A csillagc sillagászatszat sötét kihívásai Szenkovits Ferenc 2010.03.26. 1 Kitekintés A távcsövek fejlıdése Fontosabb csillagászati felfedezések az ezredfordulón Napjaink csillagászati kihívásai Elképzelések

Részletesebben

Kozmológia: ősrobbanás és teremtés

Kozmológia: ősrobbanás és teremtés Horváth Dezső: Kozmológia Kult. szalon, Budapest, 2014.09.24. p. 1 Kozmológia: ősrobbanás és teremtés Horváth Dezső horvath.dezso@wigner.mta.hu MTA Wigner Fizikai Kutatóközpont, Budapest és MTA Atommagkutató

Részletesebben

Nukleáris asztrofizika

Nukleáris asztrofizika Nukleáris asztrofizika 2015.05.14. A modern kozmológia születése Kozmológia: a Világegyetem fizikája, tárgya a Világegyetem mint mérhető objektum: ~ 13,7 milliárd fényév sugarú gömb (4D), benne megfigyelhető

Részletesebben

A gravitációs hullámok miért mutathatók ki lézer-interferométerrel?

A gravitációs hullámok miért mutathatók ki lézer-interferométerrel? A gravitációs hullámok miért mutathatók ki lézer-interferométerrel? Gravitációs hullám (GH) Newton: ha egy nagy tömegű égitest helyet változtat, annak azonnal érződik a hatása tetszőlegesen nagy távolságban

Részletesebben

Dr. Berta Miklós. Széchenyi István Egyetem. Dr. Berta Miklós: Gravitációs hullámok / 12

Dr. Berta Miklós. Széchenyi István Egyetem. Dr. Berta Miklós: Gravitációs hullámok / 12 Gravitációs hullámok Dr. Berta Miklós Széchenyi István Egyetem Fizika és Kémia Tanszék Dr. Berta Miklós: Gravitációs hullámok 2016. 4. 16 1 / 12 Mik is azok a gravitációs hullámok? Dr. Berta Miklós: Gravitációs

Részletesebben

Kozmikus záporok és észlelésük középiskolákban

Kozmikus záporok és észlelésük középiskolákban Magfizika és Részecskefizika előadás Szegedi Egyetem, Kísérleti Fizikai Tanszék 2012. 10. 16 Kozmikus záporok és észlelésük középiskolákban Csörgő Tamás MTA Wigner Fizikai Kutatóközpont Részecske és Magfizikai

Részletesebben

FIZIKAI NOBEL-DÍJ 2011: SZUPERNÓVÁK ÉS A GYORSULVA TÁGULÓ UNIVERZUM Szalai Tamás SZTE Optikai és Kvantumelektronikai Tanszék, Szeged

FIZIKAI NOBEL-DÍJ 2011: SZUPERNÓVÁK ÉS A GYORSULVA TÁGULÓ UNIVERZUM Szalai Tamás SZTE Optikai és Kvantumelektronikai Tanszék, Szeged A gammakitörések gyakorisága és hatása a földi életre Jelenleg a Föld körül keringô mesterséges holdak naponta átlagosan egy gammakitörést észlelnek. Minthogy a gammakitörések akkora távolságról látszanak,

Részletesebben

Kozmológia: a világ keletkezése ősrobbanás és teremtés

Kozmológia: a világ keletkezése ősrobbanás és teremtés Horváth Dezső: Kozmológia: a világ keletkezése Mártély, 2014. 07.24. p. 1 Kozmológia: a világ keletkezése ősrobbanás és teremtés Horváth Dezső horvath.dezso@wigner.mta.hu MTA Wigner Fizikai Kutatóközpont,

Részletesebben

Szupernova avagy a felrobbanó hűtőgép

Szupernova avagy a felrobbanó hűtőgép Szupernova avagy a felrobbanó hűtőgép (a csillagok termodinamikája 3.) Az atomoktól a csillagokig Dávid Gyula 2013. 09. 19. 1 Szupernova avagy a felrobbanó hűtőgép (a csillagok termodinamikája 3.) Az atomoktól

Részletesebben

A változócsillagok. A pulzáló változók.

A változócsillagok. A pulzáló változók. A változócsillagok. Tulajdonképpen minden csillag változik az élete során. Például a kémiai összetétele, a luminozitása, a sugara, az átlagsűrűsége, stb. Ezek a változások a mi emberi élethosszunkhoz képest

Részletesebben

Fizikai Szemle MAGYAR FIZIKAI FOLYÓIRAT

Fizikai Szemle MAGYAR FIZIKAI FOLYÓIRAT Fizikai Szemle MAGYAR FIZIKAI FOLYÓIRAT A Mathematikai és Természettudományi Értesítõt az Akadémia 1882-ben indította A Mathematikai és Physikai Lapokat Eötvös Loránd 1891-ben alapította LX. évfolyam 3.

Részletesebben

A LEHETSÉGES VILÁGOK LEGJOBBIKA?

A LEHETSÉGES VILÁGOK LEGJOBBIKA? A LEHETSÉGES VILÁGOK LEGJOBBIKA? avagy miért létezünk egyáltalán? Gesztesi Albert Filozófiai Vitakör, 2009. május 15. Magyarázzuk meg, hogy mit látunk! Nem csak látjuk, de értjük is amit látunk. Miért

Részletesebben

Acta Acad. Agriensis, Sectio Pericemonologica XL (2013) UJFALUDI LÁSZLÓ. Eszterházy Károly Főiskola, Fizika Tanszék

Acta Acad. Agriensis, Sectio Pericemonologica XL (2013) UJFALUDI LÁSZLÓ. Eszterházy Károly Főiskola, Fizika Tanszék Acta Acad. Agriensis, Sectio Pericemonologica XL (2013) 111 128 HELYÜNK AZ UNIVERZUMBAN A CSILLAGÁSZAT RÖVID TÖRTÉNETE II. RÉSZ UJFALUDI LÁSZLÓ Eszterházy Károly Főiskola, Fizika Tanszék Abstract: Our

Részletesebben

ATOMMAGBAN A VILÁGEGYETEM A KVANTUMMECHANIKA FILOZÓFIÁJA, KÉZZEL FOGHATÓAN

ATOMMAGBAN A VILÁGEGYETEM A KVANTUMMECHANIKA FILOZÓFIÁJA, KÉZZEL FOGHATÓAN ATOMMAGBAN A VILÁGEGYETEM A KVANTUMMECHANIKA FILOZÓFIÁJA, KÉZZEL FOGHATÓAN Csörgő Tamás MTA Wigner Fizikai Kutatóközpont A Nagy Bumm és a sok Kis Bumm Csillagokból születtünk Részecskés Kártyajáték és

Részletesebben

A világ keletkezése: ősrobbanás és teremtés

A világ keletkezése: ősrobbanás és teremtés Horváth Dezső: A világ keletkezése Mecha-TÖK, Budapest, 2014.05.23. p. 1 A világ keletkezése: ősrobbanás és teremtés Horváth Dezső horvath.dezso@wigner.mta.hu MTA Wigner Fizikai Kutatóközpont, Budapest

Részletesebben

A csillagok kialakulása és fejlődése; a csillagok felépítése

A csillagok kialakulása és fejlődése; a csillagok felépítése A csillagok kialakulása és fejlődése; a csillagok felépítése Készítette: Szalai Tamás (csillagász, PhD-hallgató, SZTE) Lektorálta: Dr. Szatmáry Károly (egy. docens, SZTE Kísérleti Fizikai Tsz.) 2011. március

Részletesebben

A világ keletkezése: ősrobbanás és teremtés

A világ keletkezése: ősrobbanás és teremtés Horváth Dezső: A Világ keletkezése Eger, 2010 szept. 24. p. 1/45 A világ keletkezése: ősrobbanás és teremtés Eszterházy Károly Főiskola, Eger, 2010 szept. 24. Horváth Dezső horvath@rmki.kfki.hu MTA KFKI

Részletesebben

fizikai szemle fizikai 2007/12

fizikai szemle fizikai 2007/12 fizikai szemle 2007/12 Az Eötvös Loránd Fizikai Társulat havonta megjelenô folyóirata. Támogatók: A Magyar Tudományos Akadémia Fizikai Tudományok Osztálya, az Oktatási Minisztérium, a Magyar Biofizikai

Részletesebben

A világ keletkezése. Horváth Dezső.

A világ keletkezése. Horváth Dezső. Horváth Dezső: A Világ keletkezése Szent István Gimnázium, 2010. jún. 9. p. 1/44 A világ keletkezése (Ősrobbanás = teremtés?) Horváth Dezső horvath@rmki.kfki.hu MTA KFKI Részecske és Magfizikai Kutatóintézet,

Részletesebben

AZ UNIVERZUM FELTÉRKÉPEZÉSE A SLOAN DIGITÁLIS

AZ UNIVERZUM FELTÉRKÉPEZÉSE A SLOAN DIGITÁLIS AZ UNIVERZUM FELTÉRKÉPEZÉSE A SLOAN DIGITÁLIS ÉGBOLTFELMÉRÉSSEL Varga József MTA Konkoly Thege Miklós Csillagászati Intézet ELTE, Komplex rendszerek fizikája tanszék Big data téli iskola Budapest, ELTE

Részletesebben

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet 5-4 A tökéletes gáz egyenlet alkalmazása 5-5 Gáz halmazállapotú reakciók

Részletesebben

Csillagászati észlelés gyakorlat I. 2. óra: Távolságmérés

Csillagászati észlelés gyakorlat I. 2. óra: Távolságmérés Csillagászati észlelés gyakorlat I. 2. óra: Távolságmérés Hajdu Tamás & Császár Anna & Perger Krisztina & Bőgner Rebeka A csillagászok egyik legnagyobb problémája a csillagászati objektumok távolságának

Részletesebben

Bevezetés a kozmológiába 2: ősrobbanás és vidéke

Bevezetés a kozmológiába 2: ősrobbanás és vidéke Horváth Dezső: Kozmológia-2 HTP-2018, CERN, 2018.08.23. p. 1/43 Bevezetés a kozmológiába 2: ősrobbanás és vidéke HTP-2018, CERN, 2018 augusztus 23. Horváth Dezső horvath.dezso@wigner.mta.hu MTA KFKI Wigner

Részletesebben

Bevezetés a kozmológiába 2: ősrobbanás és vidéke

Bevezetés a kozmológiába 2: ősrobbanás és vidéke Horváth Dezső: Kozmológia-2 HTP-2016, CERN, 2016.08.17. p. 1/39 Bevezetés a kozmológiába 2: ősrobbanás és vidéke HTP-2016, CERN, 2016 augusztus 17. Horváth Dezső horvath.dezso@wigner.mta.hu MTA KFKI Wigner

Részletesebben

Atomfizika. Fizika kurzus Dr. Seres István

Atomfizika. Fizika kurzus Dr. Seres István Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés 440 BC Democritus, Leucippus, Epicurus 1660 Pierre Gassendi 1803 1897 1904 1911 19 193 John Dalton Joseph John (J.J.) Thomson J.J. Thomson

Részletesebben

A világ keletkezése: ősrobbanás és teremtés

A világ keletkezése: ősrobbanás és teremtés Horváth Dezső: A világ keletkezése Szalon, Budapest, 2014.05.16. p. 1 A világ keletkezése: ősrobbanás és teremtés Horváth Dezső horvath.dezso@wigner.mta.hu MTA Wigner Fizikai Kutatóközpont, Budapest és

Részletesebben

Minden olyan, nagy méretű csillagcsoportot így nevezünk, amely a Tejútrendszer határán túl van. De, hol is húzódik a Galaxis határa?

Minden olyan, nagy méretű csillagcsoportot így nevezünk, amely a Tejútrendszer határán túl van. De, hol is húzódik a Galaxis határa? Az extragalaxisok. Innen az extragalaxisokat vizsgálni olyan, mintha egy bolhát beültetnénk egy öveg lekvárba és arra kérnénk, hogy figyelje meg a külvilágot Mai óránk háziállata a bolha. (Mindez Marik

Részletesebben

Gravitációshullámok forrásai

Gravitációshullámok forrásai Gravitációshullámok forrásai Kocsis Bence GALNUC ERC Starting Grant kutatócsoport 2015 2020 ELTE, Atomfizikai tanszék GALNUC csoporttagok posztdok: Yohai Meiron, Zacharias Roupas phd: Gondán László msc:

Részletesebben

Kozmológia és vallás

Kozmológia és vallás Horváth Dezső: Kozmológia és vallás RMKI, 2010.02.08. p. 1/32 Kozmológia és vallás (Ősrobbanás és teremtés) Horváth Dezső horvath@rmki.kfki.hu MTA KFKI Részecske és Magfizikai Kutatóintézet, Budapest és

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA Név:... osztály:... ÉRETTSÉGI VIZSGA 2006. május 15. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. május 15. 8:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM

Részletesebben

Atomfizika. Fizika kurzus Dr. Seres István

Atomfizika. Fizika kurzus Dr. Seres István Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés J.J. Thomson (1897) Katódsugárcsővel végzett kísérleteket az elektron fajlagos töltésének (e/m) meghatározására. A katódsugarat alkotó részecskét

Részletesebben

Bevezetés a kozmológiába 2: ősrobbanás és vidéke

Bevezetés a kozmológiába 2: ősrobbanás és vidéke Horváth Dezső: Kozmológia-2 HTP-2014, CERN, 2014.08.20. p. 1/34 Bevezetés a kozmológiába 2: ősrobbanás és vidéke HTP-2014, CERN, 2014 augusztus 20. Horváth Dezső horvath.dezso@wigner.mta.hu MTA KFKI Wigner

Részletesebben

FOGALOMTÁR 9. évfolyam I. témakör A Föld és kozmikus környezete

FOGALOMTÁR 9. évfolyam I. témakör A Föld és kozmikus környezete FOGALOMTÁR 9. évfolyam I. témakör A Föld és kozmikus környezete csillag: csillagrendszer: Nap: Naprendszer: a Naprendszer égitestei: plazmaállapot: forgás: keringés: ellipszis alakú pálya: termonukleáris

Részletesebben

Van-e a vákuumnak energiája? A Casimir effektus és azon túl

Van-e a vákuumnak energiája? A Casimir effektus és azon túl Van-e a vákuumnak energiája? és azon túl MTA-ELTE Elméleti Fizikai Kutatócsoport Bolyai Kollégium, 2007. október 3. Van-e a vákuumnak energiája? és azon túl Vázlat 1 2 3 4 5 Van-e a vákuumnak energiája?

Részletesebben

Hadronok, atommagok, kvarkok

Hadronok, atommagok, kvarkok Zétényi Miklós Hadronok, atommagok, kvarkok Teleki Blanka Gimnázium Székesfehérvár, 2012. február 21. www.meetthescientist.hu 1 26 Atomok Démokritosz: atom = legkisebb, oszthatatlan részecske Rutherford

Részletesebben