ELEKTRONIKUS ALKATRÉSZEK KATALÓGUSA

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "ELEKTRONIKUS ALKATRÉSZEK KATALÓGUSA"

Átírás

1 ELEKTRONIKUS ALKATRÉSZEK KATALÓGUSA (Segédlet az Eletronika tárgy oktatásához) Oktatási célra összeállította: Gábossy Antal Székesfehérvár, 2003 március 1

2 I. PASSZÍV KOMPONENSEK Ellenállásokat és kondenzátorokat értünk elsősorban ezen alkatrészcsoporton. Ezek az u.n. szabványos értéksorokból (E6, E12, E24, E48 ) választható névértékűek lehetnek. Ide tartoznak még a potenciométerek, az induktív elemek, az elektromechanikus eszközök (pl. relé), a feszültségfüggő ellenállások, csatlakozók, stb. 1. ábra 2

3 A névleges értékek és 10 9 közötti tartományban találhatók. Egységek jelölései és szorzószámai: Név: Jele: Szorzó: femto f piko p nano n 10-9 mikro µ 10-6 mili m 10-3 kilo k 10 3 mega M 10 6 giga G 10 9 tera T A szabványos értéksorok egyben a névérték szórását is rögzítik, éppen ezen ok miatt létezik több különböző felbontású sor, hiszen ésszerű csoportosítás ennek figyelembevételével történhet. Az alkatrészek értékük (és azok szórása) mellett természetesen több adattal is jellemezhetők. Ellenállások esetében fontos a terhelhetőség, ez nyilvánvalóan az eldisszipálható hőmennyiségtől függő méretet is jelent. (0,625 W; 0,9 W; 2 W; stb.) Kondenzátorok esetében a károsodás nélkül (pontosabban a jelentős élettartam csökkenés nélkül) elviselt feszültség értéke rendkívül fontos jellemző, alapvető katalógusadat. További választási lehetőséget a gyártási technológia jelent, pl. létezik kerámiakondenzátor, fémezett poliészter kondenzátor, elektrolit kondenzátor, tantál kondenzátor, stb., ami egyben a felhasználás típusához is kötődik. Minden passzív (és aktív) alkatrész besorolható az u.n. hagyományos, vagy az SMD 1 technológiával szerelhető csoportok valamelyikébe. Ez utóbbiak a felületszerelt eszköz -ök, napjainkban szinte kizárólagos használatuk. Igen kisméretűek, így a nyomtatott áramkörű hordozó alaplemezre közvetlenül, egy technológiai lépésben (szabályozott hőfokú és hőmérséklet-profilú kemencében) egyszerre forraszthatóak fel. Mindezekről pontosan az adott alkatrész adatlapja tájékoztat, ezért az alkatrész katalógusok használata a tervezői, vagy javítási feladatoknál nélkülözhetetlen. 1 SMD: Surface Mounted Device (felületszerelt eszköz, illetve technológia) az SMD alkatrészeket szokták morzsa (chip)-ellenállásnak (kapacitásnak) is nevezni. 3

4 A.) AZ ELLENÁLLÁS Alapvetően lineáris elemnek tekintett, és ez a gyakorlatban legtöbbször teljesül is. Tehát értéke az OHM-törvény szerinti konstans, elvileg minden frekvencián és hőmérsékleten. A valóságban persze mindig van hőmérsékletfüggése is, bár lehet rendkívül kicsi is ez az érték, - többnyire jelentéktelen - így legtöbbször nem számolunk vele. A frekvenciafüggés igen nagy frenvenciákon jelenik meg, amikor is a kivezetések induktivitása és a szórt kapacitások miatt párhuzamos és soros rezgőkörök hatása látszik. Ez többnyire a GHz-es frekvenciatartományban érezteti hatását. Az SMD ellenállások természetesen jóval magasabb frekvencián mutatnak rezonanciát, mint az axiális kivezetéssel ellátott hagyományos, nagyméretű elemek. Egy 100 ohmos ellenállás frekvenciafüggő viselkedése gyakorlati parazita értékekkel kiegészítve szimuláltan az alábbi ábrán látható. B.) A KONDENZÁTOR Elvileg tisztán reaktáns elem, tehát impedanciájának csak képzetes összetevője van. Ebből következik, hogy: látszólagos ellenállása egyenáramon (f=0 Hz, DC) végtelen nagy. (Úgy is mondjuk: egyenáramon szakadást jelent. ) A ferkvencia növelésével reaktanciája fordított arányban csökken, tehát : nagyfrekvencián 0-hoz tart, itt rövidzárnak tekinthető. Minden frekvencián tisztán képzetes, mint említettük előbb, az áram 90 fokkal siet a feszültség fázisához képest. A valóságban van valamekkora átvezetési ellenállása, veszteségi ellenállása és főleg a kivezetései miatt, - de a technológiából adódóan is - nullától eltérő induktív komponense. Ezek a parazita elemek nagyfrekvencián párhuzamos és soros rezgőköröket alkotnak, ezért a tiszta fordított arányt mutató frekvenciafüggés nagyfrekvencián torzul. (Pontosan a rezgőkörök rezonanciának hatása miatt.) A 4

5 gyakorlatban megadható az a frekvenciahatár, ami alatt még nem számottevőek a parazita elemek. Kondenzátorok esetében is az SMD technológiájúak a nagyobb határfrekvenciájúak. A kondenzátor gyártástechnológiája alapvetően megszabja a veszteségi ellenállás (soros) és az átvezetési (párhuzamos) ellenállás nagyságrendjét. A legjobbak a kerámia dielektrikumú elemek, a leggyengébbek ebből a szempontból az aluminium elektrolit kondenzátorok. Egy 22 nf névértékű kondenzátor átlagos parazita elemek feltételezésével felvett logaritmikus impedanciamenetét az alábbi ábra mutatja be. Megfigyelhető, hogy már 10 MHz fölött jelentősen eltér az ideális 20 db/dekád-os, fordított arányosságot leíró egyenestől. Az elektrolit kondenzátoroknál a feszültségirány megszabott, így a kondenzátor pozitiv és negatív pólusa megkülönböztetendő! Fordított bekötés során az elko -n nagy egyenáram folyik(!), végül felrobban. Az áramkörtervező programok ezést még az unipoláris elemnél is kérik a kivezetések szerinti megkülönböztetést. C. ) INDUKTIVITÁS Elvileg a frekvenciával arányos, tisztán képzetes ellenállása van. Tehát egyenáramon 0 ellenállást (rövidzárat) képvisel, és végtelen frekvencián szakadást. Fontos lehet, hogy a szokásos parazita ellenállás (soros veszteségi) és a szórt kapacitások miatt nagyfrekvencián rezgőkörök alakulnak ki, messze eltorzítva az ideálistól az impedancia menetét. Figyelembeveendő még, hogy az átfolyó áram értéke is a maximális alatti kell legyen, nem csak a veszteségi ellenállás miatt, hanem az esetleges ferromágnese anyagok telítése miatt is. 5

6 II. AKTÍV KOMPONENSEK II./1. Diódák A legfontosabb csoportok a felhasználás célja szerint: Kisteljesítményű, általános felhasználásra készített diódák. Nagyteljesítményű (nagyáramú és/vagy nagyfeszültségű diódák, elsősorban egyenirányítási célokra). Schottky-diódák. Zener-diódák. Kapacitásdiódák. PIN-diódák A következő oldalakon egy általános célú dióda adatlapja található. Felhívjuk a figyelmet, hogy a jelen adatlap oktatási célra készült célirányos válogatás, ezért nem tartalmaz minden adatot az eredeti katalóguslapról. Tervezési célra ezért használata nem ajánlott! 6

7 BAY 41, BAY 42, BAY 43 Silicon Epitaxial Planar Diodes (Intended for use in medium current fast switching circuts) Szilícium alapanyagú, epitaxiális planártechnológiával készített dióda. (Közepes áramerősségű, gyors kapcsolóáramkörökben való használatra ajánlott.) A.) Mechanikai adatok: (A katód körbefutó festékcsíkkal jelölt)) Dimension in mm Band cathode Case DO-35 Mass approx.:. 0,15 g B.) Absolut maximum ratings Határadatok Reverse voltage Záróirányú feszültség Peak reverse Záróirányú voltage feszültség csúcsértéke Forward Nyitóirányú current Peak forward current Surge peak forward current Junction temperature Ambient temperature Total power dissipation Thermal resistance áram Nyitóirányú áram csúcsértéke BAY 41 BAY 42 BAY 43 V R [U KA ] V V PEAK V I F [I A ] 225 ma 600 ma ma ma T J 175 C PN átmenet hőmérséklete Környezeti hőmérséklet T A C Disszipálható tot hőteljesítmény 250 mw Hőellenállás 380 K /W 7

8 C.) Static characteristics T A =25 C Egyenáramú jellemzők 25 C -on Forward voltage Reverse current I F =200 ma I F =200 ma, & T J =100 C V F [U AK ] 0,83 (<1) 0,65 V R = 50 0,1 (<3) 6 (<30) V na µa µa D.) Dynamic characteristics Dinamikus (váltóáramú) jellemzők Diode capacitance I F =200 ma I F =200 ma, Rétegkapacitás 2 (<5) pf Reverse recovery time t RR 10 (<15) ns E.) Jellemzés karakterisztikákkal A nemlineáris eszközök leírásának egyik legalkalmasabb, gyakorlatias módja a függés grafikonnal való ábrázolása. Sokszor szükséges több változó hatásának tömör bemutatása is, ekkor paraméterként kezelhetjük valamelyik változót, ezzel görbesereget eredményezve. (Pl. hőmérséklet függés) A félvezető dióda alapvetően exponenciális nemlinearitással rendelkezik, mint az a diódaegyenletből ismeretes. Figyeljünk fel arra, hogy a következő, - nyitóirányú - karakterisztikán a lin-log koordinátarendszerbeli ábrázolás miatt egyeneshez tartó grafikon látszik. Az egyenestől való eltérés itt főként a dióda járulékos soros ellenállása miatt következett be. 8

9 Forward characteristics [Nyitóirányú karakterisztika ] I F =f(v F ) [I A =f(u AK ), T: paraméter ] 100 C -on -20 C -on Válogatási határ: szaggatott vonal 9

10 T= 25 C 10

11 szélsőérték 11

12 12

13 13

14 14

15 II/2. Bipoláris tranzisztor BC182 15

16 16

17 BC182 A 17

18 18

19 19

20 20

21 21

22 Ic 22

23 23

24 24

25 25

26 26

Elektronika alapjai. Témakörök 11. évfolyam

Elektronika alapjai. Témakörök 11. évfolyam Elektronika alapjai Témakörök 11. évfolyam Négypólusok Aktív négypólusok. Passzív négypólusok. Lineáris négypólusok. Nemlineáris négypólusok. Négypólusok paraméterei. Impedancia paraméterek. Admittancia

Részletesebben

Integrált áramkörök/2. Rencz Márta Elektronikus Eszközök Tanszék

Integrált áramkörök/2. Rencz Márta Elektronikus Eszközök Tanszék Integrált áramkörök/2 Rencz Márta Elektronikus Eszközök Tanszék Mai témák MOS áramkörök alkatrészkészlete Bipoláris áramkörök alkatrészkészlete 11/2/2007 2/27 MOS áramkörök alkatrészkészlete Tranzisztorok

Részletesebben

Bevezetés a méréstechnikába és jelfeldolgozásba. Tihanyi Attila 2007 március 27

Bevezetés a méréstechnikába és jelfeldolgozásba. Tihanyi Attila 2007 március 27 Bevezetés a méréstechnikába és jelfeldolgozásba Tihanyi Attila 2007 március 27 Ellenállások R = U I Fajlagos ellenállás alapján hosszú vezeték Nagy az induktivitása Bifiláris Trükkös tekercselés Nagy mechanikai

Részletesebben

VÁLTAKOZÓ ÁRAMÚ KÖRÖK

VÁLTAKOZÓ ÁRAMÚ KÖRÖK Számítsuk ki a 80 mh induktivitású ideális tekercs reaktanciáját az 50 Hz, 80 Hz, 300 Hz, 800 Hz, 1200 Hz és 1,6 khz frekvenciájú feszültséggel táplált hálózatban! Sorosan kapcsolt C = 700 nf, L=600 mh,

Részletesebben

1. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye?

1. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye? .. Ellenőrző kérdések megoldásai Elméleti kérdések. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye? Az ábrázolás történhet vonaldiagramban. Előnye, hogy szemléletes.

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2014. október 13. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. október 13. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

I. Félvezetődiódák. Tantárgy: Villamos mérések 2. Szakközépiskola 12. évfolyam számára. Farkas Viktor

I. Félvezetődiódák. Tantárgy: Villamos mérések 2. Szakközépiskola 12. évfolyam számára. Farkas Viktor I. Félvezetődiódák Tantárgy: Villamos mérések 2. Szakközépiskola 12. évfolyam számára Farkas Viktor Bevezetés Szilícium- és Germánium diódák A fénykibocsátó dióda (LED) Zener dióda Mérési elrendezések

Részletesebben

MIB02 Elektronika 1. Passzív áramköri elemek

MIB02 Elektronika 1. Passzív áramköri elemek MIB02 Elektronika 1. Passzív áramköri elemek ELLENÁLLÁSOK -állandóértékű ellenállások - változtatható ellenállások - speciális ellenállások (PTK, NTK, VDR) Állandó értékű ellenállás Felépítés: szigetelő

Részletesebben

Összefüggő szakmai gyakorlat témakörei

Összefüggő szakmai gyakorlat témakörei Összefüggő szakmai gyakorlat témakörei Villamosipar és elektronika ágazat Elektrotechnika gyakorlat 10. évfolyam 10 óra Sorszám Tananyag Óraszám Forrasztási gyakorlat 1 1.. 3.. Forrasztott kötés típusai:

Részletesebben

Számítási feladatok a 6. fejezethez

Számítási feladatok a 6. fejezethez Számítási feladatok a 6. fejezethez 1. Egy szinuszosan változó áram a polaritás váltás után 1 μs múlva éri el első maximumát. Mekkora az áram frekvenciája? 2. Egy áramkörben I = 0,5 A erősségű és 200 Hz

Részletesebben

2.Előadás ( ) Munkapont és kivezérelhetőség

2.Előadás ( ) Munkapont és kivezérelhetőség 2.lőadás (207.09.2.) Munkapont és kivezérelhetőség A tranzisztorokat (BJT) lineáris áramkörbe ágyazva "működtetjük" és a továbbiakban mindig követelmény, hogy a tranzisztor normál aktív tartományban működjön

Részletesebben

Elektronika 11. évfolyam

Elektronika 11. évfolyam Elektronika 11. évfolyam Áramköri elemek csoportosítása. (Aktív-passzív, lineáris- nem lineáris,) Áramkörök csoportosítása. (Aktív-passzív, lineáris- nem lineáris, kétpólusok-négypólusok) Két-pólusok csoportosítása.

Részletesebben

Számítási feladatok megoldással a 6. fejezethez

Számítási feladatok megoldással a 6. fejezethez Számítási feladatok megoldással a 6. fejezethez. Egy szinuszosan változó áram a polaritás váltás után μs múlva éri el első maximumát. Mekkora az áram frekvenciája? T = 4 t = 4 = 4ms 6 f = = =,5 Hz = 5

Részletesebben

LI 2 W = Induktív tekercsek és transzformátorok

LI 2 W = Induktív tekercsek és transzformátorok Induktív tekercsek és transzformátorok A tekercsek olyan elektronikai alkatrészek, amelyek mágneses terükben jelentős elektromos energiát képesek felhalmozni. A mágneses tér a tekercset alkotó vezetéken

Részletesebben

Dr. Gyurcsek István. Példafeladatok. Helygörbék Bode-diagramok HELYGÖRBÉK, BODE-DIAGRAMOK DR. GYURCSEK ISTVÁN

Dr. Gyurcsek István. Példafeladatok. Helygörbék Bode-diagramok HELYGÖRBÉK, BODE-DIAGRAMOK DR. GYURCSEK ISTVÁN Dr. Gyurcsek István Példafeladatok Helygörbék Bode-diagramok 1 2016.11.11.. Helygörbe szerkesztése VIZSGÁLAT: Mi a következménye annak, ha az áramkör valamelyik jellemző paramétere változik? Helygörbe

Részletesebben

Oszcillátorok. Párhuzamos rezgőkör L C Miért rezeg a rezgőkör?

Oszcillátorok. Párhuzamos rezgőkör L C Miért rezeg a rezgőkör? Oszcillátorok Párhuzamos rezgőkör L C Miért rezeg a rezgőkör? Töltsük fel az ábrán látható kondenzátor egy megadott U feszültségre, majd zárjuk az áramkört az ábrán látható módon. Mind a tekercsen, mind

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2009. október 19. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2009. október 19. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Azonosító jel NSZI 0 6 0 6 OKTATÁSI MINISZTÉRIUM Szakmai előkészítő érettségi tantárgyi verseny 2006. február 23. ELEKTRONIKAI ALAPISMERETEK ELŐDÖNTŐ ÍRÁSBELI FELADATOK Az írásbeli időtartama: 180 perc

Részletesebben

Villamosságtan szigorlati tételek

Villamosságtan szigorlati tételek Villamosságtan szigorlati tételek 1.1. Egyenáramú hálózatok alaptörvényei 1.2. Lineáris egyenáramú hálózatok elemi számítása 1.3. Nemlineáris egyenáramú hálózatok elemi számítása 1.4. Egyenáramú hálózatok

Részletesebben

TB6600 V1 Léptetőmotor vezérlő

TB6600 V1 Léptetőmotor vezérlő TB6600 V1 Léptetőmotor vezérlő Mikrolépés lehetősége: 1, 1/2, 1/4, 1/8, 1/16. A vezérlő egy motor meghajtására képes 0,5-4,5A között állítható motoráram Tápellátás: 12-45V közötti feszültséget igényel

Részletesebben

Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel?

Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel? Orvosi jelfeldolgozás Információ De, mi az a jel? Jel: Információt szolgáltat (információ: új ismeretanyag, amely csökkenti a bizonytalanságot).. Megjelent.. Panasza? információ:. Egy beteg.. Fáj a fogam.

Részletesebben

III. félvezetők elméleti kérdések 1 1.) Milyen csoportokba sorolhatók az anyagok a fajlagos ellenállásuk alapján?

III. félvezetők elméleti kérdések 1 1.) Milyen csoportokba sorolhatók az anyagok a fajlagos ellenállásuk alapján? III. félvezetők elméleti kérdések 1 1.) Milyen csoportokba sorolhatók az anyagok a fajlagos ellenállásuk alapján? 2.) Mi a tiltott sáv fogalma? 3.) Hogyan befolyásolja a tiltott sáv szélessége az anyagok

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2009. május 22. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2009. május 22. 8:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KLTRÁLIS

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 4. óra - levelező Mingesz Róbert Szegedi Tudományegyetem 2011. március 18. MA lev - 4. óra Verzió: 1.3 Utolsó frissítés: 2011. május 15. 1/51 Tartalom I 1 A/D konverterek alkalmazása

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2008. május 26. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2008. május 26. 8:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS

Részletesebben

ELEKTRONIKA I. (KAUEL11OLK)

ELEKTRONIKA I. (KAUEL11OLK) Félévi követelmények és beadandó feladatok ELEKTRONIKA I. (KAUEL11OLK) tárgyból a Villamosmérnöki szak levelező tagozat hallgatói számára Óbuda Budapest, 2005/2006. Az ELEKTRONIKA I. tárgy témaköre: Az

Részletesebben

THT (Throug Hole Technology) méret, súly, költség, megbízhatóság megfelelő stabilitás a kivezetéseknél; 0,3 mm fúrás határ SMT (Surface Mounted

THT (Throug Hole Technology) méret, súly, költség, megbízhatóság megfelelő stabilitás a kivezetéseknél; 0,3 mm fúrás határ SMT (Surface Mounted Alkatrészismeret THT (Throug Hole Technology) méret, súly, költség, megbízhatóság megfelelő stabilitás a kivezetéseknél; 0,3 mm fúrás határ SMT (Surface Mounted Technology) 95% automatizálható beültetés

Részletesebben

A soros RL-kör. t, szög [rad] áram feszültség. 1. ábra Feszültség és áramviszonyok az ellenálláson, illetve a tekercsen

A soros RL-kör. t, szög [rad] áram feszültség. 1. ábra Feszültség és áramviszonyok az ellenálláson, illetve a tekercsen A soros L-kör Mint ismeretes, a tekercsen az áram 90 fokot késik a hez képest, ahogyan az az 1. ábrán látható. A valós terhelésen a és az áramerősség azonos fázisú. Lényegében viszonyítás kérdése, de lássuk

Részletesebben

Elektronika Előadás. Műveleti erősítők felépítése, ideális és valós jellemzői

Elektronika Előadás. Műveleti erősítők felépítése, ideális és valós jellemzői Elektronika 2 1. Előadás Műveleti erősítők felépítése, ideális és valós jellemzői Irodalom - Megyeri János: Analóg elektronika, Tankönyvkiadó, 1990 - U. Tiecze, Ch. Schenk: Analóg és digitális áramkörök,

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Azonosító jel NSZI 0 6 0 6 OKTATÁSI MINISZTÉRIUM Szakmai előkészítő érettségi tantárgyi verseny 2006. április 19. ELEKTRONIKAI ALAPISMERETEK DÖNTŐ ÍRÁSBELI FELADATOK Az írásbeli időtartama: 240 perc 2006

Részletesebben

FÉLVEZETŐ ESZKÖZÖK I. Elektrotechnika 4. előadás

FÉLVEZETŐ ESZKÖZÖK I. Elektrotechnika 4. előadás FÉLVEZETŐ ESZKÖZÖK I. Elektrotechnika 4. előadás FÉLVEZETŐ ESZKÖZÖK A leggyakrabban használt félvezető anyagok a germánium (Ge), és a szilícium (Si). Félvezető tulajdonsággal rendelkező elemek: szén (C),

Részletesebben

PN átmenet kivitele. (B, Al, Ga, In) (P, As, Sb) A=anód, K=katód

PN átmenet kivitele. (B, Al, Ga, In) (P, As, Sb) A=anód, K=katód PN átmenet kivitele A pn átmenet: Olyan egykristályos félvezető tartomány, amelyben egymással érintkezik egy p és egy n típusú övezet. Egy pn átmenetből álló eszköz a dióda. (B, Al, Ga, n) (P, As, Sb)

Részletesebben

ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM

ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL INFORMATIKUS HALLGATÓK RÉSZÉRE 1. EGYENÁRAM 1. Vezesse le a feszültségosztó képletet két ellenállás (R 1 és R 2 ) esetén! Az összefüggésben szerepl mennyiségek jelölését

Részletesebben

EGYFÁZISÚ VÁLTAKOZÓ ÁRAM

EGYFÁZISÚ VÁLTAKOZÓ ÁRAM VANYSEEŐ KÉPÉS 0 5 EGYFÁSÚ VÁTAKOÓ ÁAM ÖSSEÁÍTOTTA NAGY ÁSÓ MÉNÖKTANÁ - - Tartalomjegyzék Váltakozó áram fogalma és jellemzői...3 Szinuszos lefolyású váltakozó feszültség előállítása...3 A szinuszos lefolyású

Részletesebben

Szélessávú Hírközlés és Villamosságtan Tanszék Űrtechnológia laboratórium Szabó József Műholdfedélzeti energia ellátás Űrtechnológia a gyakorlatban Budapest, 2014. április 3. Űrtetechnológia a gyakorlatban

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2012. május 25. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2012. május 25. 8:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐORRÁS

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2014. május 20. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. május 20. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

ELEKTROTECHNIKA-ELEKTRONIKA ELEKTROTECHNIKA

ELEKTROTECHNIKA-ELEKTRONIKA ELEKTROTECHNIKA ELEKTROTECHNIKA-ELEKTRONIKA ELEKTROTECHNIKA 1. Egyenáramú körök Követelmények, matematikai alapok, prefixumok Töltés, áramerősség Feszültség Ellenállás és vezetés. Vezetők, szigetelők Áramkör fogalma Áramköri

Részletesebben

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ I. feladatlap Egyszerű, rövid feladatok megoldása Maximális pontszám: 40. feladat 4 pont

Részletesebben

MÉRÉSI GYAKORLATOK (ELEKTROTECHNIKA) 10. évfolyam (10.a, b, c)

MÉRÉSI GYAKORLATOK (ELEKTROTECHNIKA) 10. évfolyam (10.a, b, c) MÉRÉSI GYAKORLATOK (ELEKTROTECHNIKA) 10. évfolyam (10.a, b, c) 1. - Mérőtermi szabályzat, a mérések rendje - Balesetvédelem - Tűzvédelem - A villamos áram élettani hatásai - Áramütés elleni védelem - Szigetelési

Részletesebben

Analóg elektronika - laboratóriumi gyakorlatok

Analóg elektronika - laboratóriumi gyakorlatok Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk egyenáramú jellemzése és alkalmazásai. Elmélet Az erõsítõ fogalmát valamint az integrált mûveleti erõsítõk szerkezetét és viselkedését

Részletesebben

Bevezetés a méréstechnikába és jelfeldolgozásba. Tihanyi Attila április 17.

Bevezetés a méréstechnikába és jelfeldolgozásba. Tihanyi Attila április 17. Bevezetés a méréstechnikába és jelfeldolgozásba Tihanyi Attila 2007. április 17. ALAPOK Töltés 1 elektron töltése 1,602 10-19 C 1 C (coulomb) = 6,24 10 18 elemi elektromos töltés. Áram Feszültség I=Q/t

Részletesebben

1. Egy lineáris hálózatot mikor nevezhetünk rezisztív hálózatnak és mikor dinamikus hálózatnak?

1. Egy lineáris hálózatot mikor nevezhetünk rezisztív hálózatnak és mikor dinamikus hálózatnak? Ellenörző kérdések: 1. előadás 1/5 1. előadás 1. Egy lineáris hálózatot mikor nevezhetünk rezisztív hálózatnak és mikor dinamikus hálózatnak? 2. Mit jelent a föld csomópont, egy áramkörben hány lehet belőle,

Részletesebben

A soros RC-kör. t, szög [rad] feszültség áramerősség. 2. ábra a soros RC-kör kapcsolási rajza. a) b) 3. ábra

A soros RC-kör. t, szög [rad] feszültség áramerősség. 2. ábra a soros RC-kör kapcsolási rajza. a) b) 3. ábra A soros RC-kör Az átmeneti jelenségek vizsgálatakor soros RC-körben egyértelművé vált, hogy a kondenzátoron a késik az áramhoz képest. Váltakozóáramú körökben ez a késés, pontosan 90 fok. Ezt figyelhetjük

Részletesebben

Elektronika 1. 4. Előadás

Elektronika 1. 4. Előadás Elektronika 1 4. Előadás Bipoláris tranzisztorok felépítése és karakterisztikái, alapkapcsolások, munkapont-beállítás Irodalom - Megyeri János: Analóg elektronika, Tankönyvkiadó, 1990 - U. Tiecze, Ch.

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2016. május 18. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2016. május 18. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át?

7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át? 1. Jelöld H -val, ha hamis, I -vel ha igaz szerinted az állítás!...két elektromos töltés között fellépő erőhatás nagysága arányos a két töltés nagyságával....két elektromos töltés között fellépő erőhatás

Részletesebben

ikerfém kapcsoló Eloadás Iváncsy Tamás termisztor â Közvetett védelem: áramvédelem

ikerfém kapcsoló Eloadás Iváncsy Tamás termisztor â Közvetett védelem: áramvédelem â Közvetlen motorvédelem: hovédelem ikerfém kapcsoló kis teljesítményen: közvetlenül kapcsolja a motort nagy teljesítményen: kivezetéssel muködteti a 3 fázisú kapcsolót Iváncsy Tamás termisztor â Közvetett

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2014. október 13. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2014. október 13. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2007. május 25. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2007. május 25. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS

Részletesebben

A soros RC-kör. t, szög [rad]

A soros RC-kör. t, szög [rad] A soros C-kör Az átmeneti jelenségek vizsgálatakor soros C-körben egyértelművé vált, hogy a kondenzátoron a késik az áramhoz képest. Váltakozóáramú körökben ez a késés, pontosan 90 fok. Ezt figyelhetjük

Részletesebben

Hálózati egyenirányítók, feszültségsokszorozók Egyenirányító kapcsolások

Hálózati egyenirányítók, feszültségsokszorozók Egyenirányító kapcsolások Hálózati egyenirányítók, feszültségsokszorozók Egyenirányító kapcsolások Egyenirányítás: egyenáramú komponenst nem tartalmazó jelből egyenáramú összetevő előállítása. Nemlineáris áramköri elemet tartalmazó

Részletesebben

Áramgenerátorok alapeseteinek valamint FET ekkel és FET bemenetű műveleti erősítőkkel felépített egyfokozatú erősítők vizsgálata.

Áramgenerátorok alapeseteinek valamint FET ekkel és FET bemenetű műveleti erősítőkkel felépített egyfokozatú erősítők vizsgálata. El. II. 4. mérés. 1. Áramgenerátorok bipoláris tranzisztorral A mérés célja: Áramgenerátorok alapeseteinek valamint FET ekkel és FET bemenetű műveleti erősítőkkel felépített egyfokozatú erősítők vizsgálata.

Részletesebben

AUTOMATIKAI ÉS ELEKTRONIKAI ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ

AUTOMATIKAI ÉS ELEKTRONIKAI ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ ATOMATKA ÉS ELEKTONKA SMEETEK KÖZÉPSZNTŰ ÍÁSBEL VZSGA JAVÍTÁS-ÉTÉKELÉS ÚTMTATÓ A MNTAFELADATOKHOZ Egyszerű, rövid feladatok Maximális pontszám: 40. Egy A=,5 mm keresztmetszetű alumínium (ρ= 0,08 Ω mm /m)

Részletesebben

1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés

1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt 2017. május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Kezdés ideje 2017. május 9., kedd, 16:54 Állapot Befejezte Befejezés dátuma 2017.

Részletesebben

Automatikai műszerész Automatikai műszerész

Automatikai műszerész Automatikai műszerész A /2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1.

Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1. Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI 8 1.1 AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1.2 AZ ELEKTROMOS TÉR 9 1.3 COULOMB TÖRVÉNYE 10 1.4 AZ ELEKTROMOS

Részletesebben

Értékelés Összesen: 100 pont 100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 35%.

Értékelés Összesen: 100 pont 100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 35%. Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján: Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

1. ábra A Colpitts-oszcillátor, valamint közös drain-ű változata, a Clapp-oszcillátor

1. ábra A Colpitts-oszcillátor, valamint közös drain-ű változata, a Clapp-oszcillátor A tárgyalandó oszcillátortípusok a hárompont-kapcsolásúak egyik alcsoportja, méghozzá a a Colpitts-oszcillátor földelt kollektoros (drain-ű, anódú), valamint földelt emitteres (source-ű, katódú) változatai.

Részletesebben

<mérésvezető neve> 8 C s z. 7 U ki TL082 4 R. 1. Neminvertáló alapkapcsolás mérési feladatai

<mérésvezető neve> 8 C s z. 7 U ki TL082 4 R. 1. Neminvertáló alapkapcsolás mérési feladatai MÉRÉSI JEGYZŐKÖNYV A mérés tárgya: Egyszerű áramkör megépítése és bemérése (1. mérés) A mérés időpontja: 2004. 02. 10 A mérés helyszíne: BME, labor: I.B. 413 A mérést végzik: A Belso Zoltan B Szilagyi

Részletesebben

Kondenzátor, induktivitás, rezgőkör...ha5gy összefoglalója

Kondenzátor, induktivitás, rezgőkör...ha5gy összefoglalója Kondenzátor, induktivitás, rezgőkör...ha5gy összefoglalója Kondenzátorok Kondenzátorok Két fémfelület egymással szemben ( két fedő a konyhából ) Közöttük valamely szigetelőanyag ( levegő ) Máris van egy

Részletesebben

Zener dióda karakterisztikáinak hőmérsékletfüggése

Zener dióda karakterisztikáinak hőmérsékletfüggése A mérés célja 18. mérés Zener dióda karakterisztikáinak hőmérsékletfüggése A Zener dióda nyitóirányú és záróirányú karakterisztikájának, a karakterisztika hőmérsékletfüggésének vizsgálata, a Zener dióda

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2015. május 19. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. május 19. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

Jelgenerátorok ELEKTRONIKA_2

Jelgenerátorok ELEKTRONIKA_2 Jelgenerátorok ELEKTRONIKA_2 TEMATIKA Jelgenerátorok osztályozása. Túlvezérelt erősítők. Feszültségkomparátorok. Visszacsatolt komparátorok. Multivibrátor. Pozitív visszacsatolás. Oszcillátorok. RC oszcillátorok.

Részletesebben

Elektronika II. 5. mérés

Elektronika II. 5. mérés Elektronika II. 5. mérés Műveleti erősítők alkalmazásai Mérés célja: Műveleti erősítővel megvalósított áramgenerátorok, feszültségreferenciák és feszültségstabilizátorok vizsgálata. A leírásban a kapcsolások

Részletesebben

Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés RC tag Bartha András, Dobránszky Márk

Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés RC tag Bartha András, Dobránszky Márk Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés 2015.05.13. RC tag Bartha András, Dobránszky Márk 1. Tanulmányozza át az ELVIS rendszer rövid leírását! Áttanulmányoztuk. 2. Húzzon a tartóból két

Részletesebben

Bevezetés az analóg és digitális elektronikába. V. Félvezető diódák

Bevezetés az analóg és digitális elektronikába. V. Félvezető diódák Bevezetés az analóg és digitális elektronikába V. Félvezető diódák Félvezető dióda Félvezetőknek nevezzük azokat az anyagokat, amelyek fajlagos ellenállása a vezetők és a szigetelők közé esik. (Si, Ge)

Részletesebben

Feszültségszintek. a) Ha egy esemény bekövetkezik akkor az értéke 1 b) Ha nem következik be akkor az értéke 0

Feszültségszintek. a) Ha egy esemény bekövetkezik akkor az értéke 1 b) Ha nem következik be akkor az értéke 0 Logikai áramkörök Feszültségszintek A logikai rendszerekben az állapotokat 0 ill. 1 vagy H ill. L jelzéssel jelöljük, amelyek konkrét feszültségszinteket jelentenek. A logikai algebrában a változókat nagy

Részletesebben

2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető

2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető . Laboratóriumi gyakorlat A EMISZO. A gyakorlat célja A termisztorok működésének bemutatása, valamint főbb paramétereik meghatározása. Az ellenállás-hőmérséklet = f és feszültség-áram U = f ( I ) jelleggörbék

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI ÉRETTSÉGI VIZSGA VIZSGA 2009. 2006. május 22. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2009. május 22. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2015. október 12. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. október 12. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2008. október 20. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2008. október 20. 1:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS

Részletesebben

1.sz melléklet Nyári gyakorlat teljesítésének igazolása Hiányzások

1.sz melléklet Nyári gyakorlat teljesítésének igazolása Hiányzások 1.sz melléklet Nyári gyakorlat teljesítésének igazolása Hiányzások - Az összefüggő szakmai gyakorlatról hiányozni nem lehet. Rendkívüli, nem tervezhető esemény esetén az igazgatóhelyettest kell értesíteni.

Részletesebben

TARTALOMJEGYZÉK. Előszó 9

TARTALOMJEGYZÉK. Előszó 9 TARTALOMJEGYZÉK 3 Előszó 9 1. Villamos alapfogalmak 11 1.1. A villamosság elő for d u lá s a é s je le n t ősége 12 1.1.1. Történeti áttekintés 12 1.1.2. A vil la mos ság tech ni kai, tár sa dal mi ha

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI ÉRETTSÉGI VIZSGA VIZSGA 2006. október 2006. 24. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. október 24. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati

Részletesebben

2 váltóérintkező 10 A csavaros csatlakozású foglalat

2 váltóérintkező 10 A csavaros csatlakozású foglalat 58- - Csatoló relé modulok 7-0 A 58- Csatoló relék,, 3 vagy 4 váltóérintkezővel, 7 mm vagy 3 mm szélesség, EMC védőmodullal és téves bekötés elleni diódával DC változatnál 58.3 58.33 58.34 AC vagy DC kivitelű

Részletesebben

Villamos tér. Elektrosztatika. A térnek az a része, amelyben a. érvényesülnek.

Villamos tér. Elektrosztatika. A térnek az a része, amelyben a. érvényesülnek. III. VILLAMOS TÉR Villamos tér A térnek az a része, amelyben a villamos erőhatások érvényesülnek. Elektrosztatika A nyugvó és időben állandó villamos töltések által keltett villamos tér törvényeivel foglalkozik.

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2008. május 26. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2008. május 26. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS

Részletesebben

SZINUSZOS ÁRAMÚ HÁLÓZATOK Számítási feladatok

SZINUSZOS ÁRAMÚ HÁLÓZATOK Számítási feladatok DR. GYURCSEK ISTVÁN SZINUSZOS ÁRAMÚ HÁLÓZATOK Számítási feladatok Forrás és ajánlott irodalom q Iványi A. Hardverek villamosságtani alapjai, Pollack Press, Pécs 2015, ISBN 978-963-7298-59-2 q Gyurcsek

Részletesebben

10.1. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ

10.1. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ 101 ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ Ma az analóg jelek feldolgozása (is) mindinkább digitális eszközökkel történik A feldolgozás előtt az analóg jeleket digitalizálni kell Rendszerint az

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2012. május 25. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2012. május 25. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS

Részletesebben

ELLENÁLLÁSOK HŐMÉRSÉKLETFÜGGÉSE. Az ellenállások, de általában minden villamos vezetőanyag fajlagos ellenállása 20 o

ELLENÁLLÁSOK HŐMÉRSÉKLETFÜGGÉSE. Az ellenállások, de általában minden villamos vezetőanyag fajlagos ellenállása 20 o ELLENÁLLÁSO HŐMÉRSÉLETFÜGGÉSE Az ellenállások, de általában minden villamos vezetőanyag fajlagos ellenállása 20 o szobahőmérsékleten értelmezett. Ismeretfrissítésként tekintsük át az 1. táblázat adatait:

Részletesebben

A KALIBRÁLÓ LABORATÓRIUM LEGJOBB MÉRÉSI KÉPESSÉGE

A KALIBRÁLÓ LABORATÓRIUM LEGJOBB MÉRÉSI KÉPESSÉGE MTA-MMSZ Kft. Kalibráló Laboratóriuma A KALIBRÁLÓ LABORATÓRIUM LEGJOBB MÉRÉSI KÉPESSÉGE 1. Egyenfeszültség-mérés 1.1 Egyenfeszültség-mérők 0...3 mv 1,5 µv 1.2 Egyenfeszültségű jelforrások - kalibrátorok,

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Név:... osztály:... ÉRETTSÉGI VIZSGA 2006. május 18. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. május 18. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati

Részletesebben

Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató

Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató ÓBUDAI EGYETEM Kandó Kálmán Villamosmérnöki Kar Híradástechnika Intézet Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató A mérést végezte: Neptun kód: A mérés időpontja: A méréshez szükséges eszközök:

Részletesebben

Elektronika I. Gyakorló feladatok

Elektronika I. Gyakorló feladatok Elektronika I. Gyakorló feladatok U I Feszültséggenerátor jelképe: Áramgenerátor jelképe: 1. Vezesse le a terheletlen feszültségosztóra vonatkozó összefüggést: 2. Vezesse le a terheletlen áramosztóra vonatkozó

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2011. október 17. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. október 17. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS

Részletesebben

Az erősítés frekvenciafüggése: határfrekvenciák meghatározása ELEKTRONIKA_2

Az erősítés frekvenciafüggése: határfrekvenciák meghatározása ELEKTRONIKA_2 Az erősítés frekvenciafüggése: határfrekvenciák meghatározása ELEKTRONIKA_2 TEMATIKA A kapacitív ellenállás. Váltakozó áramú helyettesítő kép. Alsó határfrekvencia meghatározása. Felső határfrekvencia

Részletesebben

Gingl Zoltán, Szeged, dec. 1

Gingl Zoltán, Szeged, dec. 1 Gingl Zoltán, Szeged, 2017. 17 dec. 1 17 dec. 2 Egyenirányító (rectifier) Mint egy szelep deális dióda Nyitó irányban tökéletes vezető (rövidzár) Záró irányban tökéletes szigetelő (szakadás) Valódi dióda:

Részletesebben

Ellenállások. Alkalmazás - áramkorlátozás - feszültség beállítás, feszültségosztás - fűtőtest, fűtőellenállás

Ellenállások. Alkalmazás - áramkorlátozás - feszültség beállítás, feszültségosztás - fűtőtest, fűtőellenállás Ellenállások Alkalmazás - áramkorlátozás - feszültség beállítás, feszültségosztás - fűtőtest, fűtőellenállás Fajtái Ellenállás szerint - állandó értékű - változtatható értékű -speciális (termisztorok,

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2013. október 14. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2013. október 14. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

6 az 1-ben digitális multiméter AX-190A. Használati útmutató

6 az 1-ben digitális multiméter AX-190A. Használati útmutató 6 az 1-ben digitális multiméter AX-190A Használati útmutató 1. Biztonsági szabályok SOHA ne használjon a mérőműszernél olyan feszültséget, vagy áramerősséget, amely értéke túllépi a megadott maximális

Részletesebben

ÁRAMKÖRÖK SZIMULÁCIÓJA

ÁRAMKÖRÖK SZIMULÁCIÓJA ÁRAMKÖRÖK SZIMULÁCIÓJA Az áramkörök szimulációja révén betekintést nyerünk azok működésébe. Meg tudjuk határozni az áramkörök válaszát különböző gerjesztésekre, különböző üzemmódokra. Végezhetők analóg

Részletesebben

33 522 01 0000 00 00 Elektronikai műszerész Elektronikai műszerész

33 522 01 0000 00 00 Elektronikai műszerész Elektronikai műszerész A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Elektronika Előadás. Műveleti erősítők. Alapkapcsolások műveleti erősítővel.

Elektronika Előadás. Műveleti erősítők. Alapkapcsolások műveleti erősítővel. Elektronika 1 8. Előadás Műveleti erősítők. Alapkapcsolások műveleti erősítővel. Irodalom - Megyeri János: Analóg elektronika, Tankönyvkiadó, 1990 - U. Tiecze, Ch. Schenk: Analóg és digitális áramkörök,

Részletesebben

Foglalkozási napló a 20 /20. tanévre

Foglalkozási napló a 20 /20. tanévre Foglalkozási napló a 20 /20. tanévre Erősáramú elektrotechnikus szakma gyakorlati oktatásához OKJ száma: 54 522 01 A napló vezetéséért felelős: A napló megnyitásának dátuma: A napló lezárásának dátuma:

Részletesebben

ELŐADÁS AUTOMATIZÁLÁS ÉS IPARI INFORMATIKA SZÁMÍTÁSTECHNIKA TÁVKÖZLÉS

ELŐADÁS AUTOMATIZÁLÁS ÉS IPARI INFORMATIKA SZÁMÍTÁSTECHNIKA TÁVKÖZLÉS ANALÓG ELEKTRONIKA ELŐADÁS 2011-2012 tanév, II. félév AUTOMATIZÁLÁS ÉS IPARI INFORMATIKA SZÁMÍTÁSTECHNIKA TÁVKÖZLÉS ÓRASZÁMOK AUTOMATIZÁLÁS Á ÉS IPARI INFORMATIKA hetente 2 óra előadás, 2 óra labor kéthetente

Részletesebben

Bevezetés az elektronikába

Bevezetés az elektronikába Bevezetés az elektronikába 6. Feladatsor: Egyszerű tranzisztoros kapcsolások Hobbielektronika csoport 2017/2018 1 Debreceni Megtestesülés Plébánia Tranziens (átmeneti) jelenségek Az előzőekben csupán az

Részletesebben

Áramköri elemek. 1 Ábra: Az ellenállások egyezményes jele

Áramköri elemek. 1 Ábra: Az ellenállások egyezményes jele Áramköri elemek Az elektronikai áramkörök áramköri elemekből épülnek fel. Az áramköri elemeket két osztályba sorolhatjuk: aktív áramköri elemek: T passzív áramköri elemek: R, C, L Aktív áramköri elemek

Részletesebben

5. Laboratóriumi gyakorlat. A p-n ÁTMENET HŐMÉRSÉKLETFÜGGÉSE

5. Laboratóriumi gyakorlat. A p-n ÁTMENET HŐMÉRSÉKLETFÜGGÉSE 5. Laboratóriumi gyakorlat A p-n ÁTMENET HŐMÉRSÉKLETFÜGGÉSE 1. A gyakorlat célja: A p-n átmenet hőmérsékletfüggésének tanulmányozása egy nyitóirányban polarizált dióda esetében. A hőmérsékletváltozási

Részletesebben