11. Spektrofotometria

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "11. Spektrofotometria"

Átírás

1 11. Spektrofotometria Czirók András április Tartalomjegyzék 1. Bevezetés 2 2. Egyensúlyi állandó meghatározása ekvimoláris oldatok keverékeiből 3 3. Egyensúlyi állandó meghatározása eltérő töménységű oldatok keverékeiből 5 4. Az egyensúlyi állandó hőmérséklet-függése 6 5. Gyakorló kérdések 8 6. Mérési feladatok 9 1

2 1. Bevezetés Látható és ultraibolya tartományban végzett spektroszkópiai méréseket gyakran alkalmaznak oldatkomponensek koncentrációjának meghatározására. A laboratóriumi gyakorlat során egy oldatsorozat abszorpciós spektrumaiból egy nemlineáris, többparaméteres görbeillesztési eljárást alkalmazva meghatározzuk egy kémiai reakció egyensúlyi állandóját. Az egyensúlyi állandó hőmérsékletfüggéséből a reakció termodinamikai jellemzőit becsüljük meg. 1. ábra. Szalicilsav Amikor vasiont tartalmazó vas-ammónium-szulfát ( Fe 3+ (NH + 4 )(SO 2 4 ) 2 12H 2 O ) oldatot összekeverünk szalicilsav (2-hidroxibenzoé sav, 1. ábra) oldattal, akkor egy lila színű komplex képződik. Az oldószer mindkét esetben 2mM sósav (HCl), a ph értéke megközelítőleg 2, 5. Ilyen körülmények között a szalicilsav hidroxil csoportja nem disszociál és a karboxil csoport ( COOH) is csak részlegesen. A komplexet a szalicilsav anionja képezi a vasionnal, a következő egyensúlyi reakció során: Fe 3+ + ( sal ) Fe ( 3+ sal ) (1) Ha az oldatban lévő A anyag koncentrációját [A] jelöli, akkor az időegység alatt bekövetkező asszociációk száma k 1 [Fe][sal]. Ha minden komplex egységnyi idő alatt ugyanakkora valószínűséggel bomlik fel, akkor a disszociációk száma időegységenként k 2 [komplex]. Egyensúly esetén az asszociációk és disszociációk száma egyenlő: k 1 [Fe][sal] = k 2 [komplex] (2) A (2) egyenlet kapcsolatot teremt az egyensúlyban lévő reakciókomponensek koncentrációi között: [komplex] [Fe][sal] = k 1 k 2 = K, (3) ahol K a reakció egyensúlyi állandója. Ha x, y és z jelöli az oldatba bemért vas és szalicil, valamint a kialakult komplex koncentrációját, akkor az oldott állapotban lévő vas koncentrációja x z. Hasonlóan, 2

3 a komplexen kívüli szalicil koncentrációja y z. Ezekkel a változókkal kifejezve az egyensúlyi állandó: z K = (x z)(y z). (4) Azaz x, y ismeretében és z mérésével K egyszerűen számolható. 2. ábra. Az oldat abszorpciós spektrumának vázlata A komplex koncentrációjára abszorpciós spektrumok segítségével fogunk következtetni. Amint a 2. ábra vázolja, a szalicilát-ionnak ebben a hullámhossztartományban nincs abszorpciója, a vashoz tartozó csúcs 350 nm alatt található, míg a komplexhez tartozó csúcs (λ ) nm között van. Ha az oldatban lévő anyagok abszorpciós csúcsai jól elkülönülnek, akkor az anyagra jellemző abszorpciós csúcs nagysága (a = a(λ )) és az anyag koncentrációja között a Lambert Beer-törvény teremt kapcsolatot: a = a(λ ) = log 10 (I 0 /I) = εl [komplex], (5) ahol I 0 és I a beeső illetve áteresztett fény intenzitása, ε a komplex abszorpciós (extinkciós) állandója és l az optikai úthossz (a mintatartó küvetta szélessége). Vagyis, a és z között egy egyszerű egyenes arányosság áll fenn, amit (4) alapján az alábbi formában írhatunk: a z = K(x z)(y z). (6) 2. Egyensúlyi állandó meghatározása ekvimoláris oldatok keverékeiből A (6) kifejezésben az arányossági tényező értéke 1/εl. Mivel ε általában nem ismert, ezért a K egyensúlyi állandó értékét az alábbi módon, ekvimoláris (x + y = c 0 = const) 3

4 oldatok a abszorpciós adataiból kétparaméteres görbeillesztéssel határozzuk meg. Először olyan dimenziótlan mennyiségeket vezetünk be, amelyek az x, y z változókat c 0 -hoz viszonyítják. x = (1/2 + ξ)c 0 (7) y = (1/2 ξ)c 0 (8) z = ζc 0 (9) K = κ/c 0 (10) ahol 1/2 ξ 1/2 a keverési arányt jellemzi, 0 ζ 1 pedig megadja, hogy az oldat mekkora hányada alkot komplexet. Ezekkel az új változókkal a koncentrációk közötti (6) összefüggés az alábbi alakra hozható: A másodfokú egyenletet megoldva: a ζ = κ [ 1/4 ξ 2 + ζ 2 ζ ]. (11) 3. ábra. f(k; ξ) értékei ξ függvényében, a k paraméter néhány értékénél 2ζ = k ± k ξ 2, (12) ahol: k = (1 + κ)/κ > 1. (13) Mivel egykomponensű oldatok esetén nem képződik komplex, ξ = ±1/2 esetén ζ = 0. Ezért (12)-ben a kisebbik gyököt kell megtartanunk: 2ζ = k k ξ 2. (14) 4

5 A jobb oldalon álló f(k; ξ) = k k ξ 2 (15) kifejezés ξ függvényében a 3. ábrán vázolt görbesereget írja le. A görbék alakját a k paraméter határozza meg: lim f(k; ξ) = 1 2 ξ. (16) k 1 lim f(k; ξ) const k ξ2 (17) A mérés során különböző oldatokat készítünk úgy, hogy x+y állandó maradjon. Ilyen oldatsorozatot legegyszerűbben azonos töménységű (2.5mM) kiindulási oldatok összekevérésével nyerünk. A kísérletileg meghatározott a értékeket a ξ keverési arány függvényében ábrázolva egy olyan görbét kapunk, ami (11) alapján arányos az f(k; ξ) kifejezéssel. Ha az arányossági tényezőt C jelöli, akkor a Cf(k; ξ) kétparaméteres kifejezés illesztésével k, majd abból a K egyensúlyi állandó is meghatározható. Az illesztési hibából, valamint x, y és a hibájából K hibája megbecsülhető. 3. Egyensúlyi állandó meghatározása eltérő töménységű oldatok keverékeiből Ha a kiindulási oldatok töménysége nem azonos, akkor a fenti gondolatmenetet általánosíthatjuk egy háromparaméteres illesztési eljárássá. Tételezzük fel, hogy a vasoldat töménysége ismeretlen, c 0 egységekben d. Ekkor a ξ keverési arányú vasoldat koncentrációja: x = (1/2 + ξ)dc 0, (18) míg a szaliciloldaté változatlanul: y = (1/2 ξ)c 0. (19) Az új d ismeretlenre is illeszteni fogunk. átírhatjuk a (6) kifejezést: A (9) és (10) transzformációk segítségével a ζ = κ [(1/2 + ξ)d ζ] [1/2 ξ ζ] (20) alakra. A ζ-ban másodfokú egyenletet nullára rendezve a 0 = κζ 2 + ( κd/2 κdξ κ/2 + κξ 1)ζ + κd/4 κdξ 2 (21) kifejezésre jutunk. A gnuplot programmal az illesztés menete: 5

6 gnuplot> a=1.0 gnuplot> d=1.0 gnuplot> k=1.5 gnuplot> B(x,k,d)=-k*d/2 - k*d*x -k/2 + k*x - 1 gnuplot> C(x,k,d)=k*d/4 - k*d*x**2 gnuplot> f(x,k,d,a)=a/(2*k)*(-b(x,k,d)-sqrt(b(x,k,d)**2-4*k*c(x,k,d))) gnuplot> fit f(x,k,d,a) data.dat via k,d,a 4. Az egyensúlyi állandó hőmérséklet-függése Állandó nyomáson és hőmérsékleten végbemenő spontán folyamatok során a Gibbs szabadenergia: G = U T S + pv (22) csökken, termodinamikai egyensúlyban G minimális. A µ i = G N i (23) kémiai potenciál jellemzi, hogy egy i típusú részecskét a rendszerbe helyezve mennyire változik meg annak Gibbs szabadenergiája. Egy reakciólépés során a reagensek eltűnnek, a reakciótermékek pedig megjelennek a rendszerben. A reakció során G változását így G = i ν i µ i (24) adja, ahol a ν i mennyiségek a reakció sztöchiometriai állandói. Az (1) reakció során ezek rendre -1,-1 és 1 (két anyag eltűnik, egy keletkezik). Ha a rendszer egyensúlyban van, akkor egy reakciólépés bekövetkeztekor G nem változik: 0 = G = i ν i µ i. (25) Ideális gázok és oldatok esetén a komponensek kémiai potenciálját a µ i = kt ln c i c i (26) kifejezés adja, ahol c jelöli a koncentrációt, c pedig egy hőmérsékletfüggő, anyagra jellemző mennyiség. A gyakorlatban (26) helyett a µ i = µ o i + kt ln c i /c o (27) 6

7 kifejezés hasznosabb, ahol µ o i jelöli az anyag standard körülmények (25 o C, légköri nyomás, c o = 1mol/l koncentráció) között vett kémiai potenciálját. A (27) és (25) kifejezéseket összevetve: 0 = i ν i µ o i + kt i ln(c i /c o ) ν i (28) adódik. Az első összeg a reagensek és a végtermékek standard körülmények között vett kémiai potenciáljainak a különbsége, ami a reakcióra jellemző állandó: µ o = i ν i µ o i. (29) A második összegben pedig megjelenik a reakció egyensúlyi állandója: ln K c p o = i ln(c i /c o ) ν i (30) ahol p = i ν i, az egyensúlyi állandó dimenziójától függő érték (esetünkben p = 1). Ezek az egyenletek kapcsolatot teremtenek a reakció termodinamikájára jellemző µ o, valamint az egyensúlyi állandó között: kt ln K c p o = µ o = i ν i µ o i. (31) A reakcióhő a reakció során (állandó nyomáson) bekövetkező entalpiaváltozás. A reakcióhő meghatározásához kihasználjuk, hogy ideális gázokra és oldatokra µ = G/N, ezért: µ = h T s, (32) ahol h és s az egy molekulára jutó entalpia és entrópia. Az egyensúlyi állandó hőmérsékletfüggése (31) alapján: T ln K c p o = i ν i T µ o i kt. (33) Ahhoz, hogy a (33) egyenletben szereplő deriváltakat ki tudjuk értékelni, deriváljuk a Gibbs szabadenergiát definiáló (22) egyenletet T szerint, a nyomást állandó értéken tartva: G T = U T S T S T + p V T. (34) Az energiamegmaradás miatt reverzibilis folyamatokra du = T ds pdv (35) 7

8 teljesül, ezért a hőmérséklet megváltoztatását kifejező deriváltakra is fennál: A fenti összefüggést (34) kifejezésbe helyettesítve U T = T S T p V T. (36) G T adódik, egy részecskére jutó mennyiségekkel számolva: = S (37) µ T = s. (38) A deriválást elvégezve (33)-ben, (38) és (32) felhasználásával T µ o i kt = 1 µ o i kt T µo i kt = so i 2 kt ho T s o kt 2 = ho kt 2 (39) adódik. Mivel a reakció során bekövetkező entalpiaváltozás (reakcióhő) a kiindulási anyagok és a végtermékek entalpiáinak a különbsége, h = i ν i h o i. (40) A (33), (39) és (40) egyenletek összevetéséből kapjuk a van t Hoff összefüggést: T ln K c p o = h kt 2. (41) Ha h > 0, a reakciótermékek keletkezésekor hőelvonás történik (endoterm reakció). Amennyiben tehát K hőmérsékletfüggése ismert, ebből a reakcióhoz szükséges hőmennyiség, a reakcióhő meghatározható. 5. Gyakorló kérdések 1. Mi a spektroszkópiai mérések alapelve? Mi definiálja az optikai spektroszkópiát? 2. Detektálás szempontjából milyen fajtái vannak az optikai spektroszkópiának? 3. Látható fénnyel milyen gerjesztéseket tudunk elérni az anyagban? 4. Ismertesse a Lambert Beer-törvényt! 8

9 5. Hogyan definiáljuk az abszorbciót, illetve a transzmissziót? 6. Hogyan befolyásolhatja a mérési spektrumot a fény szóródása? 7. Mi a kétutas spektroszkópia elve és mik az előnyei? 8. Ha egy reakcióhoz n komponens találkozása szükséges, híg oldatokban és gázokban hogyan függ a komponensek koncentrációitól az egységnyi idő alatt lezajló reakciólépések száma? 9. Mi az egyensúlyi állandó? 10. Miket nevezünk ekvimoláris oldatoknak? 11. Mit jelöl az 1mM, egy millimólos koncentráció? 12. Mi a kémiai potenciál? Hogy függ a híg oldatok/ideális gázok kémiai potenciálja a koncentrációtól? 13. Mi egy reverzíbilis kémiai reakció egyensúlyának termodinamikai feltétele? 14. Hogyan változhat a reakció egyensúlya a hőmérséklet függvényében? Hogyan osztályozhatjuk a reakciókat ilyen tekintetben? 15. Mit ír le a van t Hoff-egyenlet? 16. Hogy függ a leírt mérés pontossága a kiindulási oldatok töménységétől? 17. Hogy változik az abszorpciós spektrum, ha a vas 10%-a kicsapódik az oldatból? 18. Hogy változna az abszorpciós spektrum ha a vizsgált reakció komponenseinek a koncentracióit megduplázzuk? 19. Mi történik egy- vagy többparaméteres görbeillesztés során? Mik a bemenő adatok, mi az eredmény, és mi határozza meg? 20. Ha A és B mennyiség hibái da és db, becsüljük meg a hibáját az A/(A+B) kifejezésnek! 6. Mérési feladatok 1. Határozzuk meg a reakció egyensúlyi állandóját T = 20 C hőmérsékleten! Tételezzük föl, hogy a vas alapoldat koncentrációja nem pontos. Becsüljük meg a vas-oldat koncentrációját a szalicilsav alapoldat koncentrációjához képest! 9

10 2. Számítsuk ki az oldat extinkciós állandóját a legnagyobb elnyelést adó keverési aránynál! A fény a mintában l = 1 cm utat tesz meg, a mérőküvetta méreteiből adódóan. 3. Határozzuk meg az egyensúlyi állandó hőmérsékletfüggését a C tartományban, 5 C mintavételezéssel, a számított extinkciós állandó segítségével! A van t Hoff egyenletet felhasználva becsüljük meg a reakcióhőt! Mennyi a reakció során bekövetkező entrópiaváltozás? Felhasznált oldatok: 1. 2 mm sósav oldat. Segítségével az alábbi oldatok oly módon készülnek, hogy a tömegmérés pontossága 0, 003 g-on belül legyen. 2. 2, 5 mm Fe 3+ oldat (250 ml 2mM HCl oldatban feloldva 0, 301 g vas-ammóniumszulfát). 3. 2, 5 mm szalicilsav oldat (250 ml 2 mm HCl oldatban feloldva 0, 086 g szalicilsav). A mérés során referencia mintaként a sósav oldatot használjuk. Az alapvonalat úgy határozzuk meg, hogy a spektrométer mindkét mintatartójába a referencia oldatot töltjük. Az oldatsorozat elkészítéséhez az 1 : 9, 2 : 8,..., 9 : 1 keverési arányokat javasoljuk. 10

Modern Fizika Labor. 11. Spektroszkópia. Fizika BSc. A mérés dátuma: dec. 16. A mérés száma és címe: Értékelés: A beadás dátuma: dec. 21.

Modern Fizika Labor. 11. Spektroszkópia. Fizika BSc. A mérés dátuma: dec. 16. A mérés száma és címe: Értékelés: A beadás dátuma: dec. 21. Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. dec. 16. A mérés száma és címe: 11. Spektroszkópia Értékelés: A beadás dátuma: 2011. dec. 21. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin

Részletesebben

Modern Fizika Laboratórium Fizika és Matematika BSc 11. Spektroszkópia

Modern Fizika Laboratórium Fizika és Matematika BSc 11. Spektroszkópia Modern Fizika Laboratórium Fizika és Matematika BSc 11. Spektroszkópia Mérést végezték: Bodó Ágnes Márkus Bence Gábor Kedd délelőtti csoport Mérés ideje: 02/28/2012 Beadás ideje: 03/05/2012 Érdemjegy:

Részletesebben

A fény tulajdonságai

A fény tulajdonságai Spektrofotometria A fény tulajdonságai A fény, mint hullámjelenség (lambda) (nm) hullámhossz (nű) (f) (Hz, 1/s) frekvencia, = c/ c (m/s) fénysebesség (2,998 10 8 m/s) (σ) (cm -1 ) hullámszám, = 1/ A amplitúdó

Részletesebben

Abszorpciós spektroszkópia

Abszorpciós spektroszkópia Tartalomjegyzék Abszorpciós spektroszkópia (Nyitrai Miklós; 2011 február 1.) Dolgozat: május 3. 18:00-20:00. Egész éves anyag. Korábbi dolgozatok nem számítanak bele. Felmentés 80% felett. A fény; Elektromágneses

Részletesebben

Spontaneitás, entrópia

Spontaneitás, entrópia Spontaneitás, entrópia 11-1 Spontán és nem spontán folyamat 11-2 Entrópia 11-3 Az entrópia kiszámítása 11-4 Spontán folyamat: a termodinamika második főtétele 11-5 Standard szabadentalpia változás, ΔG

Részletesebben

Spontaneitás, entrópia

Spontaneitás, entrópia Spontaneitás, entrópia 6-1 Spontán folyamat 6-2 Entrópia 6-3 Az entrópia kiszámítása 6-4 Spontán folyamat: a termodinamika második főtétele 6-5 Standard szabadentalpia változás, ΔG 6-6 Szabadentalpia változás

Részletesebben

23. Indikátorok disszociációs állandójának meghatározása spektrofotometriásan

23. Indikátorok disszociációs állandójának meghatározása spektrofotometriásan 23. Indikátorok disszociációs állandójának meghatározása spektrofotometriásan 1. Bevezetés Sav-bázis titrálások végpontjelzésére (a mőszeres indikáció mellett) ma is gyakran alkalmazunk festék indikátorokat.

Részletesebben

Modern Fizika Labor. A mérés száma és címe: A mérés dátuma: Értékelés: Infravörös spektroszkópia. A beadás dátuma: A mérést végezte:

Modern Fizika Labor. A mérés száma és címe: A mérés dátuma: Értékelés: Infravörös spektroszkópia. A beadás dátuma: A mérést végezte: Modern Fizika Labor A mérés dátuma: 2005.10.26. A mérés száma és címe: 12. Infravörös spektroszkópia Értékelés: A beadás dátuma: 2005.11.09. A mérést végezte: Orosz Katalin Tóth Bence 1 A mérés során egy

Részletesebben

Megjegyzések (észrevételek) a szabad energia és a szabad entalpia fogalmához

Megjegyzések (észrevételek) a szabad energia és a szabad entalpia fogalmához Dr. Pósa Mihály Megjegyzések (észrevételek) a szabad energia és a szabad entalpia fogalmához 1. Bevezetés Shillady Don professzor az Amerikai Kémiai Szövetség egyik tanácskozásán felhívta a figyelmet a

Részletesebben

UV-LÁTHATÓ ABSZORPCIÓS SPEKTROFOTOMETRIA

UV-LÁTHATÓ ABSZORPCIÓS SPEKTROFOTOMETRIA SPF UV-LÁTHATÓ ABSZORPCIÓS SPEKTROFOTOMETRIA A GYAKORLAT CÉLJA: AZ UV-látható abszorpciós spektrofotométer működésének megismerése és a Lambert-Beer törvény alkalmazása. Szalicilsav meghatározása egy vizes

Részletesebben

Kémiai reakciók sebessége

Kémiai reakciók sebessége Kémiai reakciók sebessége reakciósebesség (v) = koncentrációváltozás változáshoz szükséges idő A változás nem egyenletes!!!!!!!!!!!!!!!!!! v= ± dc dt a A + b B cc + dd. Melyik reagens koncentrációváltozását

Részletesebben

Modern Fizika Laboratórium Fizika és Matematika BSc 12. Infravörös spektroszkópia

Modern Fizika Laboratórium Fizika és Matematika BSc 12. Infravörös spektroszkópia Modern Fizika Laboratórium Fizika és Matematika BSc 1. Infravörös spektroszkópia Mérést végezték: Bodó Ágnes Márkus Bence Gábor Kedd délelőtti csoport Mérés ideje: 03/0/01 Beadás ideje: 03/4/01 Érdemjegy:

Részletesebben

9 gyak. Acél mangán tartalmának meghatározása UV-látható spektrofotometriás módszerrel

9 gyak. Acél mangán tartalmának meghatározása UV-látható spektrofotometriás módszerrel 9 gyak. Acél mangán tartalmának meghatározása UV-látható spektrofotometriás módszerrel A gyakorlat célja: Megismerkedni az UV-látható spektrofotometria elvével, alkalmazásával a kationok, anionok analízisére.

Részletesebben

Abszorpciós fotometria

Abszorpciós fotometria abszorpció Abszorpciós fotometria Spektroszkópia - Színképvizsgálat Spektro-: görög; jelente kép/szín -szkópia: görög; néz/látás/vizsgálat Ujfalusi Zoltán PTE ÁOK Biofizikai Intézet 2012. február Vizsgálatok

Részletesebben

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény; Abszorpciós spektroszkópia

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény;  Abszorpciós spektroszkópia Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2015 január 27.) Az abszorpció mérése;

Részletesebben

A kálium-permanganát és az oxálsav közötti reakció vizsgálata 9a. mérés B4.9

A kálium-permanganát és az oxálsav közötti reakció vizsgálata 9a. mérés B4.9 A kálium-permanganát és az oxálsav közötti reakció vizsgálata 9a. mérés B4.9 Név: Pitlik László Mérés dátuma: 2014.12.04. Mérőtársak neve: Menkó Orsolya Adatsorok: M24120411 Halmy Réka M14120412 Sárosi

Részletesebben

5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével

5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével 5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével 5.1. Átismétlendő anyag 1. Adszorpció (előadás) 2. Langmuir-izoterma (előadás) 3. Spektrofotometria és Lambert Beer-törvény

Részletesebben

A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés azonosítószáma és megnevezése 54 524 03 Vegyész technikus Tájékoztató

Részletesebben

Termodinamikai bevezető

Termodinamikai bevezető Termodinamikai bevezető Alapfogalmak Termodinamikai rendszer: Az univerzumnak az a részhalmaza, amit egy termodinamikai vizsgálat során vizsgálunk. Termodinamikai környezet: Az univerzumnak a rendszeren

Részletesebben

Modern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés:

Modern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés: Modern Fizika Labor Fizika BSc A mérés dátuma: 011. okt. 04. A mérés száma és címe: 1. Infravörös spektroszkópia Értékelés: A beadás dátuma: 011. dec. 1. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin

Részletesebben

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény; Abszorpciós spektroszkópia

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény;   Abszorpciós spektroszkópia Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2016 március 1.) Az abszorpció mérése;

Részletesebben

Számítások ph-val kombinálva

Számítások ph-val kombinálva Bemelegítő, gondolkodtató kérdések Igaz-e? Indoklással válaszolj! A A semleges oldat ph-ja mindig éppen 7. B A tömény kénsav ph-ja 0 vagy annál is kisebb. C A 0,1 mol/dm 3 koncentrációjú sósav ph-ja azonos

Részletesebben

Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27

Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27 Az egyensúly 6'-1 6'-2 6'-3 6'-4 6'-5 Dinamikus egyensúly Az egyensúlyi állandó Az egyensúlyi állandókkal kapcsolatos összefüggések Az egyensúlyi állandó számértékének jelentősége A reakció hányados, Q:

Részletesebben

1) Standard hidrogénelektród készülhet sósavból vagy kénsavoldatból is. Ezt a savat 100-szorosára hígítva, mekkora ph-jú oldatot nyerünk?

1) Standard hidrogénelektród készülhet sósavból vagy kénsavoldatból is. Ezt a savat 100-szorosára hígítva, mekkora ph-jú oldatot nyerünk? Számítások ph-val kombinálva 1) Standard hidrogénelektród készülhet sósavból vagy kénsavoldatból is. Ezt a savat 100-szorosára hígítva, mekkora ph-jú oldatot nyerünk? Mekkora az eredeti oldatok anyagmennyiség-koncentrációja?

Részletesebben

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 Kérdések. 1. Mit mond ki a termodinamika nulladik főtétele? Azt mondja ki, hogy mindenegyes termodinamikai kölcsönhatáshoz tartozik a TDR-nek egyegy

Részletesebben

Anyagvizsgálati módszerek Elektroanalitika. Anyagvizsgálati módszerek

Anyagvizsgálati módszerek Elektroanalitika. Anyagvizsgálati módszerek Anyagvizsgálati módszerek Elektroanalitika Anyagvizsgálati módszerek Pannon Egyetem Mérnöki Kar Anyagvizsgálati módszerek Optikai módszerek 1/ 18 Potenciometria Potenciometria olyan analitikai eljárások

Részletesebben

5. Laboratóriumi gyakorlat

5. Laboratóriumi gyakorlat 5. Laboratóriumi gyakorlat HETEROGÉN KÉMIAI REAKCIÓ SEBESSÉGÉNEK VIZSGÁLATA A CO 2 -nak vízben történő oldódása és az azt követő egyensúlyra vezető kémiai reakció az alábbi reakcióegyenlettel írható le:

Részletesebben

Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27

Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27 Az egyensúly 10-1 Dinamikus egyensúly 10-2 Az egyensúlyi állandó 10-3 Az egyensúlyi állandókkal kapcsolatos összefüggések 10-4 Az egyensúlyi állandó számértékének jelentősége 10-5 A reakció hányados, Q:

Részletesebben

Az energia. Energia : munkavégző képesség (vagy hőközlő képesség)

Az energia. Energia : munkavégző képesség (vagy hőközlő képesség) Az energia Energia : munkavégző képesség (vagy hőközlő képesség) Megjelenési formái: Munka: irányított energiaközlés (W=Fs) Sugárzás (fényrészecskék energiája) Termikus energia: atomok, molekulák véletlenszerű

Részletesebben

Termokémia, termodinamika

Termokémia, termodinamika Termokémia, termodinamika Szalai István ELTE Kémiai Intézet 1/46 Termodinamika A termodinamika a természetben végbemenő folyamatok energetikai leírásával foglalkozik.,,van egy tény ha úgy tetszik törvény,

Részletesebben

Minta feladatsor. Az ion neve. Az ion képlete O 4. Szulfátion O 3. Alumíniumion S 2 CHH 3 COO. Króm(III)ion

Minta feladatsor. Az ion neve. Az ion képlete O 4. Szulfátion O 3. Alumíniumion S 2 CHH 3 COO. Króm(III)ion Minta feladatsor A feladatok megoldására 90 perc áll rendelkezésére. A megoldáshoz zsebszámológépet használhat. 1. Adja meg a következő ionok nevét, illetve képletét! (8 pont) Az ion neve.. Szulfátion

Részletesebben

Kémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai

Kémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai Kémiai átalakulások 9. hét A kémiai reakció: kötések felbomlása, új kötések kialakulása - az atomok vegyértékelektronszerkezetében történik változás egyirányú (irreverzibilis) vagy megfordítható (reverzibilis)

Részletesebben

E (total) = E (translational) + E (rotation) + E (vibration) + E (electronic) + E (electronic

E (total) = E (translational) + E (rotation) + E (vibration) + E (electronic) + E (electronic Abszorpciós spektroszkópia Abszorpciós spektrofotometria 29.2.2. Az abszorpciós spektroszkópia a fényabszorpció jelenségét használja fel híg oldatok minőségi és mennyiségi vizsgálatára. Abszorpció Az elektromágneses

Részletesebben

Többértékű savak és bázisok Többértékű savnak/lúgnak azokat az oldatokat nevezzük, amelyek több protont képesek leadni/felvenni.

Többértékű savak és bázisok Többértékű savnak/lúgnak azokat az oldatokat nevezzük, amelyek több protont képesek leadni/felvenni. ELEKTROLIT EGYENSÚLYOK : ph SZÁMITÁS Általános ismeretek A savak vizes oldatban protont adnak át a vízmolekuláknak és így megnövelik az oldat H + (pontosabban oxónium - H 3 O + ) ion koncentrációját. Erős

Részletesebben

Általános Kémia GY, 2. tantermi gyakorlat

Általános Kémia GY, 2. tantermi gyakorlat Általános Kémia GY, 2. tantermi gyakorlat Sztöchiometriai számítások -titrálás: ld. : a 2. laborgyakorlat leírásánál Gáztörvények A kémhatás fogalma -ld.: a 2. laborgyakorlat leírásánál Honlap: http://harmatv.web.elte.hu

Részletesebben

Környezeti analitika laboratóriumi gyakorlat Számolási feladatok áttekintése

Környezeti analitika laboratóriumi gyakorlat Számolási feladatok áttekintése örnyezeti analitika laboratóriumi gyakorlat Számolási feladatok áttekintése I. A számolási feladatok megoldása során az oldatok koncentrációjának számításához alapvetıen a következı ismeretekre van szükség:

Részletesebben

FOTOKÉMIAI REAKCIÓK, REAKCIÓKINETIKAI ALAPOK

FOTOKÉMIAI REAKCIÓK, REAKCIÓKINETIKAI ALAPOK FOTOKÉMIAI REAKCIÓK, REAKCIÓKINETIKAI ALAPOK Légköri nyomanyagok forrásai: bioszféra hiroszféra litoszféra világűr emberi tevékenység AMI BELÉP, ANNAK TÁVOZNIA IS KELL! Légköri nyomanyagok nyelői: száraz

Részletesebben

Természetvédő 1., 3. csoport tervezett időbeosztás

Természetvédő 1., 3. csoport tervezett időbeosztás Természetvédő 1., 3. csoport tervezett időbeosztás 4. ciklus: 2012. március 08. Optikai mérések elmélet. A ciklus mérései: 1. nitrit, 2. ammónium, 3. refraktometriax2, mérőbőrönd. Forgatási terv: Csoport

Részletesebben

Általános kémia képletgyűjtemény. Atomszerkezet Tömegszám (A) A = Z + N Rendszám (Z) Neutronok száma (N) Mólok száma (n)

Általános kémia képletgyűjtemény. Atomszerkezet Tömegszám (A) A = Z + N Rendszám (Z) Neutronok száma (N) Mólok száma (n) Általános kémia képletgyűjtemény (Vizsgára megkövetelt egyenletek a szimbólumok értelmezésével, illetve az egyenletek megfelelő alkalmazása is követelmény) Atomszerkezet Tömegszám (A) A = Z + N Rendszám

Részletesebben

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció

Részletesebben

1. feladat Összesen: 15 pont. 2. feladat Összesen: 10 pont

1. feladat Összesen: 15 pont. 2. feladat Összesen: 10 pont 1. feladat Összesen: 15 pont Vizsgálja meg a hidrogén-klorid (vagy vizes oldata) reakciót különböző szervetlen és szerves anyagokkal! Ha nem játszódik le reakció, akkor ezt írja be! protonátmenettel járó

Részletesebben

Általános Kémia GY 3.tantermi gyakorlat

Általános Kémia GY 3.tantermi gyakorlat Általános Kémia GY 3.tantermi gyakorlat ph számítás: Erős savak, erős bázisok Gyenge savak, gyenge bázisok Pufferek, pufferkapacitás Honlap: http://harmatv.web.elte.hu Példatárak: Villányi Attila: Ötösöm

Részletesebben

Energia. Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia

Energia. Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia Kémiai változások Energia Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia Potenciális (helyzeti) energia: a részecskék kölcsönhatásából származó energia. Energiamegmaradás

Részletesebben

Jegyzőkönyv. Konduktometria. Ungvárainé Dr. Nagy Zsuzsanna

Jegyzőkönyv. Konduktometria. Ungvárainé Dr. Nagy Zsuzsanna Jegyzőkönyv CS_DU_e 2014.11.27. Konduktometria Ungvárainé Dr. Nagy Zsuzsanna Margócsy Ádám Mihálka Éva Zsuzsanna Róth Csaba Varga Bence I. A mérés elve A konduktometria az oldatok elektromos vezetésének

Részletesebben

Általános Kémia Gyakorlat II. zárthelyi október 10. A1

Általános Kémia Gyakorlat II. zárthelyi október 10. A1 2008. október 10. A1 Rendezze az alábbi egyenleteket! (5 2p) 3 H 3 PO 3 + 2 HNO 3 = 3 H 3 PO 4 + 2 NO + 1 H 2 O 2 MnO 4 + 5 H 2 O 2 + 6 H + = 2 Mn 2+ + 5 O 2 + 8 H 2 O 1 Hg + 4 HNO 3 = 1 Hg(NO 3 ) 2 +

Részletesebben

Reakció kinetika és katalízis

Reakció kinetika és katalízis Reakció kinetika és katalízis 1. előadás: Alapelvek, a kinetikai eredmények analízise Felezési idők 1/22 2/22 : A koncentráció ( ) időbeli változása, jele: mol M v, mértékegysége: dm 3. s s Legyen 5H 2

Részletesebben

6 Ionszelektív elektródok. elektródokat kiterjedten alkalmazzák a klinikai gyakorlatban: az automata analizátorokban

6 Ionszelektív elektródok. elektródokat kiterjedten alkalmazzák a klinikai gyakorlatban: az automata analizátorokban 6. Szelektivitási együttható meghatározása 6.1. Bevezetés Az ionszelektív elektródok olyan potenciometriás érzékelők, melyek valamely ion aktivitásának többé-kevésbé szelektív meghatározását teszik lehetővé.

Részletesebben

Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből november 28. Hővezetés, hőterjedés sugárzással. Ideális gázok állapotegyenlete

Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből november 28. Hővezetés, hőterjedés sugárzással. Ideális gázok állapotegyenlete Fizika feladatok 2014. november 28. 1. Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással 1.1. Feladat: (HN 19A-23) Határozzuk meg egy 20 cm hosszú, 4 cm átmérőjű hengeres vörösréz

Részletesebben

A REAKCIÓKINETIKA ALAPJAI

A REAKCIÓKINETIKA ALAPJAI A REAKCIÓKINETIKA ALAPJAI Egy kémiai reakció sztöchiometriai egyenletének általános alakja a következő formában adható meg k i=1 ν i A i = 0, (1) ahol A i a reakcióban résztvevő i-edik részecske, ν i pedig

Részletesebben

Modern fizika laboratórium

Modern fizika laboratórium Modern fizika laboratórium 11. Az I 2 molekula disszociációs energiája Készítette: Hagymási Imre A mérés dátuma: 2007. október 3. A beadás dátuma: 2007. október xx. 1. Bevezetés Ebben a mérésben egy kétatomos

Részletesebben

Abszorpciós fotometria

Abszorpciós fotometria A fény Abszorpciós fotometria Ujfalusi Zoltán PTE ÁOK Biofizikai ntézet 2011. szeptember 15. E B x x Transzverzális hullám A fény elektromos térerősségvektor hullámhossz Az elektromos a mágneses térerősség

Részletesebben

1. feladat Összesen: 8 pont. 2. feladat Összesen: 11 pont. 3. feladat Összesen: 7 pont. 4. feladat Összesen: 14 pont

1. feladat Összesen: 8 pont. 2. feladat Összesen: 11 pont. 3. feladat Összesen: 7 pont. 4. feladat Összesen: 14 pont 1. feladat Összesen: 8 pont 150 gramm vízmentes nátrium-karbonátból 30 dm 3 standard nyomású, és 25 C hőmérsékletű szén-dioxid gáz fejlődött 1800 cm 3 sósav hatására. A) Írja fel a lejátszódó folyamat

Részletesebben

Fizikai kémia 2 Reakciókinetika házi feladatok 2016 ősz

Fizikai kémia 2 Reakciókinetika házi feladatok 2016 ősz Fizikai kémia 2 Reakciókinetika házi feladatok 2016 ősz A házi feladatok beadhatóak vagy papír alapon (ez a preferált), vagy e-mail formájában is az rkinhazi@gmail.com címre. E-mail esetén ügyeljetek a

Részletesebben

(Kémiai alapok) és

(Kémiai alapok) és 01/013 tavaszi félév 6. óra ph-számítás (I) Vízionszorzat, Erős savak és bázisok ph-ja Erős savak és bázisok nagyon híg oldatának ph-ja (pl. 10 7 M HCl) Gyenge savak és bázisok ph-ja (töményebb, illetve

Részletesebben

Abszorpciós fotometria

Abszorpciós fotometria abszorpció A fény Abszorpciós fotometria Ujfalusi Zoltán PTE ÁOK Biofizikai Intézet 2013. január Elektromágneses hullám Transzverzális hullám elektromos térerősségvektor hullámhossz E B x mágneses térerősségvektor

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

Sugárzásos hőtranszport

Sugárzásos hőtranszport Sugárzásos hőtranszport Minden test bocsát ki sugárzást. Ennek hullámhossz szerinti megoszlása a felület hőmérsékletétől függ (spektrum, spektrális eloszlás). Jelen esetben kérdés a Nap és a földi felszínek

Részletesebben

Anyagtudomány. Ötvözetek egyensúlyi diagramjai (állapotábrák)

Anyagtudomány. Ötvözetek egyensúlyi diagramjai (állapotábrák) Anyagtudomány Ötvözetek egyensúlyi diagramjai (állapotábrák) Kétkomponensű fémtani rendszerek fázisai és szövetelemei Folyékony, olvadék fázis Színfém (A, B) Szilárd oldat (α, β) (szubsztitúciós, interstíciós)

Részletesebben

Mágneses szuszceptibilitás mérése

Mágneses szuszceptibilitás mérése KLASSZIKUS FIZIKA LABORATÓRIUM 7. MÉRÉS Mágneses szuszceptibilitás mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 5. Szerda délelőtti csoport 1. A mérés célja Az

Részletesebben

Mérési jegyzőkönyv. 1. mérés: Abszorpciós spektrum meghatározása. Semmelweis Egyetem, Elméleti Orvostudományi Központ Biofizika laboratórium

Mérési jegyzőkönyv. 1. mérés: Abszorpciós spektrum meghatározása. Semmelweis Egyetem, Elméleti Orvostudományi Központ Biofizika laboratórium Mérési jegyzőkönyv 1. mérés: Abszorpciós spektrum meghatározása A mérés helyszíne: Semmelweis Egyetem, Elméleti Orvostudományi Központ Biofizika laboratórium A mérés időpontja: 2012.02.08. A mérést végezte:

Részletesebben

19. Sav-bázis indikátorok disszociáció állandójának spektrofotometriás meghatározása. Előkészítő előadás

19. Sav-bázis indikátorok disszociáció állandójának spektrofotometriás meghatározása. Előkészítő előadás 19. Sav-bázis indikátorok disszociáció állandójának spektrofotometriás meghatározása Előkészítő előadás 2019.03.11. mérési feladat Egy sav-bázis indikátor abszorpciós spektrumának felvétele különböző ph-jú

Részletesebben

19. Sav-bázis indikátorok disszociáció állandójának spektrofotometriás meghatározása. Előkészítő előadás Módosított változat

19. Sav-bázis indikátorok disszociáció állandójának spektrofotometriás meghatározása. Előkészítő előadás Módosított változat 19. Sav-bázis indikátorok disszociáció állandójának spektrofotometriás meghatározása Előkészítő előadás 2018.03.19. Módosított változat mérési feladat Egy sav-bázis indikátor abszorpciós spektrumának felvétele

Részletesebben

1. Gázok oldhatósága vízben: 101 325 Pa nyomáson g/100 g vízben

1. Gázok oldhatósága vízben: 101 325 Pa nyomáson g/100 g vízben 1. Gázok oldhatósága vízben: 101 325 Pa nyomáson g/100 g vízben t/ 0 C 0 20 30 60 O 2 0,006945 0,004339 0,003588 0,002274 H 2S 0,7066 0,3846 0,2983 0,148 HCl 82,3 72 67,3 56,1 CO 2 0,3346 0,1688 0,1257

Részletesebben

UV-VIS spektrofotometriás tartomány. Analitikai célokra: nm

UV-VIS spektrofotometriás tartomány. Analitikai célokra: nm UV-VIS spektrofotometriás tartomány nalitikai célokra: 00-800 nm Elektron átmenetek és az atomok spektruma E h h c Molekulák elektron átmenetei és UVlátható spektruma Elektron átmenetek formaldehidben

Részletesebben

Fluidum-kőzet kölcsönhatás: megváltozik a kőzet és a fluidum összetétele és új egyensúlyi ásványparagenezis jön létre Székyné Fux V k álimetaszo

Fluidum-kőzet kölcsönhatás: megváltozik a kőzet és a fluidum összetétele és új egyensúlyi ásványparagenezis jön létre Székyné Fux V k álimetaszo Hidrotermális képződmények genetikai célú vizsgálata Bevezetés a fluidum-kőzet kölcsönhatás, és a hidrotermális ásványképződési környezet termodinamikai modellezésébe Dr Molnár Ferenc ELTE TTK Ásványtani

Részletesebben

Szent-Györgyi Albert kémiavetélkedő Kód

Szent-Györgyi Albert kémiavetélkedő Kód 9. osztály Kedves Versenyző! A jobb felső sarokban található mezőbe a verseny lebonyolításáért felelős személy írja be a kódot a feladatlap minden oldalára a verseny végén. A feladatokat lehetőleg a feladatlapon

Részletesebben

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia. 2008. május 6.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia. 2008. május 6. Modern Fizika Labor Fizika BSc A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia Értékelés: A beadás dátuma: 28. május 13. A mérést végezte: 1/5 A mérés célja A mérés célja az

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Abszolútértékes és gyökös kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Abszolútértékes és gyökös kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Az α értékének változtatásakor tanulmányozzuk az y-x görbe alakját. 2 ahol K=10

Az α értékének változtatásakor tanulmányozzuk az y-x görbe alakját. 2 ahol K=10 9.4. Táblázatkezelés.. Folyadék gőz egyensúly kétkomponensű rendszerben Az illékonyabb komponens koncentrációja (móltörtje) nagyobb a gőzfázisban, mint a folyadékfázisban. Móltört a folyadékfázisban x;

Részletesebben

Alkalmazás a makrókanónikus sokaságra: A fotongáz

Alkalmazás a makrókanónikus sokaságra: A fotongáz Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,

Részletesebben

17. Diffúzió vizsgálata

17. Diffúzió vizsgálata Modern Fizika Labor Fizika BSC A mérés dátuma: 2011.11.24. A beadás dátuma: 2011.12.04. A mérés száma és címe: 17. Diffúzió vizsgálata A mérést végezte: Németh Gergely Értékelés: Elméleti háttér Mi is

Részletesebben

HOMOGÉN EGYENSÚLYI ELEKTROKÉMIA: ELEKTROLITOK TERMODINAMIKÁJA

HOMOGÉN EGYENSÚLYI ELEKTROKÉMIA: ELEKTROLITOK TERMODINAMIKÁJA HOMOGÉN EGYENSÚLYI ELEKTROKÉMIA: ELEKTROLITOK TERMODINAMIKÁJA I. Az elektrokémia áttekintése. II. Elektrolitok termodinamikája. A. Elektrolitok jellemzése B. Ionok termodinamikai képződési függvényei C.

Részletesebben

Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás) y = 1 + 2(x 1). y = 2x 1.

Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás) y = 1 + 2(x 1). y = 2x 1. Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás). Feladat. Írjuk fel az f() = függvény 0 = pontbeli érintőjének egyenletét! Az érintő egyenlete y

Részletesebben

Curie Kémia Emlékverseny 2018/2019. Országos Döntő 9. évfolyam

Curie Kémia Emlékverseny 2018/2019. Országos Döntő 9. évfolyam A feladatokat írta: Kódszám: Pócsiné Erdei Irén, Debrecen... Lektorálta: Kálnay Istvánné, Nyíregyháza 2019. május 11. Curie Kémia Emlékverseny 2018/2019. Országos Döntő 9. évfolyam A feladatok megoldásához

Részletesebben

ph-számítás A víz gyenge elektrolit. Kismértékben disszociál hidrogénionokra (helyesebben hidroxónium-ionokra) és hidroxid-ionokra :

ph-számítás A víz gyenge elektrolit. Kismértékben disszociál hidrogénionokra (helyesebben hidroxónium-ionokra) és hidroxid-ionokra : ph-számítás A víz gyenge elektrolit. Kismértékben disszociál hidrogénionokra (helyesebben hidroxónium-ionokra) és hidroxid-ionokra : H 2 O H + + OH -, (2 H 2 O H 3 O + + 2 OH - ). Semleges oldatban a hidrogén-ion

Részletesebben

SPEKTROFOTOMETRIAI MÉRÉSEK

SPEKTROFOTOMETRIAI MÉRÉSEK SPEKTROFOTOMETRIAI MÉRÉSEK Elméleti bevezetés Ha egy anyagot a kezünkbe veszünk (valamilyen technológiai céllal alkalmazni szeretnénk), elsı kérdésünk valószínőleg az lesz, hogy mi ez az anyag, milyen

Részletesebben

800-5000 Hz U. oldat. R κ=l/ra. 1.ábra Az oldatok vezetőképességének mérése

800-5000 Hz U. oldat. R κ=l/ra. 1.ábra Az oldatok vezetőképességének mérése 8 gyak. Konduktometria A gyakorlat célja: Az oldat ionos alkotóinak összegző, nem specifikus mérése (a víz tisztasága), a konduktometria felhasználása titrálás végpontjelzésére. A módszer elve Elektrolitok

Részletesebben

3. Az Sn-Pb ötvözetek termikus analízise, fázisdiagram megszerkesztése. Előkészítő előadás

3. Az Sn-Pb ötvözetek termikus analízise, fázisdiagram megszerkesztése. Előkészítő előadás 3. Az Sn-Pb ötvözetek termikus analízise, fázisdiagram megszerkesztése. Előkészítő előadás 2018.02.05. A gyakorlat célja Ismerkedés a Fizikai Kémia II. laboratóriumi gyakorlatok légkörével A jegyzőkönyv

Részletesebben

A feladatok megoldásához csak a kiadott periódusos rendszer és számológép használható!

A feladatok megoldásához csak a kiadott periódusos rendszer és számológép használható! 1 MŰVELTSÉGI VERSENY KÉMIA TERMÉSZETTUDOMÁNYI KATEGÓRIA Kedves Versenyző! A versenyen szereplő kérdések egy része általad már tanult tananyaghoz kapcsolódik, ugyanakkor a kérdések másik része olyan ismereteket

Részletesebben

6. Termodinamikai egyensúlyok és a folyamatok iránya

6. Termodinamikai egyensúlyok és a folyamatok iránya 6. ermodinamikai egyensúlyok és a folyamatok iránya A természetben végbemenő folyamatok kizárólagos termodinamikai hajtóereje az entróia növekedése. Minden makroszkoikusan észlelhető folyamatban a rendszer

Részletesebben

6. Oldatok felületi feszültségének meghatározása. Előkészítő előadás

6. Oldatok felületi feszültségének meghatározása. Előkészítő előadás 6. Oldatok felületi feszültségének meghatározása Előkészítő előadás 2017.02.13. Elméleti áttekintés Felületi feszültség: a szabadentalpia függvény felület szerinti parciális deriváltja. Ez termodinamikai

Részletesebben

Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft

Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft Atom- és molekula-spektroszkópiás módszerek Módszer Elv Vizsgált anyag típusa Atom abszorpciós spektrofotometria (AAS) A szervetlen Lángfotometria

Részletesebben

T I T - M T T. Hevesy György Kémiaverseny. országos dönt. Az írásbeli forduló feladatlapja. 8. osztály. 2. feladat:... pont. 3. feladat:...

T I T - M T T. Hevesy György Kémiaverseny. országos dönt. Az írásbeli forduló feladatlapja. 8. osztály. 2. feladat:... pont. 3. feladat:... T I T - M T T Hevesy György Kémiaverseny országos dönt Az írásbeli forduló feladatlapja 8. osztály A versenyz azonosítási száma:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:...

Részletesebben

Országos Középiskolai Tanulmányi Verseny 2009/2010. Kémia I. kategória II. forduló A feladatok megoldása

Országos Középiskolai Tanulmányi Verseny 2009/2010. Kémia I. kategória II. forduló A feladatok megoldása Oktatási Hivatal I. FELADATSOR Országos Középiskolai Tanulmányi Verseny 2009/2010. Kémia I. kategória II. forduló A feladatok megoldása 1. B 6. E 11. A 16. E 2. A 7. D 12. A 17. C 3. B 8. A 13. A 18. C

Részletesebben

Transzportfolyamatok

Transzportfolyamatok Transzportfolyamatok Boda Dezső 2009. május 21. 1. Diffúzió elektromos tér hiányában Fizikai kémiából tanultuk, hogy valamely anyagban az i komponens áramsűrűségére fluxus) egy dimenzióban a következő

Részletesebben

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 8. osztály. A versenyző jeligéje:... Megye:...

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 8. osztály. A versenyző jeligéje:... Megye:... T I T - M T T Hevesy György Kémiaverseny A megyei forduló feladatlapja 8. osztály A versenyző jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:... pont 4. feladat:...

Részletesebben

UV-LÁTHATÓ ABSZORPCIÓS SPEKTROFOTOMETRIA

UV-LÁTHATÓ ABSZORPCIÓS SPEKTROFOTOMETRIA A környezetvédelem analitikája SPP UV-LÁTHATÓ ABSZORPCIÓS SPEKTROFOTOMETRIA A GYAKORLAT CÉLJA: AZ UV-látható abszorpciós spektrofotométer működésének megismerése és a Lambert-Beer törvény alkalmazása.

Részletesebben

Műszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása

Műszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása Abrankó László Műszeres analitika Molekulaspektroszkópia Minőségi elemzés Kvalitatív Cél: Meghatározni, hogy egy adott mintában jelen vannak-e bizonyos ismert komponensek. Vagy ismeretlen komponensek azonosítása

Részletesebben

A van der Waals-gáz állapotegyenlete és a Joule Thompson-kísérlet Kiegészítés fizikus hallgatók számára

A van der Waals-gáz állapotegyenlete és a Joule Thompson-kísérlet Kiegészítés fizikus hallgatók számára van der Waals-gáz állaotegyenlete és a Joule homson-kísérlet Kiegészítés fizikus hallgatók számára Cserti József Eötvös Loránd udományegyetem, Komlex Rendszerek Fizikája anszék 006. december. van der Waals-állaotegyenlet:

Részletesebben

2. Energodinamika értelmezése, főtételei, leírási módok

2. Energodinamika értelmezése, főtételei, leírási módok Energetika 7 2. Energodinamika értelmezése, főtételei, leírási módok Az energia fogalmának kialakulása történetileg a munkavégzés definícióához kapcsolódik. Kezdetben az energiát a munkavégző képességgel

Részletesebben

Kinetika. Általános Kémia, kinetika Dia: 1 /53

Kinetika. Általános Kémia, kinetika Dia: 1 /53 Kinetika 15-1 A reakciók sebessége 15-2 Reakciósebesség mérése 15-3 A koncentráció hatása: a sebességtörvény 15-4 Nulladrendű reakció 15-5 Elsőrendű reakció 15-6 Másodrendű reakció 15-7 A reakció kinetika

Részletesebben

Curie Kémia Emlékverseny 2018/2019. Országos Döntő 8. évfolyam

Curie Kémia Emlékverseny 2018/2019. Országos Döntő 8. évfolyam A feladatokat írta: Kódszám: Harkai Jánosné, Szeged... Lektorálta: Kovács Lászlóné, Szolnok 2019. május 11. Curie Kémia Emlékverseny 2018/2019. Országos Döntő 8. évfolyam A feladatok megoldásához csak

Részletesebben

Kémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai

Kémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai Kémiai átalakulások 9. hét A kémiai reakció: kötések felbomlása, új kötések kialakulása - az atomok vegyértékelektronszerkezetében történik változás egyirányú (irreverzibilis) vagy megfordítható (reverzibilis)

Részletesebben

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet 5-4 A tökéletes gáz egyenlet alkalmazása 5-5 Gáz halmazállapotú reakciók

Részletesebben

Telítetlen oldat: még képes anyagot feloldani (befogadni), adott hőmérsékleten.

Telítetlen oldat: még képes anyagot feloldani (befogadni), adott hőmérsékleten. 2. Oldatkészítés 2.1. Alapfogalmak Az oldat oldott anyagból és oldószerből áll. Az oldott anyag és az oldószer közül az a komponens az oldószer, amelyik nagyobb mennyiségben van jelen az oldatban. Az oldószer

Részletesebben

1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom:

1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom: 1. előadás Gáztörvények Kapcsolódó irodalom: Fizikai-kémia I: Kémiai Termodinamika(24-26 old) Chemical principles: The quest for insight (Atkins-Jones) 6. fejezet Kapcsolódó multimédiás anyag: Youtube:

Részletesebben

Fermi Dirac statisztika elemei

Fermi Dirac statisztika elemei Fermi Dirac statisztika elemei A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra érvényes klasszikus statisztika

Részletesebben

KÉMIA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

KÉMIA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Kémia emelt szint 0912 ÉRETTSÉGI VIZSGA 2010. október 26. KÉMIA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Az írásbeli feladatok értékelésének alapelvei

Részletesebben

KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 2002

KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 2002 1. oldal KÉMIA ÍRÁSBELI ÉRETTSÉGI FELVÉTELI FELADATOK 2002 JAVÍTÁSI ÚTMUTATÓ Az írásbeli felvételi vizsgadolgozatra összesen 100 (dolgozat) pont adható, a javítási útmutató részletezése szerint. Minden

Részletesebben

Gyógyszerhatóanyagok azonosítása és kioldódási vizsgálata tablettából

Gyógyszerhatóanyagok azonosítása és kioldódási vizsgálata tablettából Gyógyszerhatóanyagok azonosítása és kioldódási vizsgálata tablettából ELTE TTK Szerves Kémiai Tanszék 2015 1 I. Elméleti bevezető 1.1. Gyógyszerkönyv A Magyar gyógyszerkönyv (Pharmacopoea Hungarica) első

Részletesebben