Környezetállapot-értékelés II. (NGB_KM018_2) és Földünk környezeti állapota (NGB_KM048_1) Környezetvédelmi energetika

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Környezetállapot-értékelés II. (NGB_KM018_2) és Földünk környezeti állapota (NGB_KM048_1) Környezetvédelmi energetika"

Átírás

1 Az energiaforrások csoportosítása eredet szerint Környezetállapot-értékelés II. (NGB_KM018_2) és Földünk környezeti állapota (NGB_KM048_1) Környezetvédelmi energetika 2017/2018-as tanév II. félév Dr. habil. Zseni Anikó egyetemi docens SZE, AHJK, Környezetmérnöki Tanszék Az energiaforrások múltbeli és várható jövőbeli megoszlása A világ energiafelhasználásának alakulása XXI. sz. közepe XX. sz. vége XX. sz. eleje XIX. sz. közepe XV. sz. 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Állati (emberi) Biomassza Szén Olaj Földgáz Atomenergai Alternatív A világ energiaellátásának alakulása (BP Statistical Review of World Energy June 2017 nyomán) A világ energiafogyasztásának alakulása 2030-ig régiók szerint 1

2 A világ energiafogyasztásának alakulása 2030-ig az energiahordozók megoszlása szerint A világ energia-termelésének és energia-felhasználásának alakulása a közelmúltban (adatok: EU, 2017) A világ energiaellátása Az egy főre jutó primer energiafelhasználás 8, ,5 81% % 77% 37% 63% 53% 23% 19% fejlődő és átalakuló országok iparilag fejlett országok EJ: J Energiafelhasználás A világ energiafelhasználásának struktúrája az elmúlt 50 évben kétszer több energiát használtunk fel, mint civilizációnk történelmében összesen ~10 ezer Mtoe energiafelhasználás (2003) (Mega tonna olajegyenérték: 10 6 kg oe, 1 kg oe = 41,869 MJ) 2% 6% 11% 24% 5% 2% 12% 23% az energiafelhasználás jövőbeni alakulását meghatározza: a világ népességének változása a világ gazdasági és társadalmi (szociális) fejlődésének mértéke, 21% 24% iránya és szerkezete a fenntartható fejlődésre orientált technológia fejlődése és annak széles körű elterjesztése 36% Összesen 448 EJ 34% Összesen 683 EJ szén olaj gáz atom víz megújulók 2

3 A világ jövőbeni energiaellátása Várható energiaforrás megoszlás és hiány a 21. században Várható energiaforrás megoszlás és hiány a 21. század folyamán (feltételezve: I. Nem sikerül új energiaforrást találni II re megáll az emberiség növekedése azaz állandó marad a lélekszám) Milliárd hordó olaj egyenérték/év Hiányzó energia Maghasadási és egyéb energia Földgáz Szén Kőolaj (Forrás: Gerald L. Kulcinski, University of Wisconsin, USA) Magyar változat: Domokos Endre Pannon Problémáink nemcsak az energiaforrások előteremtéséről kell valahogyan gondoskodnunk hanem az energetika közvetetett és közvetlen környezeti (a bioszféra terhelhetősége, az üvegházhatás felerősödése, globális felmelegedés, klímaváltozás), valamint társadalmi, szociális hatásaival is! az energiaellátás drága lesz! fenntartható energiaellátás, megújuló energiaforrások fokozott hasznosítása mindez elég lesz? energiamegtérülési mutató: EROI (energy return on investment): azt fejezi ki, hogy egységnyi energia befektetésével mennyi egységnyi energiához jutunk, beleszámítva az összes kapcsolódó tevékenység energiaigényét (kitermelő létesítmény létrehozása, kitermelés, szállítás). * a megtermelt villanyáram hálózatba vezetésével vagy energiatárolásal ** melegvíz-készítés esetén *** cukornádból Különböző energiahordozók napjainkban érvényes maximális és átlagos EROI értéke Az energetika környezeti hatásai Minden tüzelőanyag esetén Földgáz Olaj Szén Nem megújuló energiaforrások Bányászat, kitermelés Olajfinomítás, tüzelőanyag feldolgozás, átalakítás CO 2, CH 4, N 2O, NO X, CO, Fúrási balesetek, HC, por, fém és fúróiszap tárolás hőszennyezés CO 2, CH 4, N 2O, NO X, CO., finomító balesetek, HC, por, fém- és finomító hulladékok hőszennyezés tárolása Fúrási balesetek, SO 2, fúróiszap tárolás SO 2, finomító balesetek, finomító hulladékok tárolása bánya szerencsétlenségek, tájkárosodás, SO 2 SO 2 Szállítás elosztás CO 2, CH 4, N 2O, NO X, CO, HC, por, fém- és hőszennyezés csővezeték balesetek, robbanások csővezeték és tartály balesetek, olajfolyások, SO 2 vonat szerencsétlenségek, SO 2 CO Felhasználás végső 2, CH 4, N 2O, NO X, CO, HC, por, fém- és felhasználás hőszennyezés hamu tárolás, SO 2 hamu tárolás, SO 2 3

4 Az energetika környezeti hatásai: bányászat Az energia szállításának környezeti kockázatai szén: bányák alatt megsüllyedő talaj (települések) meddők: erózió, tömegmozgás, öngyulladás, tájrombolás, élőhelyvesztés a szén osztályozása szennyvíz sújtólégveszély, zaj-, porszennyezés kőolaj, földgáz: nagy mennyiségű víz (jelentős sótartalmú) is felszínre jut talajra, vízbe kiömlő kőolaj szennyezése csővezetéken: csövek korróziója, repedése, törése földgáz: emberi és technológiai hibák esetén gázrobbanások veszélye járművekkel: tengerek olajszennyeződése, vasúti, közúti balesetek magasfeszültségű vezetékeken: biotópok elszigetelődése, táj értéke csökken, egészségügyi hatások? A hajó-balesetek miatt kiömlött olaj mennyisége 1970-től (a 7 tonnát meghaladó olajszennyezések) A legnagyobb olajszennyezést okozó hajó-balesetek helyszínei Az energiatermelés környezeti hatásai A CO 2 emisszió alakulása szén: CO 2, SO 2 stb. szférák szennyezése, globális hatások salakanyag energiaátalakításkor hőveszteség (vizek hőszennyezése) kőolaj, földgáz: ld. közlekedés, hőerőművek légszennyezése energiaátalakításkor hőveszteség (vizek hőszennyezése) 4

5 Az energiahordozók felhasználásával okozott CO 2 kibocsátás a teljes életciklusra A világ jövőbeni energiaellátása: készletek Probléma: nemcsak az a fontos, hogy még mennyi van, hanem mennyi kitermelhető van! (ld. EROEI) Kőolajkészletek a világban Kőolajkészletek a világban milliárd hordóban mérve (OPEC, 2017) Olajtartalékok a világban 2005-ben (milliárd hordó) (Adat-forrás: BP Global Report 2005) Közel-Kelet; 733,9 Dél-Amerika; 101,2 Észak Amerika; Óceániai Ázsia; 61 41,1 Eurázsia; Afrika; 139,2 112, Domokos Endre - Pannon A világ nyersolajtermelésének földrészenkénti megoszlása 1960-tól napjainkig A világ kőolajkitermelésének alakulása 5

6 Az olajtermelés mennyiségének várható alakulása (exojoulban = J) egy pesszimistább és egy optimistább forgatókönyv szerint. A fekete pöttyök történeti adatok, a görbék előrejelzések. (Mohr et al., 2015 nyomán) Az Egyesült Államok kőolajtermelése Hubbert előrejelzései (kék görbe) és a tényleges számítások (fekete pontok) alapján milliárd hordó/év egységben. (Végh-Szám-Hetesi, 2009) Új olajmezők felfedezése A kőolaj felhasználása közlekedés villamosenergia-termelés ( vízellátás, vízkezelés, hírközlés stb.) vegyipar (műanyaggyártás, gyógyszeripar stb.) mezőgazdaság (üzemanyag, műtrágyagyártás, vegyszerek) stb. 1. USA árszabályozás 2. Arab olajembargó 3. Iráni felkelés 4. Irak-Iráni háború 5. Szaúd-Arábia változtat kitermelés-politikáján 6. Irak lerohanja Kuvaitot 7. Ázsiai gazdasági válság 8.,12.,13. OPEC szabályozás 9. USA 9/ Alacsony tárolási kapacitás 11. Gazdasági világválság (eia, 2017) Kőolaj árak és a világ politikai eseményei ( ) (EROEI) energy return on energy investment: egységnyi energia befektetésével mennyi egységnyi energiához jutunk kőolaj: 100:1-ről indultunk, ma: 10-7:1 az utolsó cseppig kitermelni nem lehet! az olajra nem szabad a jövőt alapozni!? a közeljövőt sem vagy csak a távoli jövőt? 6

7 Földgáztartalékok a világban Földgáztartalékok a világban 2016-ban (BP, 2017 adatai) Földgáztartalékok a világban 2005-ben (milliárd m 3 ) (Adat-forrás: BP Global Report 2005) Közel-Kelet; 72,83 Eurázsia; 64,02 Afrika; 14,06 Óceániai Ázsia; 14,21 Dél-Amerika; 7,10 Észak Amerika; 7, Domokos Endre - Pannon A világ földgázfogyasztásának alakulása ( ), régiónkénti megoszlásban FÁK: Független Államok Közössége, Orosz Föderáció (enerdata, 2017) Szénkészletek a világban Széngáztartalékok a világban 2005-ben (milliárd tonna) (Adat-forrás: BP Global Report 2005) Észak Amerika; 254,4 Eurázsia; 287,1 Óceániai Ázsia; 296,9 Afrika; 50,3 Közel-Kelet; 0,4 Dél-Amerika; 19, Domokos Endre - Pannon 7

8 Szénkészletek a világban 2016-ban (BP, 2017 adatai) millió tonna , A szénkitermelés időbeli változása , ,468 ( ) és régiónkénti megoszlása (BP, nyomán) , ,972 Közel-Kelet Európa és Eurázsia Ázsia Észak-Amerika Közép- és Dél-Amerika Függőségünk a fosszilis energiahordozóktól Az áramtermelés 65%-a Hetesi, 2009 Atomenergia A világ urán termelése és igénye először a nem megújuló hagyományos energiaforrások helyettesítőjének vélték (holott az uránérckészletek nem megújulóak) II. világháború után rohamos fejlődés 1998: 30 országban 473 db atomerőmű, 46 épülőben környezeti problémák: kezdetben: a radioaktív anyagok tulajdonságainak (egészségügyi) hiányos ismerete: óvatlan alkalmazás folyamatosan szigorodó határértékek az erőművekből kikerülő használt fűtőelemek biztonságos elhelyezése: teljesen veszélytelen megoldás nincs (sokat a világtengerekben egyszerűen elsüllyesztettek ezt ma már nemzetközi megállapodás tiltja) az üzemelés biztonsága: nukleáris balesetek zöld: a bányászott urán kék: a villamos-energiahálózatba tápláló atomreaktorok urán igénye lila: a haditengerészet és a villamos-energiahálózatba tápláló atomreaktorok urán igénye összesen 8

9 A világ energiatermelésének (összesen Mtoe) energiahordozónkénti megoszlása 2014-ben (ec.europa.eu, 2016) Az EU 2015-ös összes energiatermelésének (781,9 Mtoe) és Magyarország összes energiatermelésének (11,3 Mtoe) energiahordozónkénti százalékos megoszlása (adatok: ec.europa.eu) A radioaktív hulladékok elhelyezésének problémái A radioaktív hulladékok elhelyezésének problémái (folyt.) az erőmű néhány évtizedig üzemel a használt radioaktív anyagok több százezer évig is sugároznak egy átlagos reaktorból évente 30 t kimerült fűtőelem kerül ki (150 m 3 közepes, 400 m 3 kis aktivitású hulladék) 2000-re közel 200 ezer tonna hulladék megsemmisítés: reprocesszálás (kimerült fűtőelemek újrahasznosítása) átmeneti megoldás: felszíni vagy felszín közeli átmeneti tárolók (kockázatosabb, de állapota folyamatosan nyomon követhető, szivárgáskor gyors beavatkozás) a legjobb megoldás olyan geológiai szerkezetekben való elhelyezés, amelyek: földtörténetileg is nyugodtnak tekinthetők (nincs földrengés, földmozgás) tömörek szivárgó vizek nem érhetik el (víz: tovább-szállíthatja a sugárzó anyagokat ill. a fűtőelemek még sokáig termelnek hőt gőzzé váló víz a felszín felé mozog) minden szempontból megfelelő hely kevés van, és ez is kockázatos: a földmozgást teljesen kizárni sehol sem lehet szóba jöhető kőzetek: gránit, agyag, kősó, vulkáni tufák Nukleáris balesetek több sokáig eltitkolt balesetre az áprilisi csernobili katasztrófa irányította rá a figyelmet a csernobili események azokat az országokat bizonytalanították el, ahol még nem voltak atomerőművek atomerőművel rendelkező országok száma nem nőtt (csak a Szovjetunió szétesése miatt statisztikailag) kevesebb reaktorral bíró országokra a szinten tartás jellemző néhány kitudódott, jelentősebb baleset: USA (1948, 1978, 1979), Nagy-Britannia (1952, 1953, 1985), Jugoszlávia (1958), Szovjetunió (1957, 1983, 1986), Kína (1966), Belgium (1978), Japán (2000) Megújuló energiaforrások, napenergia, biomassza 9

10 Megújuló energiaforrások, napenergia, biomassza Megújuló energiatermelés az EU-ban használatuk indokai: üvegházhatású gázok kibocsátásának csökkentése, klímaváltozás megelőzése az importfüggőség csökkentése, helyi energiaforrások kihasználása munkahelyteremtés, vidék fejlesztése mezőgazdasági túltermelés levezetése (energiaerdő, energetikai növénytermesztés) innovatív, decentralizált energiatermelési technológiák elterjesztése Megújuló energiaforrások részesedése az EU egyes országainak teljes energiafogyasztásából Magyarország 2014-ben (és 2015-ben is) 9,5%-ot ért el (eurostat) Napenergia A Napból egy év alatt érkező sugárzás több mint szeresen haladja meg a világ jelenlegi energiafelhasználását Az eredeti, a Napból érkező sugárzásnak csak 47,4%-a éri el a földfelszínt ha ennek 0,0005%-át technikailag hasznosítani tudnánk, akkor megoldódnának energiaellátási gondjaink Jelenleg a napenergia energetikai hasznosítása a világban mintegy 1, MWh-ra tehető Magyarország területére a Napból évente beérkező energia 1, MWh, ami Magyarország éves villamos energia felhasználásának 2900-szorosa Napenergia A napenergia hasznosítása passzív (építészeti) eszközökkel települési szinten építményi szinten A napenergia hasznosítása aktív (épületgépészeti) eszközökkel napkollektoros berendezések fotovillamos hasznosítás napkollektor 10

11 Napenergia felhasználása a SZE-n Napelemek Napkollektoros rendszer: Új Tudástér épület tetején 28 db napkollektor, kb. 3 m 3 /nap C víz 330 kw teljesítményű napelemes rendszer Tanulmányi épület déli homlokzat BC, CD és D tornyain függőlegesen 126 db, 194 m 2 felület C és D épület déli homlokzataira árnyékoló funkciót is betöltő elhelyezéssel, 35 -os dőléssel 210 db, 344 m 2 felület Laborépület tetején D-i irányban 35 -os szögben 1040 db, 1706 m 2 felület A tervezettek szerint közel kwh-t kell a napelemes rendszernek évente termelnie Napelemek Szélenergia Hasznosításuk korlátja: alacsony hatásfok A sorozatban gyártott napelemek hatásfoka csak 15% körüli 15%-os hatásfok mellett a világ jelenlegi energiafogyasztását teljes mértékben napelemekkel biztosítva km 2 (kb. 4 Magyarországnyi vagy egy Németországnyi) területet kellene erre felhasználni Ha a teljesítményt 50%-ra sikerülne emelni, akkor a területigény km 2 -re (valamivel több, mint 1 Magyarország) csökken A Föld összes városa jelenleg körülbelül km 2 -nyi területet foglal el megelőző évszázadokban: igen sok szélmalom Mo. Alföld: : ~500 db Dánia 20. szd. eleje: 30 ezer db Németo. 1875: 30 ezer, 1933: 4500 db robbanómotorok elterjedése visszaszorította 1970-es évek olajválsága: kis teljesítményű szélturbinák üzembe állítása napjainkban: jelentős fejlődés technológia is gyorsan fejlődik lokális felhasználás (szélmotorok, kis teljesítmény) nagyteljesítményű szélerőművek (hálózatra csatlakoznak) technikailag hasznosítható éves szélenergia: TWh a világ összes villamos energia igénye 2020-ban: kb TWh Szélenergia: előnyök A szélenergiára alapozott villamos energiatermelés tiszta technológia. Szinte nincs üvegházhatású gáz kibocsátás Offshore (tengerre telepített) szélpark, Temze-torkolat, Nagy-Britannia A legújabb kutatási eredmények szerint kontinentális feltételek mellett is gazdaságos lehet A szélerőművek működése nem akadályozza, hogy a felállítás helyén továbbra is mezőgazdasági tevékenységet folytassanak A teljes életciklus analízis alapján az offshore szélerőműveknél a szélerőmű teljes életciklusában felhasznált villamos energia a szélerőmű 9 havi villamos energia termelésével, míg onshore szélerőműveknél 8 havi villamos energia termeléssel fedezhető Onshore (szárazföldi telepítésű) szélerőművek, Ausztria 11

12 Szélenergia: hátrányok Évente épült szélerőmű-kapacitás a világban Egyenetlen: a leadott teljesítmény sem időben, sem mennyiségben nem megbízható. A szélpotenciál területi eloszlása is elég egyenetlen. A szélerőműveket nem lehet egymásra halmozni korlátozás nélkül azokon a helyeken sem, ahol állandó, erős szelek fújnak, mert egymás elől fognák el a szelet. Ami energiát így megtermelünk, azt valóban a szelekből vesszük el, csökkentjük tehát a légmozgást az adott területen. A szélerőművek zavarnak egyes költöző madár-fajokat is, ezért azok vonulási útvonalában nem telepíthetőek Évente épült szélerőmű-kapacitás régiónként Összesített szélerőmű-kapacitás a világon között Szélenergiából származó áramtermelés a legnagyobb beépített kapacitással rendelkező országokban TOP10 az összes telepített szélerőműkapacitás alapján Beépített szélenergia kapacitás ben: Világ: 370 GW (világ E igényének 3%-a) EU: 130 GW (EU E igényének 10%-a) Magyaro: 330 MW Szélenergia Európában A szélpotenciál eloszlása Európában szélgenerátorok telepítése: a szél intenzitása és megbízhatósága Nyugat-Európa tengerparti sávjában koncentrálódik terjeszkedés a selfekre és a szárazföld belsejébe is (tengeri szélfarmok: nagyobb szélerősség, de nagyobb a beruházás költsége is) lehetőségek: tengeri szélenergia-kapacitások kihasználása (egész Európa vill. E igényét fedezni lehetne velük elvileg) Szélenergiából történő villamosenergia-termelés részesedése az EU villamos energia felhasználásának százalékában: 2005-ben 2,8%, 2010-ben 5%, 2030-ban ~30% 12

13 Összes szélerőmű kapacitás Európai Unióban 2014-ig A szélenergiából termelt villamos energia részaránya 2012-ben az EU-ban A szélenergiából termelt villamos energia részarányának várható változása - EU Éves átlagos szélsebesség 75m-en 2012-ben az villamos energia-felhasználás Európában 2798TWh (EUROSTAT) A 2014 évi szélerőmű kapacitás egy átlagosan szeles évben 284TWh villamos energia termelésére képes, amely az EU teljes villamos energiafelhasználás 10,2%-nak a fedezésére elegendő. Fajlagos szélteljesítmény (W/m 2 ) 75 m magasságban 75 Évente telepített szélerőmű kapacitás Magyarországon (MW) Szélerőművek Magyarországon 172 db szélerőmű 329MW 13

14 Szélenergiából termelt villamos energia (GWh) hazánkban A szélenergia hasznosítás rekordere Enercon E-126 első 7.5MW szárazföldi szélturbina Névleges teljesítmény: 7,500 kw Rotor átmérő: 127 m Magasság: 135 m Vízenergia Vízenergia Földünk műszakilag hasznosítható vízenergia készlete ezer TWh/év üzemben lévő vízerőművek villamosenergia-termelése kb. 2 ezer TWh/év a kihasználás Európában meghaladja a 40%-ot, Afrikában 2% alatti Magyarország műszakilag hasznosítható vízerőpotenciálja kb MW Chirkeyskaya vízerőmű, Dagesztán (Észak-Kaukázus) néhány ország esetében jelentős tényező vízerőművek, ár-apály energia környezeti problémák gátak mögötti tó: megemeli a talajvízszintet gyorsan feltöltődik alatta a folyók kevesebb hordalékot szállítanak pusztuló deltatorkolatok értékes területek kerülnek víz alá, emberek áttelepítése folyók ökológiai értéke csökken magas építési költségek káros anyag kibocsátás nincs Lásd a kurzus vizes ppt-jét!! (vízerőművek) Hullám-energia kinyerő rendszer elméleti vázlata Pelamis hullámenergia-hasznosító 14

15 Geotermikus energia Termálkutak Magyarországon geotermikus grádiens (Mo: 50 C/km, földi átlag: 25 C/km) fűtés, mezőgazdaság, balneológia a hőpazarlás elkerülésére komplex hasznosítás kellene minél inkább: a még nem teljesen lehűlt vizeket is használni kellene! fűtőradiátorok használati melegvíz padlófűtés, strandfűtés energiatermelés: forró vízzel egy hőhordozó közeget elgőzöltetnek kitáguló gőz meghajt egy turbinát villamos energia termelés (kevés helyen: Izland, USA, Új-Zéland, Olaszország, Oroszország, Japán) A geotermikus energia környezetvédelmi előnyei Hőszivattyú helyi viszonylatban egy adott fogyasztó igényét akár 100%-ban is kielégíti komplex hasznosításra, környezetbarát technológiák megvalósítására sokféle lehetőséget kínál CO 2 kibocsátás elhanyagolható használata nem tartalmaz semmilyen szállítási kockázatot a termálvíz üzemű erőmű nem zavarja a természetes tájképet, így a természetbe történő beavatkozás a lehető legkisebb mértékű az alacsonyabb hőmérsékletű termálvizek hasznosításánál mint hőforrás tág tere nyílik a hőszivattyúk alkalmazásának fűtésre, hűtésre és használati melegvíz előállítására a hőszivattyú a működtetésére felhasznált energiát nem közvetlenül hővé alakítja, hanem a külső energia segítségével a hőt az alacsonyabb hőfokszintről egy magasabb hőfokszintre emeli, legtöbbször a föld, a levegő és a víz által eltárolt napenergiát hasznosítva Hőszivattyúk talajszondás talajkollektoros A hőszivattyú működésének elve talajvízkutas 15

16 Pécsi és Borsodi Hőerőmű Biomasssza A BIOMASSZA CSOPORTOSÍTÁSA keletkezési szint szerint átalakított energiahordozó fajtái végtermék szerint tárolhatósága szerint elsődleges (mező- és erdőgazd. hulladék, energia célnövény term.) másodlagos (állattenyésztés melléktermékei) harmadlagos (élelmiszeripar melléktermékei, emberi hulladék) MO mobil berend. üzemanyaga (repceolaj, alkohol) EL elektr. energia termelő aggregát üzemanyaga (biogáz, fagáz, gőz) HE hőenergia ellátóberend. üzemanyaga (szalma, fahulladék) alkohol biodízel biogáz depóniagáz fagáz biobrikett, tüzipellet tüzelőanyag jól tárolható (tüzifa, biobrikett, biodízel, alkohol) közepesen tárolható (szárított biomasszák, bálázott szalma) nehezen tárolható (biogáz, nedves biomassza, állati trágyák) Az E-termelés lehetőségei biomasszából Biomassza erőművek Energiaültetvények (nyár, fűz, akác, kínai nád) Élelmiszer termeléstől veheti el a helyet Tüzelőanyag jelentős térfogata Begyűjtés, szállítás, tárolás költségei A biomassza alapú energiatermelés környezetvédelmi előnyei a hagyományos erőművi energiatermeléssel szemben Biogáz Ha tudatos emberi tervezés van mögötte, akkor megújuló energiaforrás. CO 2 kibocsátása zárt ciklusú. Ha melléktermék, gyártása nem igényel külön beruházást. Szállítása kevésbé költséges és környezetszennyező. Fűtőértéke (13 16 MJ/kg) megközelíti a barnaszenekét, és meddőt nem tartalmaz. Hamutartalma 2 8%, talajjavításra felhasználható. Biomassza égetésekor kevesebb kéntartalmú gáz keletkezik, mint a szén égetésekor savas esők csökkenése. Homogén formában (brikett, pellett, faapríték) komfortossága azonos a szénnel, de annál sokkal környezetbarátabb: pora nem szennyező kéntartalma alacsony nem tartalmaz egyéb környezetszennyező anyagot. A biogáz előállításának alapanyagai: mezőgazdaságból származó másodlagos biomassza (elsősorban állati eredetű szerves trágya) mezőgazdasági melléktermékek élelmiszeripari melléktermékek biomassza céljára termelt növények kommunális hulladék szerves része települési szennyvíziszap 16

17 Biogáz: előnyök Biogáz termelése, hasznosítása szerves hulladékok ártalmatlanítása hulladéklerakók tehermentesítése káros emissziók csökkentési lehetősége környezetszennyezés csökkentése energiatermelés hulladékokból decentralizált energiatermelés, kapcsolt hő- és villamosenergia-termelés integrált hulladékgazdálkodás, anyag és energia körfolyamatok helyi, kistérségi zárása gazdasági, pénzügyi előnyök Magyarországi biogáz, depóniagáz és szennyvízgáz erőművek, 2012 A világ bioüzemanyag termelése (BP, 2014) és megoszlása kontinensenként és fajtánként Energiamérleg a világban Megújuló energiaforrások aránya 17

18 A megújulók aránya a villamos energia termelésben Energiaforrások az EU-ban Az EU-ban 2010-ben felhasznált fűtőanyagok Az Unión kívülről importált energiahordozók részaránya 2010-ben Forrás: EU célkitűzések 2020-ra (Klíma csomag) Új EU célkitűzések 2030-ra 20%-kal csökkenti az ÜHG kibocsátását 20%-ra növeli a megújulók részarányát a teljes energiamixből a szénszegény energiára való áttérés meggyorsítása a bio-üzemanyagoknak külön célkitűzésként legalább 10%-os arányt el kell érniük 20%-kal csökkenti a teljes primer energiafogyasztást energiahatékonyság EU-n belüli kötelező 40% üvegházhatású gáz csökkentési cél (1990-es bázis) EU-szintű minimum 27%-os kötelező megújuló energia részarány, tagállami lebontás nélkül, a tagállamoknak rugalmasságot hagyva Indikatív, önkéntes 27%-os energiahatékonysági célszám Párizsi klímakonferencia (2015) után felülvizsgálat A megújuló energiák tervezett részaránya 2020-ban az EU-ban Villamosenergia-előrejelzések 2020-ra az EU-ban [%] Ausztria Belgium Bulgária Ciprus Csehország Dánia Észtország Finnország Franciaország Németország Görögország Magyarország Írország Olaszország Lettország Litvánia Luxemburg Málta Hollandia Lengyelország Portugália Románia Szlovákia Szlovénia Spanyolország Svédország Nagy-Britannia EC, 2007 Megújuló energia-útiterv 18

19 Hazánkban a megújuló energiaforrásokból termelt energia hőértékben, energiaforrások szerint A bruttó villamosenergia-termelés megoszlása energiaforrások szerint hazánkban Megújuló energiaforrásokból megtermelt villamos energia részesedése hazánkban (forrás: KSH-STADAT) Megújuló energiamennyiség, előrejelzés 2020-ra Megújuló energiaforrások felhasználása 2010 és 2020-ban Energia%20Hasznos%C3%ADt%C3%A1si%20Cselekv%C3%A9si%20terve%202010_2020%20kiadv%C3%A1ny.pdf %C3%A1si%20Cselekv%C3%A9si%20terve%202010_2020%20kiadv%C3%A1ny.pdf

20 Magyarország villamos energia igényének napi változása Hazánk teljes energia felhasználása Csúcserőművek (gyorsindítású erőművek, zömmel gázerőművek lennének) Menetrend tartó erőművek (zömmel gázerőművek lennének) Alaperőművek: Paks, Mátraalji lignit hőerőmű De! Drága a gáz a gázerőművek állnak importáljuk az áramot: Ukrajna (szénerőmű), Cseho (atom és szén), Németo (megújuló) Fogyasztás: 87 kwh/fő/nap Ebből zöld energia: 7 kwh/fő/nap Hogyan lehet a fogyasztást csökkenteni egyénileg: lakások, házak hőszigetelése közlekedés: részben elektromos, részben alacsony fogyasztású villamos energia fogyasztás egyéni csökkentése Hogyan lehet a zöld energiát növelni: hőhasznosítás: geotermikus energia a távhőellátásban mezőgazdaság: kukorica szár és csuhé elégetése (hamu visszajuttatás problémája) egyedi hőszivattyúk napelem kapacitás növelése szélerőművek bővítése ártéri területeken ártéri gazdálkodás fakitermelés 20

Környezetállapot-értékelés II. (NGB_KM018_2) és Földünk környezeti állapota (NGB_KM048_1) Környezetvédelmi energetika

Környezetállapot-értékelés II. (NGB_KM018_2) és Földünk környezeti állapota (NGB_KM048_1) Környezetvédelmi energetika Az energiaforrások csoportosítása eredet szerint Környezetállapot-értékelés II. (NGB_KM018_2) és Földünk környezeti állapota (NGB_KM048_1) Környezetvédelmi energetika 2018/2019-es tanév II. félév Dr. habil.

Részletesebben

Környezetmérnöki alapok (AJNB_KMTM013) 12. Környezetvédelmi energetika. Az energiaforrások csoportosítása eredet szerint

Környezetmérnöki alapok (AJNB_KMTM013) 12. Környezetvédelmi energetika. Az energiaforrások csoportosítása eredet szerint Az energiaforrások csoportosítása eredet szerint Környezetmérnöki alapok (AJNB_KMTM013) 12. Környezetvédelmi energetika 2018/2019-es tanév I. félév Dr. habil. Zseni Anikó egyetemi docens SZE, AHJK, Környezetmérnöki

Részletesebben

Környezetvédelem (KM002_1)

Környezetvédelem (KM002_1) (KM002_1) 8. Energia és környezet 2008/2009-es tanév, I. félév Dr. Zseni Anikó egyetemi docens SZE, MTK, BGÉKI, Környezetmérnöki Tanszék A világ energiaellátása 8,5 683 6,5 81% 448 47% 77% 37% 63% 53%

Részletesebben

Környezetvédelem (KM002_1)

Környezetvédelem (KM002_1) Környezetvédelem (KM002_1) 8. Energia és környezet 2016/2017-es tanév I. félév Dr. habil. Zseni Anikó egyetemi docens SZE, AHJK, Környezetmérnöki Tanszék Az energiaforrások csoportosítása eredet szerint

Részletesebben

2015.02.25. Környezetállapot-értékelés II. (NGB_KM018_2) A) Földünk környezeti állapota (4. rész) A világ energiaellátása.

2015.02.25. Környezetállapot-értékelés II. (NGB_KM018_2) A) Földünk környezeti állapota (4. rész) A világ energiaellátása. A világ energiaellátása Környezetállapot-értékelés II. (NGB_KM018_2) 8,5 683 A) Földünk környezeti állapota (4. rész) 6,5 77% 81% 448 37% 47% 2014/2015-ös tanév II. félév 23% 19% 63% 53% Dr. Zseni Anikó

Részletesebben

Zöldenergia szerepe a gazdaságban

Zöldenergia szerepe a gazdaságban Zöldenergia szerepe a gazdaságban Zöldakadémia Nádudvar 2009 május 8 dr.tóth József Összefüggések Zöld energiák Alternatív Energia Alternatív energia - a természeti jelenségek kölcsönhatásából kinyerhető

Részletesebben

elsődleges: önállóan, egyéb forrás bevonása nélkül is képesek energiát szolgáltatni

elsődleges: önállóan, egyéb forrás bevonása nélkül is képesek energiát szolgáltatni Energiaforrás: természet olyan rendszerei, melyekből technikailag hasznosíthat energia nyerhető, az adott társadalmi, politikai, műszaki fejlettségi stb. körülmények között 1. elsődleges: önállóan, egyéb

Részletesebben

A fenntartható energetika kérdései

A fenntartható energetika kérdései A fenntartható energetika kérdései Dr. Aszódi Attila igazgató, Budapesti Műszaki és Gazdaságtudományi Egyetem, Nukleáris Technikai Intézet elnök, MTA Energetikai Bizottság Budapest, MTA, 2011. május 4.

Részletesebben

8. Energia és környezet

8. Energia és környezet Környezetvédelem (NGB_KM002_1) 8. Energia és környezet 2008/2009. tanév I. félév Buruzs Adrienn egyetemi tanársegéd buruzs@sze.hu SZE MTK BGÉKI Környezetmérnöki Tanszék 1 Az energetika felelőssége, a világ

Részletesebben

7. Hány órán keresztül világít egy hagyományos, 60 wattos villanykörte? a 450 óra b 600 óra c 1000 óra

7. Hány órán keresztül világít egy hagyományos, 60 wattos villanykörte? a 450 óra b 600 óra c 1000 óra Feladatsor a Föld napjára oszt:.. 1. Mi a villamos energia mértékegysége(lakossági szinten)? a MJ (MegaJoule) b kwh (kilówattóra) c kw (kilówatt) 2. Napelem mit állít elő közvetlenül? a Villamos energiát

Részletesebben

MEE Szakmai nap Hatékony és megvalósítható erőmű fejlesztési változatok a szén-dioxid kibocsátás csökkentése érdekében.

MEE Szakmai nap Hatékony és megvalósítható erőmű fejlesztési változatok a szén-dioxid kibocsátás csökkentése érdekében. MEE Szakmai nap 2008. Hatékony és megvalósítható erőmű fejlesztési változatok a szén-dioxid kibocsátás csökkentése érdekében. Hatvani György az Igazgatóság elnöke A hazai erőművek beépített teljesítőképessége

Részletesebben

A villamosenergia-termelés szerkezete és jövője

A villamosenergia-termelés szerkezete és jövője A villamosenergia-termelés szerkezete és jövője Dr. Aszódi Attila elnök, MTA Energetikai Bizottság igazgató, BME Nukleáris Technikai Intézet Energetikáról Másként Budapest, Magyar Energetikusok Kerekasztala,

Részletesebben

A megújuló energiahordozók szerepe

A megújuló energiahordozók szerepe Magyar Energia Szimpózium MESZ 2013 Budapest A megújuló energiahordozók szerepe dr Szilágyi Zsombor okl. gázmérnök c. egyetemi docens Az ország energia felhasználása 2008 2009 2010 2011 2012 PJ 1126,4

Részletesebben

9. Előad 2008.11. Dr. Torma A., egyetemi adjunktus

9. Előad 2008.11. Dr. Torma A., egyetemi adjunktus SZÉCHENYI ISTVÁN EGYETEM, Környezetmérnöki Tanszék, Dr. Torma A. Készült: 13.09.2008. Változtatva: - 1/52 KÖRNYEZETVÉDELEM 9. Előad adás 2008.11 11.17. Dr. Torma A., egyetemi adjunktus SZÉCHENYI ISTVÁN

Részletesebben

Energiapolitika hazánkban - megújulók és atomenergia

Energiapolitika hazánkban - megújulók és atomenergia Energiapolitika hazánkban - megújulók és atomenergia Mi a jövő? Atom vagy zöld? Dr. Aszódi Attila igazgató, egyetemi docens BME Nukleáris Technikai Intézet Energetikai Szakkollégium, 2004. november 11.

Részletesebben

Honvári Patrícia MTA KRTK MRTT Vándorgyűlés, 2014.11.28.

Honvári Patrícia MTA KRTK MRTT Vándorgyűlés, 2014.11.28. Honvári Patrícia MTA KRTK MRTT Vándorgyűlés, 2014.11.28. Miért kikerülhetetlen ma a megújuló energiák alkalmazása? o Globális klímaváltozás Magyarország sérülékeny területnek számít o Magyarország energiatermelése

Részletesebben

A szélenergia hasznosítás 2011 évi legújabb eredményei. Dr. Tóth Péter egyetemi docens SZE Bíróné Dr. Kircsi Andrea egyetemi adjunktus DE

A szélenergia hasznosítás 2011 évi legújabb eredményei. Dr. Tóth Péter egyetemi docens SZE Bíróné Dr. Kircsi Andrea egyetemi adjunktus DE A szélenergia hasznosítás 2011 évi legújabb eredményei Dr. Tóth Péter egyetemi docens SZE Bíróné Dr. Kircsi Andrea egyetemi adjunktus DE Szükséges tennünk a éghajlatváltozás ellen! Az energiaszektor nagy

Részletesebben

Tervezzük együtt a jövőt!

Tervezzük együtt a jövőt! Tervezzük együtt a jövőt! gondolkodj globálisan - cselekedj lokálisan CÉLOK jövedelemforrások, munkahelyek biztosítása az egymásra épülő zöld gazdaság hálózati keretein belül, megújuló energiaforrásokra

Részletesebben

A SZÉLENERGIA HASZNOSÍTÁS HELYZETE

A SZÉLENERGIA HASZNOSÍTÁS HELYZETE Európai Tanács lefektette a 2030-ig tartó időszakra vonatkozó éghajlat- és energiapolitikai keretet. A globális felmelegedés megállítása érdekében az EU vezetői 2014 októberében úgy döntöttek, hogy: A

Részletesebben

Megújuló energiák szerepe a villamos hálózatok energia összetételének tisztítása érdekében Dr. Tóth László DSc - SZIE professor emeritus

Megújuló energiák szerepe a villamos hálózatok energia összetételének tisztítása érdekében Dr. Tóth László DSc - SZIE professor emeritus Megújuló energiák szerepe a villamos hálózatok energia összetételének tisztítása érdekében Dr. Tóth László DSc - SZIE professor emeritus 2017. Október 19. 1 NAPJAINK GLOBÁLIS KIHÍVÁSAI: (közel sem a teljeség

Részletesebben

Megnyitó. Markó Csaba. KvVM Környezetgazdasági Főosztály

Megnyitó. Markó Csaba. KvVM Környezetgazdasági Főosztály Megnyitó Markó Csaba KvVM Környezetgazdasági Főosztály Biogáz szerves trágyából és települési szilárd hulladékból IMSYS 2007. szeptember 5. Budapest Biogáz - megújuló energia Mi kell ahhoz, hogy a megújuló

Részletesebben

Megújuló energiaforrásokra alapozott energiaellátás növelése a fenntartható fejlődés érdekében

Megújuló energiaforrásokra alapozott energiaellátás növelése a fenntartható fejlődés érdekében Megújuló energiaforrásokra alapozott energiaellátás növelése a fenntartható fejlődés érdekében Dr. Csoknyai Istvánné Vezető főtanácsos Környezetvédelmi és Vízügyi Minisztérium Budapest, 2007. november

Részletesebben

Energetikai gazdaságtan. Bevezetés az energetikába

Energetikai gazdaságtan. Bevezetés az energetikába Energetikai gazdaságtan Bevezetés az energetikába Az energetika feladata Biztosítani az energiaigények kielégítését környezetbarát, gazdaságos, biztonságos módon. Egy szóval: fenntarthatóan Mit jelent

Részletesebben

Németország környezetvédelme. Készítették: Bede Gréta, Horváth Regina, Mazzone Claudia, Szabó Eszter Szolnoki Fiumei Úti Általános Iskola

Németország környezetvédelme. Készítették: Bede Gréta, Horváth Regina, Mazzone Claudia, Szabó Eszter Szolnoki Fiumei Úti Általános Iskola Németország környezetvédelme Készítették: Bede Gréta, Horváth Regina, Mazzone Claudia, Szabó Eszter Szolnoki Fiumei Úti Általános Iskola Törvényi háttér 2004-ben felváltotta elődjét a megújuló energia

Részletesebben

elsődleges: önállóan, egyéb forrás bevonása nélkül is képesek energiát szolgáltatni

elsődleges: önállóan, egyéb forrás bevonása nélkül is képesek energiát szolgáltatni Energiaforrás: természet olyan rendszerei, melyekből technikailag hasznosíthat energia nyerhető, az adott társadalmi, politikai, műszaki fejlettségi stb. körülmények között 1. elsődleges: önállóan, egyéb

Részletesebben

A biomassza rövid története:

A biomassza rövid története: A biomassza A biomassza rövid története: A biomassza volt az emberiség leginkább használt energiaforrása egészen az ipari forradalomig. Még ma sem egyértelmű, hogy a növekvő jólét miatt indult be drámaian

Részletesebben

MAGYARORSZÁG ENERGIAPOLITIKÁBAN KÜLÖNÖS S TEKINTETTEL A

MAGYARORSZÁG ENERGIAPOLITIKÁBAN KÜLÖNÖS S TEKINTETTEL A AZ EURÓPAI UNIÓ ÉS MAGYARORSZÁG ENERGIAPOLITIKÁJA KÜLÖNÖS S TEKINTETTEL A MEGÚJUL JULÓ ENERGIAFORRÁSOKRA OTKA Workshop ME, GázmG zmérnöki Tanszék 2004. november 4. készült a OTKA T046224 kutatási projekt

Részletesebben

Az alternatív energiák fizikai alapjai. Horváth Ákos ELTE Atomfizikai Tanszék

Az alternatív energiák fizikai alapjai. Horváth Ákos ELTE Atomfizikai Tanszék Az alternatív energiák fizikai alapjai Horváth Ákos ELTE Atomfizikai Tanszék Az energia felhasználása Hétköznapi energiafelhasználás: autók meghajtása, háztartási eszközök működtetése, fűtés ipari méretű

Részletesebben

A MEGÚJULÓ ENERGIAHORDOZÓ FELHASZNÁLÁS MAGYARORSZÁGI STRATÉGIÁJA

A MEGÚJULÓ ENERGIAHORDOZÓ FELHASZNÁLÁS MAGYARORSZÁGI STRATÉGIÁJA A MEGÚJULÓ ENERGIAHORDOZÓ FELHASZNÁLÁS MAGYARORSZÁGI STRATÉGIÁJA Dr. Szerdahelyi György Főosztályvezető-helyettes Gazdasági és Közlekedési Minisztérium Megújuló energiahordozó felhasználás növelés szükségességének

Részletesebben

A tanyás térségekben elérhető megújuló energiaforrások

A tanyás térségekben elérhető megújuló energiaforrások A tanyás térségekben elérhető megújuló energiaforrások Romvári Róbert tervezési referens Magyar Tanyákért Programiroda NAKVI Tanyavilág 2020 Szentkirály, 2015. 03. 11. Amiről szó lesz 1. Megújuló energiaforrások

Részletesebben

Energiatermelés, erőművek, hatékonyság, károsanyag kibocsátás. Dr. Tóth László egyetemi tanár klímatanács elnök

Energiatermelés, erőművek, hatékonyság, károsanyag kibocsátás. Dr. Tóth László egyetemi tanár klímatanács elnök Energiatermelés, erőművek, hatékonyság, károsanyag kibocsátás Dr. Tóth László egyetemi tanár klímatanács elnök TARTALOM Energia hordozók, energia nyerés (rendelkezésre állás, várható trendek) Energia termelés

Részletesebben

Hagyományos és modern energiaforrások

Hagyományos és modern energiaforrások Hagyományos és modern energiaforrások Életünket rendkívül kényelmessé teszi, hogy a környezetünkben kiépített, elektromos vezetékekből álló hálózatok segítségével nagyon könnyen és szinte mindenhol hozzáférhetünk

Részletesebben

Megújuló energiaforrások jövője Magyarországon. Budapest, 2008. május 28. Erőművekkel a klímakatasztrófa megelőzéséért. Budapest, 2008. május 28.

Megújuló energiaforrások jövője Magyarországon. Budapest, 2008. május 28. Erőművekkel a klímakatasztrófa megelőzéséért. Budapest, 2008. május 28. Megújuló energiaforrások jövője Magyarországon Bohoczky Ferenc ny. vezető főtanácsos az MTA Megújuló Albizottság tagja Budapest, 2008. május 28. Budapest, 2008. május 28. Erőművekkel a klímakatasztrófa

Részletesebben

A megújuló energiaforrások környezeti hatásai

A megújuló energiaforrások környezeti hatásai A megújuló energiaforrások környezeti hatásai Dr. Nemes Csaba Főosztályvezető Környezetmegőrzési és Fejlesztési Főosztály Vidékfejlesztési Minisztérium Budapest, 2011. május 10.. Az energiapolitikai alappillérek

Részletesebben

IV. Észak-Alföldi Önkormányzati Energia Nap Nyíregyháza, 2013. június 6.

IV. Észak-Alföldi Önkormányzati Energia Nap Nyíregyháza, 2013. június 6. Nemzetközi szélenergia tendenciák, forrásbevonási lehetőségek és külföldi jó gyakorlatok a szélenergia területén Bíróné Dr. Kircsi Andrea, DE egyetemi adjunktus Dr. Tóth Péter, egyetemi docens SZE IV.

Részletesebben

Energiatárolás szerepe a jövő hálózatán

Energiatárolás szerepe a jövő hálózatán Energiatárolás szerepe a jövő hálózatán Horváth Dániel 60. MEE Vándorgyűlés, Mátraháza 1. OLDAL Tartalom 1 2 3 Európai körkép Energiatárolás fontossága Decentralizált energiatárolás az elosztóhálózat oldaláról

Részletesebben

Magyar László Környezettudomány MSc. Témavezető: Takács-Sánta András PhD

Magyar László Környezettudomány MSc. Témavezető: Takács-Sánta András PhD Magyar László Környezettudomány MSc Témavezető: Takács-Sánta András PhD Két kutatás: Güssing-modell tanulmányozása mélyinterjúk Mintaterület Bevált, működő, megújuló energiákra épülő rendszer Bicskei járás

Részletesebben

A megújuló alapú villamosenergia-termelés Magyarországon

A megújuló alapú villamosenergia-termelés Magyarországon A megújuló alapú villamosenergia-termelés Magyarországon Dr. Tombor Antal MVM ZRt. Budapest, 2009. május 20 13:30-14:00 A magyar primerenergia-mérleg primer villany 1,2 PJ 0,4% (víz és szél) megújuló 57,0

Részletesebben

Az Energia[Forradalom] Magyarországon

Az Energia[Forradalom] Magyarországon Az Energia[Forradalom] Magyarországon Stoll É. Barbara Klíma és energia kampányfelelős Magyarország barbara.stoll@greenpeace.hu Láncreakció, Pécs, 2011. november 25. Áttekintés: Pár szó a Greenpeace-ről

Részletesebben

TARTALOMJEGYZÉK 1. KÖTET I. FEJLESZTÉSI STRATÉGIA... 6

TARTALOMJEGYZÉK 1. KÖTET I. FEJLESZTÉSI STRATÉGIA... 6 TARTALOMJEGYZÉK 1. KÖTET I. FEJLESZTÉSI STRATÉGIA... 6 II. HÓDMEZŐVÁSÁRHELY ÉS TÉRKÖRNYEZETE (NÖVÉNYI ÉS ÁLLATI BIOMASSZA)... 8 1. Jogszabályi háttér ismertetése... 8 1.1. Bevezetés... 8 1.2. Nemzetközi

Részletesebben

A JÖVŐ ENERGIÁJA MEGÚJULÓ ENERGIA

A JÖVŐ ENERGIÁJA MEGÚJULÓ ENERGIA PANNON PELLET Kft. A JÖVŐ ENERGIÁJA MEGÚJULÓ ENERGIA PUSZTAMAGYARÓD 2008-04-04 MEGÚJULÓ-ENERGIA POLITIKA, FEJLESZTÉSI IRÁNYOK ÉS TÁMOGATÁSI LEHETŐSÉGEK Dr. Németh Imre államtitkár Miniszterelnöki Hivatal

Részletesebben

A tanyás térségekben elérhető megújuló energiaforrások

A tanyás térségekben elérhető megújuló energiaforrások A tanyás térségekben elérhető megújuló energiaforrások Romvári Róbert tervezési referens Magyar Tanyákért Programiroda NAKVI Tanyák és aprófalvak Magyarországon Budapest, 2014. 12. 16. Amiről szó lesz

Részletesebben

Napenergiás helyzetkép és jövőkép

Napenergiás helyzetkép és jövőkép Napenergiás helyzetkép és jövőkép Varga Pál elnök MÉGNAP Egyesület Napkollektoros és napelemes rendszerek (Magyarországon) Napkollektoros és napelemes rendszerek felépítése Hálózatra visszatápláló napelemes

Részletesebben

Tehát a 2. lecke tanításához a villamos gépek szerkezetét, működési elvét és jellemzőit ismerni kell.

Tehát a 2. lecke tanításához a villamos gépek szerkezetét, működési elvét és jellemzőit ismerni kell. 4. M. 2.L. 1. Bevezetés 4. M. 2.L. 1.1, A téma szerepe, kapcsolódási pontjai Az emberiség nagy kihívása, hogy hogyan tud megküzdeni a növekvő energiaigény kielégítésével és a környezeti károk csökkentésével.

Részletesebben

Az energiapolitika szerepe és kihívásai. Felsmann Balázs 2011. május 19. Óbudai Szabadegyetem

Az energiapolitika szerepe és kihívásai. Felsmann Balázs 2011. május 19. Óbudai Szabadegyetem Az energiapolitika szerepe és kihívásai Felsmann Balázs 2011. május 19. Óbudai Szabadegyetem Az energiapolitika célrendszere fenntarthatóság (gazdasági, társadalmi és környezeti) versenyképesség (közvetlen

Részletesebben

Tóth László A megújuló energiaforrások időszer ű kérdései Fenntartható Jöv ő Konferencia Dunaújváros 2006. május 3. 1

Tóth László A megújuló energiaforrások időszer ű kérdései Fenntartható Jöv ő Konferencia Dunaújváros 2006. május 3. 1 Tóth LászlL szló A megújul juló energiaforrások időszer szerű kérdései Fenntartható Jövő Konferencia Dunaújv jváros 2006. május m 3. 1 Bevezetés Célok Források: alapvető művek Internet: www.lap.hu www.zoldtech.hu

Részletesebben

Energiatakarékossági szemlélet kialakítása

Energiatakarékossági szemlélet kialakítása Energiatakarékossági szemlélet kialakítása Nógrád megye energetikai lehetőségei Megújuló energiák Mottónk: A korlátozott készletekkel való takarékosság a jövő generációja iránti felelősségteljes kötelességünk.

Részletesebben

2014. Év. rendeletére, és 2012/27/EK irányelvére Teljesítés határideje 2015.04.30

2014. Év. rendeletére, és 2012/27/EK irányelvére Teljesítés határideje 2015.04.30 Adatszolgáltatásra vonatkozó adatai Adatszolgáltatás címe Energiafelhasználási beszámoló Adatszolgáltatás száma OSAP 1335a Adatszolgáltatás időszaka 2014. Év Az adatszolgáltatás a statisztikáról szóló

Részletesebben

Megújuló energia projektek finanszírozása Magyarországon

Megújuló energia projektek finanszírozása Magyarországon Megújuló energia projektek finanszírozása Magyarországon Energia Másképp III., Heti Válasz Konferencia 2011. március 24. Dr. Németh Miklós, ügyvezető igazgató Projektfinanszírozási Igazgatóság OTP Bank

Részletesebben

Megújuló források integrálása az épületekben Napenergia + hőszivattyú

Megújuló források integrálása az épületekben Napenergia + hőszivattyú Megújuló források integrálása az épületekben Napenergia + hőszivattyú Dr. Ádám Béla PhD HGD Kft. ügyvezető igazgató 2016.11.25. Német-Magyar Tudásközpont, 1024 Budapest, Lövőház utca 30. Tartalom HGD Kft.

Részletesebben

Varga Katalin zöld energia szakértő. VII. Napenergia-hasznosítás az Épületgépészetben Konferencia és Kiállítás Budapest, március 17.

Varga Katalin zöld energia szakértő. VII. Napenergia-hasznosítás az Épületgépészetben Konferencia és Kiállítás Budapest, március 17. Megújuló energetikai helyzetkép különös tekintettel a hazai napenergia-statisztikákra Varga Katalin zöld energia szakértő VII. Napenergia-hasznosítás az Épületgépészetben Konferencia és Kiállítás Budapest,

Részletesebben

A NEMZETI MEGÚJULÓ ENERGIAHORDOZÓ STRATÉGIA. Gazdasági és Közlekedési Minisztérium

A NEMZETI MEGÚJULÓ ENERGIAHORDOZÓ STRATÉGIA. Gazdasági és Közlekedési Minisztérium A NEMZETI MEGÚJULÓ ENERGIAHORDOZÓ STRATÉGIA Gazdasági és Közlekedési Minisztérium Az energiapolitika alapjai ELLÁTÁSBIZTONSÁG-POLITIKAI ELVÁRÁSOK GAZDASÁGI NÖVEKEDÉS MINIMÁLIS KÖLTSÉG ELVE KÖRNYEZETVÉDELEM

Részletesebben

Magyarország megkívánt szerepe a megújuló technológiák, illetve a napelemes rendszerek elterjedésében Kiss Ernő MNNSZ elnök

Magyarország megkívánt szerepe a megújuló technológiák, illetve a napelemes rendszerek elterjedésében Kiss Ernő MNNSZ elnök Magyarország megkívánt szerepe a megújuló technológiák, illetve a napelemes rendszerek elterjedésében Kiss Ernő MNNSZ elnök Felhasznált források: www.mnnsz.hu EPIA Global market outlook for PV 2013-2017

Részletesebben

2008-2009. tanév tavaszi félév. Hazánk energiagazdálkodása, és villamosenergia-ipara. Ballabás Gábor bagi@ludens.elte.hu

2008-2009. tanév tavaszi félév. Hazánk energiagazdálkodása, és villamosenergia-ipara. Ballabás Gábor bagi@ludens.elte.hu Magyarország társadalmi-gazdasági földrajza 2008-2009. tanév tavaszi félév Hazánk energiagazdálkodása, és villamosenergia-ipara Ballabás Gábor bagi@ludens.elte.hu Forrás: GKM Alapkérdések a XXI. század

Részletesebben

Hatékony energiafelhasználás Vállalkozási és önkormányzati projektek Kohéziós Alap támogatás Költségvetés kb. 42 md Ft

Hatékony energiafelhasználás Vállalkozási és önkormányzati projektek Kohéziós Alap támogatás Költségvetés kb. 42 md Ft Környezetvédelemi és Energetikai fejlesztések támogatási lehetőségei 2007-13 KEOP Energia prioritások Megújuló energiaforrás felhasználás Vállalkozási és önkormányzati projektek ERFA alapú támogatás KMR

Részletesebben

Energetikai Szakkollégium Egyesület

Energetikai Szakkollégium Egyesület Csetvei Zsuzsa, Hartmann Bálint 1 Általános ismertető Az energiaszektor legdinamikusabban fejlődő iparága Köszönhetően az alábbiaknak: Jelentős állami és uniós támogatások Folyamatosan csökkenő költségek

Részletesebben

NCST és a NAPENERGIA

NCST és a NAPENERGIA SZIE Egyetemi Klímatanács SZENT ISTVÁN EGYETEM NCST és a NAPENERGIA Tóth László ACRUX http://klimatanacs.szie.hu TARTALOM 1.Napenergia potenciál 2.A lehetséges megoldások 3.Termikus és PV rendszerek 4.Nagyrendszerek,

Részletesebben

Dr. Stróbl Alajos. ENERGOexpo 2012 Debrecen, 2012. szeptember 26. 11:50 12:20, azaz 30 perc alatt 20 ábra időzítve, animálva

Dr. Stróbl Alajos. ENERGOexpo 2012 Debrecen, 2012. szeptember 26. 11:50 12:20, azaz 30 perc alatt 20 ábra időzítve, animálva Dr. Stróbl Alajos Erőműépítések Európában ENERGOexpo 2012 Debrecen, 2012. szeptember 26. 11:50 12:20, azaz 30 perc alatt 20 ábra időzítve, animálva egyéb napelem 2011-ben 896 GW 5% Változás az EU-27 erőműparkjában

Részletesebben

ENERGIAFELHASZNÁLÁSI BESZÁMOLÓ (Közlekedési szektor) Adatszolgáltatás száma OSAP 1335/C Adatszolgáltatás időszaka

ENERGIAFELHASZNÁLÁSI BESZÁMOLÓ (Közlekedési szektor) Adatszolgáltatás száma OSAP 1335/C Adatszolgáltatás időszaka Adatszolgáltatásra vonatkozó adatai Adatszolgáltatás címe ENERGIAFELHASZNÁLÁSI BESZÁMOLÓ (Közlekedési szektor) Adatszolgáltatás száma OSAP 1335/C Adatszolgáltatás időszaka 2014. Év Az adatszolgáltatás

Részletesebben

2014 (éves) Az adatszolgáltatás a statisztikáról szóló 1993. évi XLVI. törvény 8. (2) bekezdése alapján és a Adatszolgáltatás jogcíme

2014 (éves) Az adatszolgáltatás a statisztikáról szóló 1993. évi XLVI. törvény 8. (2) bekezdése alapján és a Adatszolgáltatás jogcíme Adatszolgáltatásra vonatkozó adatai Adatszolgáltatás címe ENERGIAFELHASZNÁLÁSI BESZÁMOLÓ Adatszolgáltatás száma OSAP 1335/B Adatszolgáltatás időszaka 2014 (éves) Az adatszolgáltatás a statisztikáról szóló

Részletesebben

Energianövények, biomassza energetikai felhasználásának lehetőségei

Energianövények, biomassza energetikai felhasználásának lehetőségei Környezetvédelmi Szolgáltatók és Gyártók Szövetsége Hulladékból Tüzelőanyag Előállítás Gyakorlata Budapest 2016 Energianövények, biomassza energetikai felhasználásának lehetőségei Dr. Lengyel Antal főiskolai

Részletesebben

A megújuló energiaforrások alkalmazásának hatásai az EU villamosenergia rendszerre, a 2020-as évekig

A megújuló energiaforrások alkalmazásának hatásai az EU villamosenergia rendszerre, a 2020-as évekig XXII. MAGYAR ENERGIA SZIMPÓZIUM (MESZ-2018) Budapest, 2018. szeptember 20. A megújuló energiaforrások alkalmazásának hatásai az EU villamosenergia rendszerre, a 2020-as évekig dr. Molnár László, ETE főtitkár

Részletesebben

ENERGIATERMELÉS 3. Magyarország. Energiatermelése és felhasználása. Dr. Pátzay György 1. Magyarország energiagazdálkodása

ENERGIATERMELÉS 3. Magyarország. Energiatermelése és felhasználása. Dr. Pátzay György 1. Magyarország energiagazdálkodása ENERGIATERMELÉS 3. Magyarország Energiatermelése és felhasználása Dr. Pátzay György 1 Magyarország energiagazdálkodása Magyarország energiagazdálkodását az utóbbi évtizedekben az jellemezte, hogy a hazai

Részletesebben

Kárpát-medencei Magyar Energetikai Szakemberek XXII. Szimpóziuma (MESZ 2018) Magyarország energiafelhasználásának elemzése etanol ekvivalens alapján

Kárpát-medencei Magyar Energetikai Szakemberek XXII. Szimpóziuma (MESZ 2018) Magyarország energiafelhasználásának elemzése etanol ekvivalens alapján Magyar Energetikai Társaság (MET) Kárpát-medencei Magyar Energetikai Szakemberek XXII. Szimpóziuma (MESZ 2018) Budapest (Pesthidegkút), 2018. szept. 20. Magyarország energiafelhasználásának elemzése etanol

Részletesebben

Biogáz és Biofinomító Klaszter szakmai tevékenysége. Kép!!!

Biogáz és Biofinomító Klaszter szakmai tevékenysége. Kép!!! Biogáz és Biofinomító Klaszter szakmai tevékenysége Kép!!! Decentralizált bioenergia központok energiaforrásai Nap Szél Növényzet Napelem Napkollektor Szélerőgépek Biomassza Szilárd Erjeszthető Fagáz Tüzelés

Részletesebben

A VÍZENERGIA POTENCIÁLJÁNAK VÁRHATÓ ALAKULÁSA KLÍMAMODELLEK ALAPJÁN

A VÍZENERGIA POTENCIÁLJÁNAK VÁRHATÓ ALAKULÁSA KLÍMAMODELLEK ALAPJÁN A VÍZENERGIA POTENCIÁLJÁNAK VÁRHATÓ ALAKULÁSA KLÍMAMODELLEK ALAPJÁN PONGRÁCZ Rita, BARTHOLY Judit, Eötvös Loránd Tudományegyetem Meteorológiai Tanszék, Budapest VÁZLAT A hidrológiai ciklus és a vízenergia

Részletesebben

Havasi Patrícia Energia Központ. Szolnok, 2011. április 14.

Havasi Patrícia Energia Központ. Szolnok, 2011. április 14. Az Új Széchenyi Terv Zöldgazdaság-fejlesztési Programjához kapcsolódó megújuló energiaforrást támogató pályázati lehetőségek Havasi Patrícia Energia Központ Szolnok, 2011. április 14. Zöldgazdaság-fejlesztési

Részletesebben

Megújuló energia, megtérülő befektetés

Megújuló energia, megtérülő befektetés Megújuló energia, megtérülő befektetés A megújuló energiaforrás fogalma Olyan energiaforrás, amely természeti folyamatok során folyamatosan rendelkezésre áll, vagy újratermelődik (napenergia, szélenergia,

Részletesebben

Szőcs Mihály Vezető projektfejlesztő. Globális változások az energetikában Villamosenergia termelés Európa és Magyarország

Szőcs Mihály Vezető projektfejlesztő. Globális változások az energetikában Villamosenergia termelés Európa és Magyarország Szőcs Mihály Vezető projektfejlesztő Globális változások az energetikában Villamosenergia termelés Európa és Magyarország Áttekintés IEA World Energy Outlook 2017 Globális trendek, változások Európai környezet

Részletesebben

Megépült a Bogáncs utcai naperőmű

Megépült a Bogáncs utcai naperőmű Megépült a Bogáncs utcai naperőmű Megújuló energiát hazánkban elsősorban a napenergia, a geotermikus energia, a biomassza és a szélenergia felhasználásából nyerhetünk. Magyarország energiafelhasználása

Részletesebben

SZÉL A KIMERÍTHETETLEN ENERGIAFORRÁS

SZÉL A KIMERÍTHETETLEN ENERGIAFORRÁS SZÉL A KIMERÍTHETETLEN ENERGIAFORRÁS MEGÚJULÓ ENERGIAFORRÁSOK Napenergia Vízenergia Szélenergia Biomassza SZÉL TERMÉSZETI ELEM Levegő vízszintes irányú mozgása, áramlása Okai: eltérő mértékű felmelegedés

Részletesebben

EEA Grants Norway Grants A geotermikus energia-hasznosítás jelene és jövője a világban, Izlandon és Magyarországon

EEA Grants Norway Grants A geotermikus energia-hasznosítás jelene és jövője a világban, Izlandon és Magyarországon EEA Grants Norway Grants A geotermikus energia-hasznosítás jelene és jövője a világban, Izlandon és Magyarországon Merényi László, MFGI Budapest, 2016. november 17. Megújuló energiaforrások 1. Biomassza

Részletesebben

Megújulóenergia-hasznosítás és a METÁR-szabályozás

Megújulóenergia-hasznosítás és a METÁR-szabályozás Megújulóenergia-hasznosítás és a METÁR-szabályozás Tóth Tamás főosztályvezető Magyar Energetikai és Közmű-szabályozási Hivatal Magyar Energia Szimpózium 2016 Budapest, 2016. szeptember 22. Az előadás vázlata

Részletesebben

Kombinált napkollektoros, napelemes, hőszivattyús rendszerek. Beleznai Nándor Wagner Solar Hungária Kft. ügyvezető igazgató

Kombinált napkollektoros, napelemes, hőszivattyús rendszerek. Beleznai Nándor Wagner Solar Hungária Kft. ügyvezető igazgató Kombinált napkollektoros, napelemes, hőszivattyús rendszerek Beleznai Nándor Wagner Solar Hungária Kft. ügyvezető igazgató Termikus napenergia hasznosítás napkollektoros rendszerekkel Általában kiegészítő

Részletesebben

Készítette: Cseresznyés Dóra Környezettan Bsc 2014.03.05.

Készítette: Cseresznyés Dóra Környezettan Bsc 2014.03.05. Készítette: Cseresznyés Dóra Környezettan Bsc 2014.03.05. Megújulóenergia Megújulóenergiaforrás: olyan közeg, természeti jelenség, melyekből energia nyerhető ki, és amely akár naponta többször ismétlődően

Részletesebben

A napenergia hasznosítás támogatásának helyzete és fejlesztési tervei Magyarországon. 2009. Március 16. Rajnai Attila Ügyvezetı igazgató

A napenergia hasznosítás támogatásának helyzete és fejlesztési tervei Magyarországon. 2009. Március 16. Rajnai Attila Ügyvezetı igazgató A napenergia hasznosítás támogatásának helyzete és fejlesztési tervei Magyarországon 2009. Március 16. Rajnai Attila Ügyvezetı igazgató Energia Központ Nonprofit Kft. bemutatása Megnevezés : Energia Központ

Részletesebben

GEOTERMIA AZ ENERGETIKÁBAN

GEOTERMIA AZ ENERGETIKÁBAN GEOTERMIA AZ ENERGETIKÁBAN Bobok Elemér Miskolci Egyetem Kőolaj és Földgáz Intézet 2012. február 17. Helyzetkép a világ geotermikus energia termeléséről és hasznosításáról Magyarország természeti adottságai,

Részletesebben

Erőműépítések tények és jelzések

Erőműépítések tények és jelzések Dr. Stróbl Alajos Erőműépítések tények és jelzések Kárpát-medencei Magyar Energetikai Szakemberek X Szimpóziuma MESZ 2016 Bp. Pesthidegkút, 2016. szeptember 22. 11:00 (20 perc alatt 30 ábra fele hazai,

Részletesebben

Közép-Magyarországi Operatív Program Megújuló energiahordozó-felhasználás növelése. Kódszám: KMOP-3.3.3-13.

Közép-Magyarországi Operatív Program Megújuló energiahordozó-felhasználás növelése. Kódszám: KMOP-3.3.3-13. Közép-Magyarországi Operatív Program Megújuló energiahordozó-felhasználás növelése Kódszám: KMOP-3.3.3-13. Támogatható tevékenységek köre I. Megújuló energia alapú villamosenergia-, kapcsolt hő- és villamosenergia-,

Részletesebben

A villamosenergia-termelés szerkezete és jövıje

A villamosenergia-termelés szerkezete és jövıje A villamosenergia-termelés szerkezete és jövıje A villamos energia speciális termék Hálózati frekvencia [Hz] 5 49 51 Dr. Aszódi Attila elnök, MTA Energetikai Bizottság igazgató, BME Nukleáris Technikai

Részletesebben

2010. MEGÚJULÓ ENERGIA ALAPÚ TÉRSÉGFEJLESZTÉS 2010.02.17.

2010. MEGÚJULÓ ENERGIA ALAPÚ TÉRSÉGFEJLESZTÉS 2010.02.17. 2010. MEGÚJULÓ ENERGIA ALAPÚ TÉRSÉGFEJLESZTÉS 2010.02.17. Kedves Pályázó! Ezúton szeretném Önöket értesíteni az alábbi pályázati lehetőségről. Amennyiben a megküldött pályázati anyag illeszkedik az Önök

Részletesebben

TÁMOP-4.2.2.A-11/1/KONV-2012-0041 WORKSHOP KÖRNYEZETI HATÁSOK MUNKACSOPORT. 2014. június 27.

TÁMOP-4.2.2.A-11/1/KONV-2012-0041 WORKSHOP KÖRNYEZETI HATÁSOK MUNKACSOPORT. 2014. június 27. Fenntartható energetika megújuló energiaforrások optimalizált integrálásával TÁMOP-4.2.2.A-11/1/KONV-2012-0041 WORKSHOP KÖRNYEZETI HATÁSOK MUNKACSOPORT 2014. június 27. A biomassza és a földhő energetikai

Részletesebben

Magyar Energetikai Társaság 4. Szakmai Klubdélután

Magyar Energetikai Társaság 4. Szakmai Klubdélután Magyar Energetikai Társaság 4. Szakmai Klubdélután Az "Energiewende" energiagazdálkodási, műszaki és gazdasági következményei Hárfás Zsolt energetikai mérnök, okleveles gépészmérnök az atombiztos.blogstar.hu

Részletesebben

Magyarország energiaellátásának általános helyzete és jövıje

Magyarország energiaellátásának általános helyzete és jövıje Magyarország energiaellátásának általános helyzete és jövıje Dr. Aszódi Attila elnök, MTA Energetikai Bizottság igazgató, BME Nukleáris Technikai Intézet Dr. ASZÓDI Attila, BME NTI 1 Társadalmunk mindennapjai

Részletesebben

Zöldenergia - Energiatermelés melléktermékekbıl és hulladékokból

Zöldenergia - Energiatermelés melléktermékekbıl és hulladékokból Zöldenergia - Energiatermelés melléktermékekbıl és hulladékokból Dr. Ivelics Ramon PhD. irodavezetı-helyettes Barcs Város Önkormányzata Polgármesteri Hivatal Városfejlesztési és Üzemeltetési Iroda Hulladékgazdálkodás

Részletesebben

Új Széchenyi Terv Zöldgazdaság-fejlesztési Programjához kapcsolódó megújuló energia forrást támogató pályázati lehetőségek az Észak-Alföldi régióban

Új Széchenyi Terv Zöldgazdaság-fejlesztési Programjához kapcsolódó megújuló energia forrást támogató pályázati lehetőségek az Észak-Alföldi régióban Új Széchenyi Terv Zöldgazdaság-fejlesztési Programjához kapcsolódó megújuló energia forrást támogató pályázati lehetőségek az Észak-Alföldi régióban Kiss Balázs Energia Központ Debrecen, 2011. április

Részletesebben

A JÖVŐ OKOS ENERGIAFELHASZNÁLÁSA

A JÖVŐ OKOS ENERGIAFELHASZNÁLÁSA A JÖVŐ OKOS ENERGIAFELHASZNÁLÁSA Dr. NOVOTHNY FERENC (PhD) Óbudai Egyetem, Kandó Kálmán Villamosmérnöki Kar Villamosenergetikai intézet Budapest, Bécsi u. 96/b. H-1034 novothny.ferenc@kvk.uni-obuda.hu

Részletesebben

Emissziócsökkentés és az elektromos közlekedés jelentősége. 2014 október 7. Energetikai Körkép Konferencia

Emissziócsökkentés és az elektromos közlekedés jelentősége. 2014 október 7. Energetikai Körkép Konferencia Emissziócsökkentés és az elektromos közlekedés jelentősége 2014 október 7. Energetikai Körkép Konferencia Magamról Amim van Amit már próbáltam 194 g/km?? g/km Forrás: Saját fotók; www.taxielectric.nl 2

Részletesebben

Megújuló energia források magyarországi felhasználása, energiatakarékossági helyzetkép

Megújuló energia források magyarországi felhasználása, energiatakarékossági helyzetkép Megújuló energia források magyarországi felhasználása, energiatakarékossági helyzetkép Bohoczky Ferenc vezeto fotanácsos Gazdasági és Közlekedési Minisztérium Megújuló energiaforrások szükségessége Magyar

Részletesebben

Villamos hálózati csatlakozás lehetőségei itthon, és az EU-ban

Villamos hálózati csatlakozás lehetőségei itthon, és az EU-ban Villamos hálózati csatlakozás lehetőségei itthon, és az EU-ban Molnár Ágnes Mannvit Budapest Regionális Workshop Climate Action and renewable package Az Európai Parlament 2009-ben elfogadta a megújuló

Részletesebben

MEGÚJULÓ ENERGIA MÓDSZERTAN CSG STANDARD 1.1-VERZIÓ

MEGÚJULÓ ENERGIA MÓDSZERTAN CSG STANDARD 1.1-VERZIÓ MEGÚJULÓ ENERGIA MÓDSZERTAN CSG STANDARD 1.1-VERZIÓ 1 1. DEFINÍCIÓK Emissziós faktor: egységnyi elfogyasztott tüzelőanyag, megtermelt villamosenergia, stb. mekkora mennyiségű ÜHG (üvegházhatású gáz) kibocsátással

Részletesebben

A biometán előállítása és betáplálása a földgázhálózatba

A biometán előállítása és betáplálása a földgázhálózatba A biometán előállítása és betáplálása a földgázhálózatba Dr. Kovács Attila - Fuchsz Máté Első Magyar Biogáz Kft. 2011. 1. április 13. XIX. Dunagáz Szakmai Napok, Visegrád Mottó: Amikor kivágjátok az utolsó

Részletesebben

A NAPENERGIA HASZNOSÍTÁSÁNAK HAZAI LEHETŐSÉGEI. Farkas István, DSc egyetemi tanár, intézetigazgató E-mail: Farkas.Istvan@gek.szie.

A NAPENERGIA HASZNOSÍTÁSÁNAK HAZAI LEHETŐSÉGEI. Farkas István, DSc egyetemi tanár, intézetigazgató E-mail: Farkas.Istvan@gek.szie. SZENT ISTVÁN EGYETEM A NAPENERGIA HASZNOSÍTÁSÁNAK HAZAI LEHETŐSÉGEI MTA Budapest, 2011. november 9. GÉPÉSZMÉRNÖKI KAR KÖRNYEZETIPARI RENDSZEREK INTÉZET Fizika és Folyamatirányítási Tanszék 2103 Gödöllő

Részletesebben

NEMZETI ÉS EU CÉLOK A MEGÚJULÓ ENERGIAHORDOZÓ PIAC ÉLÉNKÍTÉSE ÉRDEKÉBEN (kihívások, kötelezettségek, nemzeti reagálás)

NEMZETI ÉS EU CÉLOK A MEGÚJULÓ ENERGIAHORDOZÓ PIAC ÉLÉNKÍTÉSE ÉRDEKÉBEN (kihívások, kötelezettségek, nemzeti reagálás) NEMZETI ÉS EU CÉLOK A MEGÚJULÓ ENERGIAHORDOZÓ PIAC ÉLÉNKÍTÉSE ÉRDEKÉBEN (kihívások, kötelezettségek, nemzeti reagálás) Dr. Szerdahelyi György Közlekedési, Hírközlési és Energiaügyi Minisztérium MIÉRT KERÜLT

Részletesebben

A megújuló energia termelés helyzete Magyarországon

A megújuló energia termelés helyzete Magyarországon A megújuló energia termelés helyzete Magyarországon Szabó Zsolt fejlesztés- és klímapolitikáért, valamint kiemelt közszolgáltatásokért felelős államtitkár Nemzeti Fejlesztési Minisztérium Budapest, 2016.

Részletesebben

A nem nukleáris alapú villamosenergia-termelés lehetőségei

A nem nukleáris alapú villamosenergia-termelés lehetőségei A nem nukleáris alapú villamosenergia-termelés lehetőségei Büki Gergely Villamosenergia-ellátás Magyarországon a XXI. században MTA Energiakonferencia, 2014. február 18 Villamosenergia-termelés, 2011 Villamos

Részletesebben

KIHÍVÁSOK, FELADATOK Energiapolitikai elképzelések az EU elvárásokkal összhangban. Dr. Szerdahelyi György

KIHÍVÁSOK, FELADATOK Energiapolitikai elképzelések az EU elvárásokkal összhangban. Dr. Szerdahelyi György KIHÍVÁSOK, FELADATOK Energiapolitikai elképzelések az EU elvárásokkal összhangban Dr. Szerdahelyi György Az energetika állami szereplői a kormányváltás után 1. A korábbi kormányzat 12+1 minisztériumból

Részletesebben

A zöldgazdaság-fejlesztés lehetőségei

A zöldgazdaság-fejlesztés lehetőségei A zöldgazdaság-fejlesztés lehetőségei dr. Nemes Csaba főosztályvezető Zöldgazdaság Fejlesztési Főosztály Budapest, 2015. Október 15. Az előadás tartalma I. A klíma- és energiapolitika stratégiai keretrendszere

Részletesebben

4 évente megduplázódik. Szélenergia trend. Európa 2009 MW. Magyarország 2010 december MW

4 évente megduplázódik. Szélenergia trend. Európa 2009 MW. Magyarország 2010 december MW Szélenergia trend 4 évente megduplázódik Európa 2009 MW Magyarország 2010 december 31 330 MW Világ szélenergia kapacitás Növekedés 2010 2020-ig 1 260 000MW Ez ~ 600 Paks kapacitás és ~ 300 Paks energia

Részletesebben

Megújuló energiaforrások hasznosításának növelése a fenntartható fejlődés biztosítása érdekében

Megújuló energiaforrások hasznosításának növelése a fenntartható fejlődés biztosítása érdekében Megújuló energiaforrások hasznosításának növelése a fenntartható fejlődés biztosítása érdekében Dr. Csoknyai Istvánné Vezető főtanácsos Környezetvédelmi és Vízügyi Minisztérium 2008. február 26-i Geotermia

Részletesebben