Micskei Zoltán Strausz György. Méréstechnika és Információs Rendszerek Tanszék.
|
|
- Kornél Boros
- 6 évvel ezelőtt
- Látták:
Átírás
1 Micskei Zoltán Strausz György Méréstechnika és Információs Rendszerek Tanszék 1
2 Hogyan építsünk információ gazdag megoldásokat? Információ/adat integráció Webes környezetek Intézményi környezetek Technikák: szemantikus technológiák Hogyan fejlesszünk jó minőségű szoftvert? Kód gyakori integrálása és ellenőrzése Kód review, kód analízis, tesztelés Technikák: continous integration (CI), mocking, automatikus tesztelés 2
3 Előadások: hétfő , IB 025 Gyakorlatok: péntek ( , , ) 6db gyakorlat, kéthetente, IB.413. terem Gyakorlatok témái: 1 3. alkalmak: Szemantikus technológiák (adatmodellezés, integráció) 4 6. alkalmak: Tesztek írása, CI beüzemelése, kód átvizsgálása 3
4 Zárthelyi: Zárthelyi időpontja: március 27., Pótzárthelyi időpontja: április 16., (helyszínek később) HF: Vizsga: ZH értékelés: elfogadás 40%, e feletti pontok 25% a beszámít a vizsgába, maximum 15% vizsgapont szerezhető) követelmény: elfogadás; 4 fős csapatok, GitHub infrastruktúra használata írásbeli 4
5 Integrációs technikák tartalom Bevezetés, probléma felvetés Szemantikus technológiák Szemantikus web koncepció RDF, SPARQL RDFS, OWL Linked Data Adatintegráció Elosztott, webes környezetek Mediátorok (Datalog nyelv, lekérdezés átalakítások nézetek felhasználásával) Intézményi környezetek, adattárházak 5
6 Integráció: Tartalom vs Forma Szemantikus nézet Szintaktikus nézet A megbeszélés sikere az érvelésen és a logikus következtetésen múlik. A_megbeszélés_sikere _az_érvelésen_és_a_lo gikus_következtetésen _múlik. 6
7 Miért van szükségünk információ integrációra? (Alkalmazások) WWW: Összehasonlítás alapú vásárlás Portál építések több adatforrás felhasználásával B2B, elektronikus piacterek Tudomány és kultúra: Genetika: gén információk integrálása Asztrofizika: égi jelenségek gyűjtése. Kultúra: kulturális információs adatbázisok egységes elérése országhatárokon túl Vállalati adatintegráció Egy átlagos KNV 49 adatbázist alkalmaz és IT költségvetésének 30% át az adatintegrációra költi (US, 2009) 11
8 Csak szöveg volna a weben? A web jelentős része valójában strukturált A legtöbb web szerver mögött adatbázisok állnak Dinamikusan konvertálják az adatokat olvasható nyelvi formára <India, New Delhi> => The capital of India is New Delhi. Ha vissza tudnánk konvertálni lenne strukturált adatunk! (ki)csomagolók, csomagolók tanulása, stb Dinamikus lapokat is fel tudunk deríteni... Félig strukturált web (kialakulóban) Legtöbb lap részben strukturált (pl. XML) XML a szabvány a szintaktikára, ismert problémák az értelmezéssel Szolgáltatások Utazási szolgáltatások, vásárlások támogatása Érzékelők Tőzsdei árfolyamok, hőmérsékletek, jegyárak 12
9 Miért nem elég: Keresőgépek szövegalapú keresést végeznek Jól működik egyedi dokumentumokon Nem tudnak integrálni több dokumentumból származó információkat Nem képesek hatékony általánosításra Nem tudnak dokumentumokat és adatbázisokat összekapcsolni Az információ integráció célja strukturált és féligstrukturált információforrások együttes kezelése 13
10 Ennél azért már több is elérhető: Szövegalapú keresés > tudásháló (knowledge graph) Wikipedia > DBPedia Profil hálók Forrás: 14
11 Példa: tudás hálók Forrás: Knowledge Graph Refinement:A Survey of Approaches and Evaluation Methods, Editor(s): Philipp Cimiano, Universität Bielefeld, GermanySolicited review(s): Natasha Noy, Google Inc., USA; Philipp Cimiano, Universität Bielefeld, Germany; Semantic Web 0 (2016) 1 0 IOS Press 15
12 Miért nem csak adatbázisok elosztott adatbázisok Közös séma hiánya Források heterogén sémákkal (és fogalmakkal, ontológiákkal) rendelkeznek Félig strukturált források Query (SQL) Régi források Nem relációs sémák Answer (relation) Eltérő elérési módok Független források Nincs közös adminisztráció Nem kezelt forrás tartalmi átfedések Nehezen előrejelezhető viselkedés Lekérdezés végrehajtás bonyolult Általában csak olvashatóak Ez lehet szerencsés is Bár terjednek a tranzakció kezelési megoldások a weben Database Manager (DBMS) -Storage mgmt -Query processing -View management -(Transaction processing) Database (relational) 17
13 Szolgáltatások Forrás leírás Web lapok Strukturált adatok Forrás fúzionálás/ Lekérdezés tervezés Mediátor Szenzorok (soros adatok) Végrehajtás Monitor Válasz 19
14 Felhasználói lekérdezések megfogalmazása a mediált (globális) sémán. Adatok tárolva lokális (távoli) sémákban. A tárolt információ (tartalom) ismerete alapján megfogalmazható a leképezés a sémák között. A mediátor alkalmazza a leképezést a felhasználói kérdés lefordítására a forrás lekérdezésekre. Forrás leírás Ontológiák, Forrás és szolgáltatás leírások Forrás fúzionálás Lekérdezés tervezés Számos cél együttese, Szolgáltatások kompozíciója, Forrás minőség, átfedés Teszt lekérdezések Szolgáltatáso Weblapok Strukturált adatok Szenzorok (soros adatok) Információ menedzser Válasz Végrehajtás Kezel: forrás és hálózati kapcsolatokat, futtatási bizonytalanságokat, újratervezést Monitor 20
15 Mesterséges intelligencia Tanulás/bányászás -Forrás felkutatás -Forrás statisztikák -Wrapper tanulás Forrás leírás Ontológiák, Forrás és szolgáltatás leírások Teszt lekérdezések Szolgáltatáso Weblapok Strukturált adatok Tudásreprezentáció - Ontológiák - Metaadatok - Következtetés - Lekérdező nyelvek Automata tervezés -Nyelvek tervezése -Szolgáltatások kompozíciója -Reaktív tervezés/ terv monitorozás Forrás fúzionálás Lekérdezés tervezés Számos cél együttese, Szolgáltatások kompozíciója, Forrás minőség, átfedés Szenzorok (soros adatok) Válasz Végrehajtás Kezel: forrás és hálózati kapcsolatokat, futtatási bizonytalanságokat, újratervezést Monitor 21
16 Forrás leírások Minden meta adat információt tartalmaz Forrás tartalom logikai leírása (könyvek, új autók). Forrás képességek (pl. SQL lekérdezés feltehető) Forrás teljesség (minden könyvet tartalmaz). Fizikai jellemzők (forrás, hálózat). Statisztikák az adatokról Source reliability Tükör források Frissítési frekvencia. Információ menedzser Lekérdezés Preferenciák/Eléérsi modell Válasz Forrás leírás Ontológiák, Forrás és szolgáltatás leírások Forrás fúzionálás Lekérdezés tervezés Számos cél együttese, Szolgáltatások kompozíciója, Forrás minőség, átfedés Végrehajtás Kezel: forrás és hálózati kapcsolatokat, futtatási bizonytalanságokat, újratervezést Teszt lekérdezések Újratervezési kérések Forrás elérések Statisztikák frissítése Monitor Szolgáltatások Weblapok Strukturált adatok Szenzorok (soros adatok) 22
17 Forrás elérések Hogyan kapunk n eseket Számos forrás strukturálatlan adatokat ad Néhány inherensen strukturálatlan, mások természetes nyelvi köntösben vannak Vissza kell csomagolni az adatokat Wrapper építés/információ kinyerés Kézi munka/fél automatikus 23
18 Forrás fúzió/ lekérdezés tervezés Feldolgozza a felhasználói lekérdezést és előállítja a végrehajtási tervet Költség és hatékonyság közti optimalizáció Forrás elérési korlátok kezelése Információ a forrásminőségről Forrás leírás Ontológiák, Forrás és szolgáltatás leírások Teszt lekérdezések Szolgáltatások Weblapok Strukturált adatok Információ menedzser Lekérdezés Preferenciák/Eléérsi modell Válasz Forrás fúzionálás Lekérdezés tervezés Számos cél együttese, Szolgáltatások kompozíciója, Forrás minőség, átfedés Végrehajtás Kezel: forrás és hálózati kapcsolatokat, futtatási bizonytalanságokat, újratervezést Újratervezési kérések Forrás elérések Statisztikák frissítése Monitor Szenzorok (soros adatok) 24
19 Monitoring/ Végrehajtás Lekérdezési terv alapján elvégzi a feladatot a forrásokon Forrás késleltetések kezelése Hálózati, tranziens kimaradások Forrás elérési korlátok Szükséges lehet újratervezések elvégzése Query Preference/Utility Model Answers Source Trust Ontologies; Source/Service Descriptions Source Fusion/ Query Planning Needs to handle: Multiple objectives, Service composition, Source quality & overlap Executor Needs to handle Source/network Interruptions, Runtime uncertainty, replanning Probing Queries Replanning Requests Source Calls Updating Statistics Monitor Services Webpages Structured data Sensors (streaming Data) 25
20 Méretek figyelembe vétele Hány forrást kell elérni? Mennyire autonómok ezek? Van ismeretünk a forrásokról? Strukturáltak az adatok? Csak lekérdezés lehetséges vagy módosítás is? Követelmények: pontosság, teljesség, teljesítmény, inkonzisztenciák kezelése Zárt vagy nyílt világ feltételezés? 26
21 Kis forrás szám melletti integráció Forrás leírás Ontológiák, Forrás és szolgáltatás leírások Teszt lekérdezések Szolgáltatások Weblapok Strukturált adatok Általában ad hoc programozás: speciális eset megvalósítása minden esetre, sok konzultáció. Adattárházak: minden adat periodikus feltöltése az adattárházba hónap bevezetési idő Operációs és döntéstámogatási RDBMS elválasztás. (nem csak adatintegrációra megoldás). Teljesítmény jó, adat lehet, hogy nem friss;. Rendszeres adattisztítás szükséges. Lekérdezés Preferenciák/Eléérsi modell Forrás fúzionálás Lekérdezés tervezés Számos cél együttese, Szolgáltatások kompozíciója, Forrás minőség, átfedés Információ menedzser Végrehajtás Kezel: forrás és hálózati kapcsolatokat, futtatási Válasz bizonytalanságokat, újratervezést Újratervezési kérések Forrás elérések Statisztikák frissítése Monitor Adat kinyerő programok Adatforrás Felhsználói OLAP / Döntéstámogtás/ lekérdezések Adatkockák/ Adatbányászat Relációs adatbázis (tárház) Adat tisztítás Adat- Adatforráforrás Szenzorok (soros adatok) 27
22 Integrátor séma Felhasználói lekérdezések OLAP / Döntéstámogatás/ Adatkockák/ Adatbányászat Relációs adatbázis (tárház) Információ kinyerő programok Adattisztítás Adatforrás Adatforrás Adatforrás 28
23 Source Trust Ontologies; Source/Service Descriptions Probing Queries Services Webpages Structured data Virtuális integrációs séma Adatok a forrásokban maradnak Lekérdezés végrehajtásakor: Releváns források meghatározása Lekérdezés szétválasztása forrásokra vonatkozó lekérdezésekre. Válaszok begyűjtése a forrásokból, és megfelelő kombinálása a válasz előállításához. Friss adatok A megoldás skálázható Mediátor: wrapper Adat forrás Felhasználói lekérdezés Fordító motor Optimalizáló Végrehajtó gép wrapper Adat forrás Query Preference/Utility Model Answers wrapper Adat forrás Source Fusion/ Query Planning Needs to handle: Multiple objectives, Service composition, Source quality & overlap Executor Needs to handle Source/network Interruptions, Runtime uncertainity, replanning Garlic [IBM], Hermes[UMD];Tsimmis, InfoMaster[Stanford]; DISCO[INRIA]; Information Manifold [AT&T]; SIMS/Ariadne[USC];Emerac/Havasu[ASU] Replanning Requests Source Calls Updating Statistics Monitor Mediált (globális) séma Adatforrás katalógus Sensors (streaming Data) 29
24 Virtuális integrátor architektúra Source Trust Ontologies; Source/Service Descriptions Probing Queries Services Webpages Structured data Mediátor: Felhasználói lekérdezés Fordító motor Mediált (globális) séma Query Source Fusion/ Query Planning Needs to handle: Multiple objectives, Service composition, Source quality & overlap Executor Needs to handle Source/network Interruptions, Answers Runtime uncertainity, replanning Preference/Utility Model Replanning Requests Source Calls Updating Statistics Monitor Sensors (streaming Data) Optimalizáló Végrehajtó gép Adatforrás katalógus wrapper Adat forrás wrapper Adat forrás wrapper Adat forrás Források: relációs adatbázisok, weblapok, szövegek. 30
Tudásalapú információ integráció
Tudásalapú információ integráció (A Szemantikus Web megközelítés és a másik irány) Tanszéki értekezlet, 2008. május 14. 1 Miért van szükségünk ilyesmire? WWW: (Alkalmazások) Keresés a weben (pl. összehasonlítás
Mediátor. Forrás leírás. Forrás fúzionálás/ Lekérdezés tervezés. Monitor. Végrehajtás. Válasz. Szolgáltatások. Web lapok. Strukturált adatok
1 Szolgáltatások Forrás leírás Web lapok Strukturált adatok Forrás fúzionálás/ Lekérdezés tervezés Mediátor Szenzorok (soros adatok) Végrehajtás Monitor Válasz 2 Szolgáltatáso Felhasználói lekérdezések
Információ integráció (GAV példa) 6. Előadás. Méréstechnika és Információs Rendszerek Tanszék
Információ integráció (GAV példa) 6. Előadás Méréstechnika és Információs Rendszerek Tanszék https://www.mit.bme.hu/oktatas/targyak/vimiac04 1 Szolgáltatáso Felhasználói lekérdezések megfogalmazása a mediált
Mediátor. Forrás leírás. Forrás fúzionálás/ Lekérdezés tervezés. Monitor. Végrehajtás. Válasz. Szolgáltatások. Web lapok. Strukturált adatok
1 Szolgáltatások Forrás leírás Web lapok Strukturált adatok Forrás fúzionálás/ Lekérdezés tervezés Mediátor Szenzorok (soros adatok) Végrehajtás Monitor Válasz 2 Kis forrás szám melletti integráció Általában
Információ integráció (Datalog, Veder algoritmus, GAV példa) 6. Előadás
Információ integráció (Datalog, Veder algoritmus, GAV példa) 6. Előadás Méréstechnika és Információs Rendszerek Tanszék https://www.mit.bme.hu/oktatas/targyak/vimiac04 1 Szolgáltatáso Felhasználói lekérdezések
Információ integráció (Szemantikus Web megközelítés a másik irányból) 5. Előadás
Információ integráció (Szemantikus Web megközelítés a másik irányból) 5. Előadás Méréstechnika és Információs Rendszerek Tanszék https://www.mit.bme.hu/oktatas/targyak/vimiac04 1 Szolgáltatások Forrás
SZEMANTIKUS WEB. Integrációs és ellenőrzési technikák VIMIAC04, tavasz
Integrációs és ellenőrzési technikák VIMIAC04, 2019. tavasz SZEMANTIKUS WEB Méréstechnika és Információs Rendszerek Tanszék https://www.mit.bme.hu/oktatas/targyak/vimiac04 1 Szolgáltatások Forrás leírás
Információ integráció Szemantikus Web megközelítés Alkalmazások
Információ integráció Szemantikus Web megközelítés Alkalmazások 1 Miért van szükségünk ilyesmire? (Alkalmazások) WWW: Összehasonlítás alapú vásárlás Portál építések több adatforrás felhasználásával B2B,
TSIMMIS egy lekérdezés centrikus megközelítés. TSIMMIS célok, technikák, megoldások TSIMMIS korlátai További lehetségek
TSIMMIS egy lekérdezés centrikus megközelítés TSIMMIS célok, technikák, megoldások TSIMMIS korlátai További lehetségek 1 Információk heterogén információs forrásokban érhetk el WWW Társalgás Jegyzet papírok
1. Melyik szabvány foglalkozik dokumentumok tulajdonságainak megfogalmazásával? a. RDFS b. FOAF c. Dublin Core d. DBPedia
Név: Neptun kód: 2018. június 1., 8.15-9.45. VIMIAC04 Integrációs és ellenőrzési technikák vizsga Rendelkezésre álló idő: 90 perc Vizsga maximális pontszám: 51 Megfelelt szint: 40% Teszt kérdések (max.
Microsoft SQL Server telepítése
Microsoft SQL Server telepítése Az SQL Server a Microsoft adatbázis kiszolgáló megoldása Windows operációs rendszerekre. Az SQL Server 1.0 verziója 1989-ben jelent meg, amelyet tizenegy további verzió
A szemantikus világháló oktatása
A szemantikus világháló oktatása Szeredi Péter Lukácsy Gergely Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi és Információelméleti Tanszék ➀ A szemantikus világháló... c. tárgy ➁ A tananyag
Szemantikus technológiák területei. Rácz Gábor,
Szemantikus technológiák területei Rácz Gábor, 2011.10.14. Alkalmazások Cégek közötti együttműködés (Searchy) Telekommunikáció Mobiltelefonos tartalomszolgáltatás (KTF) DBPedia Mobile OntoWiki Mobile Kockázatkezelés
Szemantikus világháló a BME-n
Szemantikus világháló a BME-n Lukácsy Gergely Szeredi Péter Budapesti Mûszaki és Gazdaságtudományi Egyetem ßÐÙ Ý Þ Ö Ð º Ñ º Ù Számítástudományi és Információelméleti Tanszék ➀ Szemantikus technológiák
Tudásalapú információ-kereső rendszerek elemzése és kifejlesztése
Tudásalapú információ-kereső rendszerek elemzése és kifejlesztése 1 Tudásalapú információ-kereső rendszerek elemzése és kifejlesztése Természetes nyelv feldolgozás 2 Tudásalapú információ-kereső rendszerek
Fejlesztés, működtetés, felügyelet Hatékony infrastruktúra IBM szoftverekkel
IBM Software Group Fejlesztés, működtetés, felügyelet Hatékony infrastruktúra IBM szoftverekkel Rehus Péter Szoftver üzletág igazgató 2005. február 2. 2003 IBM Corporation On demand igény szerinti működési
Név: Neptun kód: május 23. Komplex MI alkalmazások vizsga Rendelkezésre álló idő: 75 perc 1. Vizsgálja meg a következő RDF leírást:
1. Vizsgálja meg a következő RDF leírást:
ADATBÁZIS-KEZELÉS - BEVEZETŐ - Tarcsi Ádám, ade@inf.elte.hu
ADATBÁZIS-KEZELÉS - BEVEZETŐ - Tarcsi Ádám, ade@inf.elte.hu Számonkérés 2 Papíros (90 perces) zh az utolsó gyakorlaton. Segédanyag nem használható Tematika 1. félév 3 Óra Dátum Gyakorlat 1. 2010.09.28.
Név: Neptun kód: április
Név: Neptun kód:.. 2019. április 2. 8.15-9.15 Integrációs és ellenőrzési technikák zárthelyi Rendelkezésre álló idő: 60 perc ZH maximális pontszám: 40 + 8 IMSC pont Megfelelt szint: 16 pont Teszt kérdések
TELJESÍTÉNYMÉRÉS FELHŐ ALAPÚ KÖRNYEZETBEN AZURE CLOUD ANALÍZIS
TELJESÍTÉNYMÉRÉS FELHŐ ALAPÚ KÖRNYEZETBEN AZURE CLOUD ANALÍZIS Hartung István BME Irányítástechnika és Informatika Tanszék TEMATIKA Cloud definíció, típusok, megvalósítási modellek Rövid Azure cloud bemutatás
Virtuális Obszervatórium. Gombos Gergő
Virtuális Obszervatórium Gombos Gergő Áttekintés Motiváció, probléma felvetés Megoldások Virtuális obszervatóriumok NMVO Twitter VO Gombos Gergő Virtuális Obszervatórium 2 Motiváció Tudományos módszer
VIR alapfogalmai. Előadásvázlat. dr. Kovács László
VIR alapfogalmai Előadásvázlat dr. Kovács László Információ szerepe Információ-éhes világban élünk Mi is az információ? - újszerű ismeret - jelentés Hogyan mérhető az információ? - statisztikai - szintaktikai
Szemantikus Web Semantic Web A szemantikus web alkalmas megközelítés, illetve megfelel nyelvekkel, eszközökkel támogatja az intelligens információs
Szemantikus Web Semantic Web A szemantikus web alkalmas megközelítés, illetve megfelel nyelvekkel, eszközökkel támogatja az intelligens információs rendszerek fejlesztését az elosztott információs környezetben.
ÜZLETI I TELLIGE CIA - VIZUALIZÁCIÓ
Budapest Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék ÜZLETI I TELLIGE CIA - VIZUALIZÁCIÓ Elméleti segédanyag Készítette: Kovács Dániel László 2007. november Tartalomjegyzék
Szolgáltatásintegráció (VIMIM234) tárgy bevezető
Szolgáltatásintegráció Szolgáltatásintegráció (VIMIM234) tárgy bevezető Gönczy László gonczy@mit.bme.hu A tárgyról A tantárgy célja a hallgatók megismertetése a komplex informatikai rendszerek integrációs
Oracle9i Alkalmazás Szerver Üzleti folyamat integráció. Molnár Balázs Vezető értékesítési konzultáns Oracle Hungary
Oracle9i Alkalmazás Szerver Üzleti folyamat integráció Molnár Balázs Vezető értékesítési konzultáns Oracle Hungary Üzleti folyamat integráció Kereskedők Beszállítók Partnerek Alkalmazás Disztribútor Belső
Adatbányászat és Perszonalizáció architektúra
Adatbányászat és Perszonalizáció architektúra Oracle9i Teljes e-üzleti intelligencia infrastruktúra Oracle9i Database Integrált üzleti intelligencia szerver Data Warehouse ETL OLAP Data Mining M e t a
Önálló labor feladatkiírásaim tavasz
Önálló labor feladatkiírásaim 2016. tavasz (ezekhez kapcsolódó saját témával is megkereshetnek) Mészáros Tamás http://www.mit.bme.hu/~meszaros/ Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika
Szemantikus Web Semantic Web A szemantikus web alkalmas megközelítés, illetve megfelel nyelvekkel, eszközökkel támogatja az intelligens információs
Szemantikus Web Semantic Web A szemantikus web alkalmas megközelítés, illetve megfelel nyelvekkel, eszközökkel támogatja az intelligens információs rendszerek fejlesztését az elosztott információs környezetben.
Infor PM10 Üzleti intelligencia megoldás
Infor PM10 Üzleti intelligencia megoldás Infor Üzleti intelligencia (Teljesítmény menedzsment) Web Scorecard & Műszerfal Excel Email riasztás Riportok Irányít Összehangol Ellenőriz Stratégia Stratégia
Történet John Little (1970) (Management Science cikk)
Információ menedzsment Szendrői Etelka Rendszer- és Szoftvertechnológia Tanszék szendroi@witch.pmmf.hu Vezetői információs rendszerek Döntéstámogató rendszerek (Decision Support Systems) Döntések információn
Multimédiás adatbázisok
Multimédiás adatbázisok Multimédiás adatbázis kezelő Olyan adatbázis kezelő, mely támogatja multimédiás adatok (dokumentum, kép, hang, videó) tárolását, módosítását és visszakeresését Minimális elvárás
IBM felhő menedzsment
IBM Váltsunk stratégiát! Budapest, 2012 november 14. IBM felhő menedzsment SmartCloud Provisioning és Service Delivery Manager Felhő alapú szolgáltatások Felhasználás alapú számlázás és dinamikus kapacitás
Alkalmazásokban. Dezsényi Csaba Ovitas Magyarország kft.
Tudásmodellezés Kereskedelmi Alkalmazásokban Dezsényi Csaba Ovitas Magyarország kft. Tudásmenedzsment Adat -> Információ -> Tudás Intézményi tudásvagyon hatékony kezelése az üzleti célok megvalósításának
Félreértések elkerülése érdekében kérdezze meg rendszergazdáját, üzemeltetőjét!
Félreértések elkerülése érdekében kérdezze meg rendszergazdáját, üzemeltetőjét! http://m.equicomferencia.hu/ramada Liszkai János senior rendszermérnök vállalati hálózatok Miről is lesz szó? Adatközpont
Gazdasági informatika alapjai
PSZK Mesterképzési és Távoktatási Központ / H-1149 Budapest, Buzogány utca 10-12. / 1426 Budapest Pf.:35 II. évfolyam Név: Neptun kód: Kurzus: Tanár neve: HÁZI DOLGOZAT 2. Gazdasági informatika alapjai
Szolgáltatásintegráció (VIMIM234) tárgy bevezető
Szolgáltatásintegráció Szolgáltatásintegráció (VIMIM234) tárgy bevezető Gönczy László gonczy@mit.bme.hu A tárgyról A tantárgy célja a hallgatók megismertetése a komplex informatikai rendszerek integrációs
Vállalati információs rendszerek I, MIN5B6IN, 5 kredit, K. 4. A meghirdetés ideje (mintatanterv szerint vagy keresztfélében):
Követelményrendszer 1. Tantárgynév, kód, kredit, választhatóság: Vállalati információs rendszerek I, MIN5B6IN, 5 kredit, K 2. Felelős tanszék: Informatika Szakcsoport 3. Szak, szakirány, tagozat: Műszaki
Testreszabott alkalmazások fejlesztése Notes és Quickr környezetben
Testreszabott alkalmazások fejlesztése Notes és Quickr környezetben Szabó János Lotus Brand Manager IBM Magyarországi Kft. 1 Testreszabott alkalmazások fejlesztése Lotus Notes és Quickr környezetben 2
Petőfi Irodalmi Múzeum. megújuló rendszere technológiaváltás
Petőfi Irodalmi Múzeum A Digitális Irodalmi Akadémia megújuló rendszere technológiaváltás II. Partnerek, feladatok Petőfi Irodalmi Múzeum Megrendelő, szakmai vezetés, kontroll Konzorcium MTA SZTAKI Internet
Rendszermodernizációs lehetőségek a HANA-val Poszeidon. Groma István PhD SDA DMS Zrt.
Rendszermodernizációs lehetőségek a HANA-val Poszeidon Groma István PhD SDA DMS Zrt. Poszeidon EKEIDR Tanúsított ügyviteli rendszer (3/2018. (II. 21.) BM rendelet). Munkafolyamat támogatás. Papírmentes
VÁLLALATI INFORMÁCIÓS RENDSZEREK. Debrenti Attila Sándor
VÁLLALATI INFORMÁCIÓS RENDSZEREK Debrenti Attila Sándor Információs rendszer 2 Információs rendszer: az adatok megszerzésére, tárolására és a tárolt adatok különböző szempontok szerinti feldolgozására,
Sikerünk kulcsa: az információ De honnan lesz adatunk? Palaczk Péter
Sikerünk kulcsa: az információ De honnan lesz adatunk? Palaczk Péter Bevezető az Oracle9i adattárházas újdonságaihoz Elemzési és vezetői információs igények 80:20 az adatgyűjtés javára! Adattárházak kínálta
SAS szoftverek felhasználási lehetőségei a felsőoktatásban
SAS szoftverek felhasználási lehetőségei a felsőoktatásban Hodász Attila BDX Kft. Abrán József SAS Magyarország Miért SAS? Integrált keretrendszer amely a teljes feladat támogatására alkalmas Kiforrott
Enterprise extended Output Management. exom - Greendoc Systems Kft. 1
Enterprise extended Output Management exom - Greendoc Systems Kft. 1 exom - Greendoc Systems Kft. 2 Sokféle bementi adatformátum kezelése Adatok fogadása különböző csatornákon Előfeldolgozás: típus meghatározás,
Fülöp Csaba, Kovács László, Micsik András
Rendszerek Osztály Metaadatsémák nyilvántartása szemantikus web alapon Fülöp Csaba, Kovács László, Micsik András MTA SZTAKI Bemutatás A CORES az európai közösség projektje a Szemantikus Web témakörben
Név: Neptun kód: május 26., VIMIAC04 Integrációs és ellenőrzési technikák vizsga Rendelkezésre álló idő: 90 perc
Vizsga maximális pontszám: 51 Megfelelt szint: 40% Teszt kérdések (max. 11 pont) Útmutató: Karikázza be a megfelelő választ, minden kérdésnél egy válasz jelölhető meg. A helyes válasz kérdésenként 1 pontot
A Jövő Internet Nemzeti Kutatási Program bemutatása
A Jövő Internet Nemzeti Kutatási Program bemutatása Dr. Bakonyi Péter és Dr. Sallai Gyula Jövő Internet Kutatáskoordinációs Központ Budapesti Műszaki és Gazdaságtudományi Egyetem Budapest, 2013. június
A webanalitika változó világa 4 felvonásban
A webanalitika változó világa 4 felvonásban Arató Bence, BI Consulting Email: arato@bi.hu, Twitter: @aratob Traffic Meetup, 2013.02.06 1 Bemutatkozás 15 éves szakmai tapasztalat az üzleti intelligencia
Adatbázisok MSc. 12. téma. Ontológia és SPARQL
Adatbázisok MSc 12. téma Ontológia és SPARQL Igény az automatikus tudáskezelése Az adat és tudáskezelés szintjei adatok összesítő adatok domain leírása következtetések tudás kontexus ismerete RDBMS OLAP
Az adatbázisrendszerek világa
Az adatbázisrendszerek világa Tankönyv: Ullman-Widom: Adatbázisrendszerek Alapvetés Második, átdolgozott kiadás, Panem, 2009 1.1. Az adatbázisrendszerek fejlődése 1.2. Az adatbázis-kezelő rendszerek áttekintése
Folyamatmodellezés és eszközei. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék
Folyamatmodellezés és eszközei Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Folyamat, munkafolyamat Munkafolyamat (Workflow): azoknak a lépéseknek a sorozata,
Vezetői információs rendszerek
Vezetői információs rendszerek Kiadott anyag: Vállalat és információk Elekes Edit, 2015. E-mail: elekes.edit@eng.unideb.hu Anyagok: eng.unideb.hu/userdir/vezetoi_inf_rd 1 A vállalat, mint információs rendszer
SZEMANTIKUS WEB. Méréstechnika és Információs Rendszerek Tanszék
SZEMANTIKUS WEB Méréstechnika és Információs Rendszerek Tanszék https://www.mit.bme.hu/oktatas/targyak/vimiac04 1 Szolgáltatások Forrás leírás Web lapok Strukturált adatok Forrás fúzionálás/ Lekérdezés
Fekete Csaba Csongor Üzleti intelligencia vezető Citibank ZRt.
Fekete Csaba Csongor Üzleti intelligencia vezető Citibank ZRt. Tartalom BI mérföld kövek Kezdeti architektúra és kontextus Lokális Adattárház Kialakítása CRM Evolúció Üzleti Intelligencia kiaknázó eszközök
COMPANY PROFILE SZOFI ALGORITHMIC RESEARCH KFT
COMPANY PROFILE SZOFI ALGORITHMIC RESEARCH KFT WWW.SZOFIUSA.COM CÉGTÖRTÉNET 1990 Alapítás 1990 Informatikai fejlesztések kezdete 1992 Felsőfokú informatikai képzési rendszer kidolgozása a kormányzat részére
BEVEZETÉS AZ ADATTÁRHÁZ AUTOMATIZÁLÁSBA
BEVEZETÉS AZ ADATTÁRHÁZ AUTOMATIZÁLÁSBA Gollnhofer Gábor JET-SOL Kft. Nyilvántartási szám: 503/1256-1177 JET-SOL KFT. Alapadatok 2003-ban alakultunk Több mint 120 magasan képzett munkatárs Ügyfélkör Nagyvállalati
Mesterséges Intelligencia Elektronikus Almanach. Konzorciumi partnerek
Mesterséges Intelligencia Elektronikus Almanach Konzorciumi partnerek 1 Konzorcium Budpesti Mőszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Méréstechnika és Információs Rendszerek
Szemantikus webszolgáltatások használatát támogató middleware. Kovács László, Micsik András, Tóth Zoltán DSD MTA SZTAKI. Elosztott Rendszerek Osztály
Rendszerek Osztály Szemantikus webszolgáltatások használatát támogató middleware Kovács László, Micsik András, óth Zoltán MA SZAKI MA SZAKI Az INFRAWEBS projektről Az INFRAWEBS projekt célja a szemantikus
Teljeskörű BI megoldás a gyakorlatban IBM eszközök használatával, Magyarországon
Teljeskörű BI megoldás a gyakorlatban IBM eszközök használatával, Magyarországon esettanulmány csokor, mely megpróbálja összefoglalni az elmúlt 10 év tapasztalatait,tanulságait és bemutat egy élő, hazai
Kővári Attila, BI projekt
Innovatív BI konferencia, 2011-11-22 Kővári Attila, BI projekt Az előadás bemutatja, milyen lehetőségeket és problémákat rejtenek magukban az önkiszolgáló BI rendszerek. Foglalkozik az ilyen rendszereknél
- Adat, információ, tudás definíciói, összefüggéseik reprezentációtípusok Részletesebben a téma az AI alapjai című tárgyban
I. Intelligens tervezőrendszerek - Adat, információ, tudás definíciói, összefüggéseik reprezentációtípusok Részletesebben a téma az AI alapjai című tárgyban Adat = struktúrálatlan tények, amelyek tárolhatók,
Internetes térkép publikálási technikák, szabványok, trendek, nyílt forráskódú megoldások
Internetes térkép publikálási technikák, szabványok, trendek, nyílt forráskódú megoldások dr. Siki Zoltán Áttekintés OGC, OSGeo szervezetek Szabványosítási irányok Nem szabványos megoldások (Google) OGC
Magic xpi 4.0 vadonatúj Architektúrája Gigaspaces alapokon
Magic xpi 4.0 vadonatúj Architektúrája Gigaspaces alapokon Mi az IMDG? Nem memóriában futó relációs adatbázis NoSQL hagyományos relációs adatbázis Más fajta adat tárolás Az összes adat RAM-ban van, osztott
Steps Towards an Ontology Based Learning Environment. Anita Pintér Corvinno Technologia Transzfer Kft apinter@corvinno.hu
Steps Towards an Ontology Based Learning Environment Anita Pintér Corvinno Technologia Transzfer Kft apinter@corvinno.hu Ontológia alapú elektronikus tanulási környezet megteremtése Anita Pintér Corvinno
2009.04.29. 2009. április 24. INFO Savaria 2009 2. 2009. április 24. INFO Savaria 2009 4. 2009. április 24. INFO Savaria 2009 3
Négy adatbázis-kezelı rendszer összehasonlítása webes környezetben Sterbinszky Nóra snorav@gmail.com Áttekintés Növekvı igény hatékony adatbázis- kezelıkre a világhálón Hogyan mérhetı ezek teljesítménye
Szombathely Város Vezetõi Döntéstámogató Rendszere VDIR-STAT. keringer@szombathely.hu
Szombathely Város Vezetõi Döntéstámogató Rendszere VDIR-STAT Miért? Az információ áramlás rendezetlen! Végrehajtási kontroll körülményes vagy hiányos! KSH adatbázis naprakészsége? Városról naprakész adatok
Célkitűzések Az Oracle10 g felépítésének, használatának alapszíntű megismerése
BEVEZETÉS Célkitűzések Az Oracle10g felépítésének, használatának alapszíntű megismerése A relációs adatbázis-kezelés elméleti és gyakorlati vonatkozásainak áttekintése Az SQL, PL/SQL nyelvek használatának
Mezőgazdasági külső információs rendszerek fejlesztése
Mezőgazdasági külső információs rendszerek fejlesztése Pető István Szent István Egyetem, Gödöllő Gazdasági Informatika Tanszék I. Agrárinformatikai Nyári Egyetem, Gödöllő 2004. augusztus 25-27. Az előadás
Dr. Sasvári Péter Egyetemi docens
A magyarországi vállalkozások Üzleti Intelligencia használatának vizsgálata Dr. Sasvári Péter Egyetemi docens II. IRI Társadalomtudományi Konferencia, 2014. április 25-26. Nové Zámky (Érsekújvár) Gymnázium
SZEMANTIKUS WEB. Méréstechnika és Információs Rendszerek Tanszék
SZEMANTIKUS WEB Méréstechnika és Információs Rendszerek Tanszék https://www.mit.bme.hu/oktatas/targyak/vimiac04 1 Szolgáltatások Forrás leírás Web lapok Strukturált adatok Forrás fúzionálás/ Lekérdezés
Szolgáltat. gfelügyeleti gyeleti rendszer fejlesztése. NETWORKSHOP 2010 Sándor Tamás
Szolgáltat ltatási minıségfel gfelügyeleti gyeleti rendszer fejlesztése se a HBONE hálózatbanh NETWORKSHOP 2010 Tartalom SLA menedzsment, teljesítmény menedzsment InfoVista bemutatás InfoVista az NIIFI-nél
Adattárház kialakítása a Szövetkezet Integrációban, UML eszközökkel. Németh Rajmund Vezető BI Szakértő március 28.
Adattárház kialakítása a Szövetkezet Integrációban, UML eszközökkel Németh Rajmund Vezető BI Szakértő 2017. március 28. Szövetkezeti Integráció Központi Bank Takarékbank Zrt. Kereskedelmi Bank FHB Nyrt.
KEYSERVE. Pulttól a kasszáig Szolgáltatások értéknövelése automatizálással 2010
Pulttól a kasszáig Szolgáltatások értéknövelése automatizálással 2010 Pulttól a kasszáig Pult Iroda Gépház Kassza Szolgáltatásokat a webshopból Folyamatok automatizálása A workflow bevetésen Teljesítési
Van-e ingyen-ebéd? Avagy mire elég a nyílt forráskodú Pentaho? Fekszi Csaba Ügyvezető 2012. október 4.
Van-e ingyen-ebéd? Avagy mire elég a nyílt forráskodú Pentaho? Fekszi Csaba Ügyvezető 2012. október 4. Omnit Solutions 2007 óta a piacon BI & adattárház tanácsadás 20 fős csapat Oracle, IBM és Pentaho
Fogalomtár bevezetése a Magyar Telekomnál
Fogalomtár bevezetése a Magyar Telekomnál Koncz Béla (MT) Tóth Rózsa (IQSYS) IQSYMPOSIUM, 2012. április 26 Tartalom 1. A projekt: Dilemmák és megoldások a Fogalomtár körül 2. Az eszköz: Funkciók és a működési
SAM-Insights ADVANCED CENTRAL DATA COLLECTOR (ACDC) Szkenneléssel nem mérhető licencelési adatok. Egyedülálló funkcionalitású, új ACDC modul
SAM-Insights ADVANCED CENTRAL DATA COLLECTOR (ACDC) Szkenneléssel nem mérhető licencelési adatok Szoftvergazdálkodási, licencelési szempontból nemcsak az összetett szerverkörnyezet, bonyolult infrastruktúra,
Oracle Enterprise Manager: Az első teljesértékű felhő üzemeltetési megoldás
2011 November 8. New York Palota Hotel Boscolo Budapest Oracle Enterprise Manager: Az első teljesértékű felhő üzemeltetési megoldás Sárecz Lajos, Vezető tanácsadó Oracle Hungary Átfogó felhő üzemeltetés
Pentaho 4: Mindennapi BI egyszerűen. Fekszi Csaba Ügyvezető 2011. október 6.
Pentaho 4: Mindennapi BI egyszerűen Fekszi Csaba Ügyvezető 2011. október 6. 1 2 3 4 5 Bevezetés Pentaho-ról röviden - áttekintő Mindennapi BI egyszerűen a Pentaho 4 újdonságai Pentaho összefoglaló Alkalmazás
DW 9. előadás DW tervezése, DW-projekt
DW 9. előadás DW tervezése, DW-projekt Követelmény felmérés DW séma tervezése Betöltési modul tervezése Fizikai DW tervezése OLAP felület tervezése Hardver kiépítése Implementáció Tesztelés, bevezetés
ETL keretrendszer tervezése és implementálása. Gollnhofer Gábor Meta4Consulting Europe Kft.
ETL keretrendszer tervezése és implementálása Gollnhofer Gábor Meta4Consulting Europe Kft. Tartalom Bevezetés ETL keretrendszer: elvárások és hogyan készítsük A mi keretrendszerünk Bevezetési tanulságok
Oracle Enterprise Metadata Management
Oracle Enterprise Metadata Management Rövid bemutató Oracle Enterprise Metadata Management Gollnhofer Gábor 1 Tartalom Bevezetés a metaadatokhoz Oracle Enterprise Metadata Management - OEMM Összefoglaló
Big Data: a több adatnál is több
Big Data: a több adatnál is több Sidló Csaba István MTA Számítástechnikai és Automatizálási Kutatóintézet Üzleti Intelligencia és Adattárházak Csoport sidlo@sztaki.mta.hu http://dms.sztaki.hu CIO Hungary
CMDB architektúra megjelenítése SAMU-val Rugalmas megoldás. ITSMF 2015. 10. 30. Bekk Nándor Magyar Telekom / IT szolgáltatás menedzsment központ
CMDB architektúra megjelenítése SAMU-val Rugalmas megoldás ITSMF 2015. 10. 30. Bekk Nándor Magyar Telekom / IT szolgáltatás menedzsment központ Tartalom Nehézségeink CMDB adatok és függ ségek vizualizációja
The nontrivial extraction of implicit, previously unknown, and potentially useful information from data.
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Adatelemzés intelligens módszerekkel Hullám Gábor Adatelemzés hagyományos megközelítésben I. Megválaszolandó
Mérnök informatikus mesterszak mintatanterve (GE-MI) nappali tagozat/ MSc in, full time Érvényes: 2011/2012. tanév 1. félévétől, felmenő rendszerben
Mérnök informatikus mesterszak mintatanterve (GE-MI) nappali tagozat/ MSc in, full time Érvényes: 2011/2012. tanév 1. félévétől, felmenő rendszerben Tantárgy Tárgykód I. félév ősz II. félév tavasz Algoritmusok
Csima Judit szeptember 6.
Adatbáziskezelés, bevezető Csima Judit BME, VIK, Számítástudományi és Információelméleti Tanszék 2017. szeptember 6. Csima Judit Adatbáziskezelés, bevezető 1 / 20 Órák, emberek heti két óra: szerda 14.15-16.00
Az információs rendszerek adatai
Az információs rendszerek adatai Nagy mennyiségű adat Tárolás Karbantartás Visszakeresés, feldolgozás Adatbázis 2 Az adatbázis fogalma Az adatbázis együtt tárolt, egymással kapcsolatban levő adatok rendszere.
LOGISZTIKAI ADATBÁZIS RENDSZEREK BEVEZETÉS
LOGISZTIKAI ADATBÁZIS RENDSZEREK BEVEZETÉS Lénárt Balázs tanársegéd TANTERV, SZOFTVER, IRODALOM Hét Dátum Előadó Előadások Időpont: szerda 8:30-10:00, helye: LFSZÁMG Dátum Gyakvezető 1. 9. 11. Tokodi Adatbázis
Szemléletmód váltás a banki BI projekteken
Szemléletmód váltás a banki BI projekteken Data Governance módszertan Komáromi Gábor 2017.07.14. Fókuszpontok áthelyezése - Elérendő célok, elvárt eredmény 2 - Egységes adatforrásra épülő, szervezeti egységektől
Copyright 2012, Oracle and/or its affiliates. All rights reserved.
1 Oracle Felhő Alkalmazások: Gyorsabb eredmények alacsonyabb kockázattal Biber Attila Igazgató Alkalmazások Divízió 2 M I L L I Á RD 4 1 PERC MINDEN 5 PERCBŐL 5 6 Ember használ mobilt 7 FELHŐ SZOLGÁLTATÁS
IK Algoritmusok és Alkalmazásaik Tsz, TTK Operációkutatás Tsz. A LEMON C++ gráf optimalizálási könyvtár használata
IKP-9010 Számítógépes számelmélet 1. EA IK Komputeralgebra Tsz. IKP-9011 Számítógépes számelmélet 2. EA IK Komputeralgebra Tsz. IKP-9021 Java technológiák IK Prog. Nyelv és Ford.programok Tsz. IKP-9030
Az információs rendszerek adatai
Az információs rendszerek adatai Nagy mennyiségű adat Tárolás Karbantartás Visszakeresés, feldolgozás Adatbázis 2 Az adatbázis fogalma Az adatbázis együtt tárolt, egymással kapcsolatban levő adatok rendszere.
Menetrendkezelő Rendszer
Menetrendkezelő Rendszer Rózsa Péter Folyamatirányítási Informatikai Osztály Piacműködtetési és gazdasági informatikai főmunkatárs MAVIR Magyar Villamosenergia-ipari Átviteli Rendszerirányító Zártkörűen
Data Integrátorok a gyakorlatban Oracle DI vs. Pentaho DI Fekszi Csaba Ügyvezető Vinnai Péter Adattárház fejlesztő 2013. február 20.
Data Integrátorok a gyakorlatban Oracle DI vs. Pentaho DI Fekszi Csaba Ügyvezető Vinnai Péter Adattárház fejlesztő 2013. február 20. 1 2 3 4 5 6 7 8 Pentaho eszköztára Data Integrator Spoon felület Spoon
Szolgáltatás és Minőségfejlesztés a Corvinus Egyetemen Kiss György János Mogyorósi János
Szolgáltatás és Minőségfejlesztés a Corvinus Egyetemen Kiss György János gyorgy.kiss@uni-corvinus.hu Mogyorósi János janos.mogyorosi@uni-corvinus.hu KMOP 4.2.1/B-2008-0011 Szolgáltatás és minőségfejlesztés
Több mint BI (Adatból üzleti információ)
Több mint BI (Adatból üzleti információ) Vállalati műszaki adattárház építés és üzleti elemzések az ELMŰ-ÉMÁSZ Társaságcsoportnál Papp Imre Geometria Kft MEE, Mátraháza, 2013. szeptember 12. Visszatekintés
A tudás handrendbe állítása, azaz SPSS PES
A tudás handrendbe állítása, azaz SPSS PES...és hogyan történt mindez a Vodafone Hungary Zrt-nél Cseh Zoltán, PhD konzultációs igazgató SPSS Hungary Hagyományos hadászati egységek Légi elhárítás Gyalogság
Korszerű oktatási környezet kialakítása az eenvplus projektben. Márkus Béla
Korszerű oktatási környezet kialakítása az eenvplus projektben Márkus Béla www.eenvplus.eu Márkus B: Korszerű oktatási környezet kialakítása az eenvplus projektben, GISopen konferencia, Székesfehérvár,
Intelligens partner rendszer virtuális kórházi osztály megvalósításához
Intelligens partner rendszer virtuális kórházi osztály megvalósításához 1. Célkitűzések A pályázat célja egy virtuális immunológiai osztály kialakítása, amelynek segítségével a különböző betegségekkel