A NAPENERGIA ÉS SZÉLENERGIA ALKALMAZÁSI LEHETŐSÉGEINEK VIZSGÁLATA HAZÁNKBAN



Hasonló dokumentumok
Megújuló energia, megtérülő befektetés

SZÉL A KIMERÍTHETETLEN ENERGIAFORRÁS

NAPELEMEK KÖRNYEZETI SZEMPONTÚ VIZSGÁLATA AZ ÉLETCIKLUS ELEMZÉS SEGÍTSÉGÉVEL. Darvas Katalin

Energetikai Szakkollégium Egyesület

Magyar László Környezettudomány MSc. Témavezető: Takács-Sánta András PhD

A tanyás térségekben elérhető megújuló energiaforrások

A tanyás térségekben elérhető megújuló energiaforrások

A biomassza rövid története:

Napenergia rendszerek létesítése a hazai és nemzetközi gyakorlatban

Megújuló energiák szerepe a villamos hálózatok energia összetételének tisztítása érdekében Dr. Tóth László DSc - SZIE professor emeritus

Háztartási méretű kiserőművek és Kiserőművek

Napelemre pályázunk -

Éves energetikai szakreferensi jelentés év

Tervezzük együtt a jövőt!

Napenergiás jövőkép. Varga Pál elnök. MÉGNAP Egyesület

Solar-Pécs. Napelem típusok ismertetése. Monokristályos Polikristályos Vékonyréteg Hibrid

ENERGETIKAI BEAVATKOZÁSOK A HATÉKONYSÁG ÉRDEKÉBEN SZABÓ VALÉRIA

Energiatárolás szerepe a jövő hálózatán

A napenergia hasznosítás támogatásának helyzete és fejlesztési tervei Magyarországon Március 16. Rajnai Attila Ügyvezetı igazgató

JÜLLICH GLAS SOLAR Karnyújtásnyira a Naptól Nagyméretű napelemes erőművek

Frank-Elektro Kft. BEMUTATKOZÓ ANYAG

MEGÚJULÓ ENERGIA MÓDSZERTAN CSG STANDARD 1.1-VERZIÓ

Az alternatív energiák fizikai alapjai. Horváth Ákos ELTE Atomfizikai Tanszék

Németország környezetvédelme. Készítették: Bede Gréta, Horváth Regina, Mazzone Claudia, Szabó Eszter Szolnoki Fiumei Úti Általános Iskola

Háztartási méretű kiserőmű (HMKE) Jogszabályi keretek, műszaki feltételek

Megépült a Bogáncs utcai naperőmű

Napenergiás helyzetkép és jövőkép

Magyarország Napenergia-hasznosítás iparági helyzetkép. Varga Pál elnök MÉGNAP

A SZÉLENERGIA HASZNOSÍTÁS HELYZETE

Megújuló energia projektek finanszírozása Magyarországon

NCST és a NAPENERGIA

Foto-Villamos rendszerek elterjedésének lehetőségei és gátjai Magyarországon Budapest, Megyik Zsolt

Munkahelyteremtés a zöld gazdaság fejlesztésével. Kohlheb Norbert SZIE-MKK-KTI ESSRG

A megújuló energiahordozók szerepe

Zöldenergia szerepe a gazdaságban

MediSOLAR napelem és napkollektor rendszer

Energetikai gazdaságtan. Bevezetés az energetikába

Magyarország megújuló energia stratégiai céljainak bemutatása és a megújuló energia termelés helyezte

A megújuló energiaforrások környezeti hatásai

A Hivatal feladatai a METÁR kapcsán. Bagi Attila főosztályvezető-helyettes október 11.

A NAPENERGIA FELHASZNÁLÁS ÚJ MOTORJA: A ZÖLDHŐ

7. Hány órán keresztül világít egy hagyományos, 60 wattos villanykörte? a 450 óra b 600 óra c 1000 óra

Energiatakarékossági szemlélet kialakítása

Az 55/2016. (XII. 21.) NFM rendelet a megújuló energiát termelő berendezések és rendszerek műszaki követelményeiről

A MEGÚJULÓ ENERGIAHORDOZÓ FELHASZNÁLÁS MAGYARORSZÁGI STRATÉGIÁJA

A nap- és szélerőművek integrálásának kérdései Európában. Dr. habil Göőz Lajos professor emeritus egyetemi magántanár

A remény hal meg utoljára. a jövő energiarendszere

Napelemes rendszerek a gyakorlatban Beleznai Nándor Wagner Solar Hungária Kft.

Biogázból villamosenergia: Megújuló energiák. a menetrendadás buktatói

A NAPENERGIA HASZNOSÍTÁSÁNAK HAZAI LEHETŐSÉGEI. Farkas István, DSc egyetemi tanár, intézetigazgató

A napenergia-hasznosítás jelene és jövője, támogatási programok

Hagyományos és modern energiaforrások

SOLART-SYSTEM KFT. Napenergiás berendezések tervezése és kivitelezése Budapest XI. Gulyás u. 20 Telefon: Telefax:

Bicskei Oroszlán Patika Bt

Éves energetikai szakreferensi jelentés év

Földgázalapú decentralizált energiatermelés kommunális létesítményeknél

4 évente megduplázódik. Szélenergia trend. Európa 2009 MW. Magyarország 2010 december MW

Töltőtelepítés, illetve üzemeltetés engedélyeztetési eljárás

Zöld tanúsítvány - egy támogatási mechanizmus az elektromos energia előállítására a megújuló energiaforrásokból

A megújuló erőforrások használata által okozott kihívások, a villamos energia rendszerben

Havasi Patrícia Energia Központ. Szolnok, április 14.

Hazai műszaki megoldások az elosztott termelés támogatására

Kapcsolt energia termelés, megújulók és a KÁT a távhőben

Frank-Elektro Kft. EMLÉKEZTETŐ Nyílt napról

Galambos Erik. NAPENERGIÁS RENDSZEREK TERVEZÉSE MEE - SZIE - Solart System szakmai rendezvény Gödöllő, május 15.

Varga Katalin zöld energia szakértő. VII. Napenergia-hasznosítás az Épületgépészetben Konferencia és Kiállítás Budapest, március 17.

Jelen projekt célja Karácsond Község egyes közintézményeinek energetikai célú korszerűsítése.

Villamos hálózati csatlakozás lehetőségei itthon, és az EU-ban

Megújuló energiaforrásokra alapozott energiaellátás növelése a fenntartható fejlődés érdekében

Háztartási méretű kiserőművek és a tapasztalatok. Pénzes László ELMŰ Hálózati Kft. Tervezési osztály

A fenntartható energetika kérdései

Háztartási méretű kiserőmű hálózatra csatlakoztatása

Az enhome komplex energetikai megoldásai. Pénz, de honnan? Zalaegerszeg, 2015 október 1.

MEGÚJULÓ ENERGIA ALAPÚ VILLAMOS ENERGIA, KAPCSOLT HŐ ÉS VILLAMOS ENERGIA, VALAMINT BIOMETÁN TERMELÉS KEOP /C

Kapros Zoltán: A napenergia hasznosítás környezeti és társadalmi hatásai

Napenergia kontra atomenergia

Az Energia[Forradalom] Magyarországon

Megújuló energia szabályozás és helyzetkép, különös tekintettel a biogáz-szektorra Dr. Grabner Péter Energetikáért felelős elnökhelyettes

E L Ő T E R J E S Z T É S

Megújuló energiák hasznosítása: a napenergia. Készítette: Pribelszky Csenge Környezettan BSc.

TARTALOMJEGYZÉK 1. KÖTET I. FEJLESZTÉSI STRATÉGIA... 6

A fóti Élhető Jövő Park Smart Grid tapasztalatok

Megújulóenergia-hasznosítás és a METÁR-szabályozás

Energiamenedzsment ISO A SURVIVE ENVIRO Nonprofit Kft. környezetmenedzsment rendszerekről szóló tájékoztatója

Közép-Magyarországi Operatív Program Megújuló energiahordozó-felhasználás növelése. Kódszám: KMOP

rendszerszemlélet Prof. Dr. Krómer István BMF, Budapest BMF, Budapest,

A szélenergia hasznosítás 2011 évi legújabb eredményei. Dr. Tóth Péter egyetemi docens SZE Bíróné Dr. Kircsi Andrea egyetemi adjunktus DE


A napelemek környezeti hatásai

A villamos energiát termelő erőművekről. EED ÁHO Mérnökiroda

A megújuló energia alapú villamos energia termelés támogatása (METÁR)

A megújuló energia alapú villamos energia termelés támogatása (METÁR)

Éves energetikai szakreferensi jelentés

VP Mezőgazdasági termékek értéknövelése a feldolgozásban. A projekt megvalósítási területe Magyarország.

SZÉLTURBINÁK. Előadás a BME Áramlástan Tanszékén Dr Fáy Árpád 2010 április 13

K+F lehet bármi szerepe?

A hazai beszállító ipar esélyeinek javítása innovációval a megújuló energiatermelés területén

Széndioxid-többlet és atomenergia nélkül

Napelemes Rendszerek a GIENGER-től

Megújuló energiák hasznosítása az épületek energiaellátásában

Átírás:

IV. Évfolyam 2. szám - 2009. június Kasza Anett Zrínyi Miklós Nemzetvédelmi Egyetem anett.kasza@gmail.com Készült a Somos Alapítvány támogatásával A NAPENERGIA ÉS SZÉLENERGIA ALKALMAZÁSI LEHETŐSÉGEINEK VIZSGÁLATA HAZÁNKBAN Absztrakt Napjainkban egyre inkább fókuszba kerülnek a megújuló energiaforrások, melynek oka, hogy alkalmazásuk környezetbarát, és egyelőre ugyan csekély mértékben, de csökkentik Magyarország energiafüggőségét. Ezek a történések sarkalltak arra, hogy mélyebben elmerüljek az alternatív energiafajták tanulmányozásában. Kutatásomban, a Magyarországon relevánsnak tekinthető megújuló energiaforrásokat vizsgálom, továbbá az előnyök mellett, azok hátrányaira is fel kívánom hívni a figyelmet. Az alternatív energiaforrások közül a napenergiát és a szélenergiát mutatom be részleteiben is, melynek oka, hogy munkám második része egy valós felhasználói rendszert mutat be, ahol a napenergia és a szélenergia elégíti ki a felhasználók mindennapi igényeit. Végül vizsgálom a jelenlegi támogatási rendszert, és összevetem az elméleti elgondolásokat a gyakorlati megvalósítás lehetőségeivel. Nowadays, in our country the renewable energy sources are getting more and more popular and acknowledged. Their utilization is environmentally sound and they reduce Hungary s dependence on foreign energy. These facts motivated me to get to know better the source of alternative energies. With this paper I would like to examine the relevant renewable energy-sources at Hungary, presenting not only the advantages but the disadvantages of their use. My disquisition s main goal is to present the role of the solar and wind energy, because in the second part of my paper I want to explain a real consumption system in that these kinds of energies satisfy the average demands of the consumers. Finally, I am going to examine the system of subsidies the so-called pork barrels compare the theoretical ideas to the opportunities of the realization. Kulcsszavak: megújuló energiaforrások, napenergia, szélenergia, előnyökhátrányok, jelenlegi támogatási rendszer, valós energiapark bemutatása ~ renewable energy sources, solar, wind energy, advantages- disadvantages, system of subsidies, a real consumption system 29

BEVEZETÉS Napjainkban egyre égetőbb problémát jelent környezetünk állapotának szinten tartása és megóvása. Ennek érdekében egy fenntartható fejlődésre kell törekednünk, mely kielégíti a jelen szükségleteit anélkül, hogy veszélyeztetnénk a jövő nemzedékeit abban, hogy ők is kielégíthessék majdani szükségleteiket. A fenntartható fejlődés tehát azt jelenti, hogy óvnunk kell a természet állapotát, és ésszerűen kell gazdálkodnunk természeti erőforrásainkkal. Minél később tesszük meg a lépéseket e fejlődés érdekében, annál nehezebb lesz megvalósítani azt a célt, mely a kielégítő természeti állapot felé mutat majd.[1] Ez az alapgondolat sarkallt arra, hogy részletesen is foglalkozzak a megújuló energiaforrásokkal, és azok alkalmazási lehetőségeivel. Aktualitása egyrészt azért meghatározó, mert a globális klímaváltozás hatására egyre inkább negatív változások figyelhetők meg környezetünkben, másrészt, pedig követnünk kell az Európai Unió környezetpolitikáját, és teljesítenünk kell az egyre szigorodó kritériumokat és előírásokat. A FENNTARTHATÓ FEJLŐDÉS A fenntartható fejlődés érdekében a legnagyobb mértékben szennyező anyag csökkentését kell magunk elé kitűzni célul, ez, pedig nem valósulhat meg másként, mint a fosszilis tüzelőanyagok égetésének mérséklésével. Az emberiség növekvő életszükségleteinek kielégítésére egyre több energiára van szükség. Ennek jelentős része villamos energia formájában kerül felhasználásra. A villamos energia előnye abban áll a természetben előforduló energiahordozókkal szemben, hogy szállítása és felhasználása a legkönnyebben megoldható Magyarországon. A kiépített vezetékek azonban sürgősen korszerűsítésre szorulnak, hisz többségük az 1950-es évek körül épült, nem számolva a XXI. század hatalmas energiaéhségével. Az újabb korszerűsítések előtt azonban mérlegelnünk kell, hosszú távon mely eljárások költségtakarékosak, megbízhatóak, és mindenek előtt hatékonyak. Az elmúlt évszázadban az energiaárak országunkban viszonylag alacsonyak voltak, nem tükrözték az energia valós értékét, így a beruházókat sem ösztönözték az energia hatékony felhasználására. A fosszilis energiahordozók 1 ténylegesen ismert készletei nem nőttek, az áruk pedig egyre magasabbra kúszik. Ez az energiakrízis oka, a dráguló energia viszont megemeli a megtakarítás értékét, javítja a beruházások megtérülésének idejét. Az árak emelése azonban nem vonja maga után ilyen egyszerűen a megoldást. A beruházás és üzemeltetési költség tervezésekor figyelembe kell venni a környezetterhelést is, hisz hosszútávon a környezet védelmének is hasonló prioritást kell élvezni, mint a gazdaság fejlődésének, a jövőt érintő kérdésekben tehát egyre inkább figyelembe kell venni a lehetséges környezeti hatásokat. A MEGÚJULÓ ENERGIAFORRÁSOK Sajnos, nem ilyen egyszerű áttérni a környezetbarát megoldásokra, hisz a növekvő igényeket a megtakarítás önmagában nem fedezi, így a fosszilis energiák iránt folyamatosan nő a kereslet, amely az árak jövőbeni további növekedését fogja eredményezni. A fosszilis energiahordozók felhasználásának növekedése és az ezzel járó globális felmelegedés és éghajlatváltozás, a természetben, az épületekben, az emberek egészségében keletkezett károk egyaránt a jelenlegi energiatermelésre és- felhasználásra vezethetők vissza. Mindezek az események irányítják a figyelmet a kevésbé károsító, megújuló energiaforrásokra. 1 Földgáz, kőolaj, kőszén. A nem megújuló energiaforrások körébe tartoznak. Több százmillió év alatt halmozódtak fel, és az emberiség néhány száz év alatt felemészti őket. 30

Megújuló energiaforrások alatt azokat az energiahordozókat értjük, melyek hasznosítása közben a forrás nem csökken, hanem újratermelődik, megújul, vagy mód van az adott területről ugyanolyan jellegű, és mennyiségű energiaforrás kitermelésére. [2] A Magyarországon preferálható megújuló energiahordozók a mai megítélés szerint a következők: 1. biomassza és bio-üzemanyag gyártás; 2. geotermikus energia; 3. szélenergia; 4. napenergia hasznosítás különböző fajtái; 5. hulladékkezelési technológiák alkalmazása során előállított biogáz; 6. kisebb mértékben vízenergia; A következőkben a zöld energiák közül két típust szeretnék részletesen elemezni, a szélenergiát és a napenergia hasznosítást, melynek oka, hogy munkám második része egy valós felhasználói rendszert mutat be, ahol a napenergia és a szélenergia elégíti ki a felhasználók mindennapi igényeit. NAPENERGIA A napenergia aktív felhasználása során melegvizet, vagy pedig elektromos áramot nyerhetünk, különböző átalakító berendezések segítségével. Az egyik ilyen alternatíva a napkollektoros rendszer, mely segítségével melegvizet nyerhetünk. A kollektorban a hőhordozó közeg lehet víz, vagy levegő. Legfontosabb szerkezeti eleme az elnyelő lemez, mely elnyeli az érkező napsugarakat, hővé alakítja, majd átadja a hőhordozó közegnek. Az elnyelő lemez felületét úgy kell kialakítani, hogy az érkező sugárzást a lehető legnagyobb mértékben tudja befogadni. A másik, napenergiát hasznosító berendezés a napelem, mely közreműködésével elektromos áramot nyerhetünk a napsugarakból. A napelemes áramforrások alkalmazásának két fontosabb területe van, az autonóm villamos energia-ellátás, és a közvetlen villamos hálózatba történő betáplálás. Az elemek a fényenergiát közvetlenül elektromos árammá alakítják. A napelem alapanyagául szolgáló félvezető végzi az átalakítást, mégpedig úgy, hogy az elnyelt sugarak közvetlenül villamos töltéseket hoznak létre az anyagban, melyeket a kialakított villamos tér szétválaszt. A villamos áram pedig a külső áramelvezetőn keresztül elvezethető. A ma gyártott napelemek túlnyomóan szilicium alapanyagból készülnek, de előfordul kadmium-szulfid, gallium-arzenid vagy rézindiumdiszelenid alapú is. [3] A napelem-gyártás két technológiával rendelkezik, így alapvetően két típust tudunk megkülönböztetni: - Kristályos technológia, mely félvezetők gyártásából lett továbbfejlesztve, mint polikristályos technológia. Ez a típus nagy hatásfokkal működik, azonban az ára is hasonlóan magas. A polikristályos szilícium alapú napelem hatásfoka 15-17%-os, laboratóriumi körülmények között ez közel 25%, míg több réteg együttes alkalmazása esetén a 30%-ot is eléri. - Vékonyréteg technológia, ahol a fejlesztések során az volt a feladat, hogy csökkentség az árat, a hatásfokot pedig növeljék. Alapvetően gazdaságosabb, mint a kristályos technológia, mivel az ára alacsonyabb, hatásfoka pedig megközelíti a célban foglaltakat. [4] A napelemek alkalmazási területe igen széles skálát ölel fel, egészen a napelemmel működő számológépektől a több MW teljesítményű erőművekig. 31

A következőkben szeretném összefoglalni a napenergiával működő rendszerek pozitívumait és negatívumait. Előnyök: - Környezetbarát, nem szennyezi a légkört. - A legjobb mód az elektromos áram előállítására, abban az értelemben, hogy ismerjük a technológiai igényt, és a gyakorlatban is kiválóan működik az előállítás. - Nem zajos, nem esztétikátlan és nincs forgó alkatrésze, így nem zavarja a környezetet és az élővilágot sem. - Az előállításukhoz szükséges energiát élettartamuk 1/20-a alatt megtermelik. [5] - Meghatározó szerepet tölthet be a tanyák áramellátásában. - Nincs karbantartási igénye, hosszú távú garancia jellemző rá. - Új munkahelyek létesülnének. - A napelem, és napkollektor-gyártáshoz kapcsolódó iparágak fejlődése. Hátrányok: - Támogatás híján magas a beruházás önköltsége. - A berendezések megtérülési ideje 20-22 év, ami viszonylag hosszú időnek számít, évenkénti 4%-os villamos áram emelkedés esetén ez az idő15-18 év. - A napelemek az életciklusuk végén hulladékproblémát fognak okozni, kezelésük egyelőre még nem megoldott. Amint a pozitív és negatív tulajdonságokat megvizsgáljuk, hamar észrevehető, hogy több előnye van, mint hátránya. Természetesen a legnagyobb árnyoldala az, hogy viszonylag drága, így kevesen jutnak el a tervezéstől a valós beruházásig. Jelenleg az áramátvételi rendszer kedvezőtlen Magyarországon, így a helyben felhasznált és tárolt villamos áram mellett, egyelőre a hőhasznosítás jelent meghatározóbb perspektívát. Az elérhető közelségű pályázatok, teljesíthető feltételekkel és az áfa visszaigénylés pozitívan befolyásolná a napkollektorok-napelemek számát. Hasznos lenne egy mintarendszer felépítése, hogy megismerhessék az emberek a berendezések felépítését, működését és hatékonyságát, hisz az átlagemberektől sajnos még nagyon messze állnak ezek az alternatív technológiák. Kiadványokkal, ismeretterjesztő műsorokkal közelebb kerülnének minden családhoz, és talán azok is fontolóra vennék a beruházást, akik eddig még nem is gondoltak rá. Ahhoz, hogy a megtermelt többlet energiát tárolni lehessen, akkumulátorokra van szükség, ami igen nagy hányadát teszi ki a költségeknek, így már az is nagy segítség lenne, ha legalább ezekre lehetne igényelni támogatást. SZÉLENERGIA Az energiaárak és az energiaigény növekedésével hazánkban egyre inkább előtérbe került a szélenergia hasznosítása. Magyarországon két reális hasznosítási területe lehetséges: - Mechanikus energiát igénylő gépek hajtására, például szivattyúzásra, vagy levegőztető berendezések üzemeltetésére. (1. kép) Ilyen mechanikus energiát igénylő berendezés a 32

szélmalom, amelyet számtalan helyen használnak az erdőgazdaságokban, például állatok itatására. 1. kép: Mechanikus szélerőmű egy dél-dunántúli vadgazdaságban; (Forrás: saját készítésű kép: Csibrák, 2007-07-25) - Villamos energia előállítására alkalmas szélerőművek (2. kép). Ennek két típusát különböztetjük meg, az egyik a normál erőmű, mely betáplálja a megtermelt energiát a rendszerbe, a másik pedig a szigeterőmű, mely helyben való felhasználásra termel. Betáplálásra termelő erőmű például a mosonmagyaróvári park, mely összesen 2 904 449 kw/h kapacitású, helyben való felhasználásra pedig a somogyi Öreglak rendszerét szeretném példaként hozni, amit majd a későbbiekben ismertetek. A hazai szélenergia-potenciál felmérésére komoly kutatás folyt 2005-ben, az Országos Meteorológiai Szolgálat koordinálásával. A kutatás keretén belül feltérképezték a lehetséges szélerőmű parkok elhelyezkedését, és elkészültek Magyarország széltérképei is 10, 25, 50 és 75 méteres magasságban.(3. kép) Az országon belül jelentős szélsebesség különbségek vannak, azonban 75 méteres magasságban már az ország 43%-a eléri a gazdaságilag hasznosítható értéket az 5,5 m/sec átlag éves értéket. [6] A magasabb terülteken azonban kecsegtetőbbek a kifizetődő beruházások lehetőségei, hisz 2005-ben már nem számít különlegességnek, ha 100 méter fölé emelik a turbinákat a minél biztosabb megtérülés érdekében. 33

2. kép: Hárskúti szélerőmű park; (a megtermelt energiát betáplálja a rendszerbe) (Forrás: http://www.trendlines.hu/2007/12/26/energia/ Letöltési idő: 2009-03-05) 3. kép: Magyarország széltérképe 10-25-50 és 75 méteres magasságban; (Forrás: http://www.omsz.hu/szelterkepek/10-25-50-75.jpg Letöltési idő: 2007-09-02) Hazánkban az ezredfordulón indult meg komolyabb érdeklődés a szélenergiába való befektetés iránt. A megújuló befektetések jogszabályi hátterét egyrészt a villamos energiáról szóló 2007. évi LXXXVI. Törvény a (VET), másrészt az Európai Unió 2008/0016 (COD) megújuló energiákkal kapcsolatos irányelve biztosítja. A 2007. évi LXXXVI. Törvény szerint a Magyar Energia Hivatal (MEH) rendelkezik a szélerőművek engedélyeztetésével, üzemeltetésével, és telepítésével kapcsolatos engedélyekkel. Érdekességként hadd említsem meg, hogy Németországban nem vizsgálják az engedélyeztetések során az erőművek 34

magasságát, ott úgy segítik az alacsonyabb kapacitású termelőket, hogy magasabb áron veszik át tőlük az energiát. A szélenergiában lehetőséget látó befektetők munkájának eredményeképp 2006 végére Magyarországon a szélerőmű kapacitás 40 GWh, mely 2007 végére majd két és félszeresére nőtt és megközelíti a 120 GWh kapacitást. [7](1. ábra) 1. ábra: Magyarország szélenergia kapacitása 2001 és 2007 között (Forrás: http://www.mszet.hu/files/tiny_mce/image/electricity_from_wind20071231.jpg Letöltési idő: 2009-03-05) A szélerőművek hátrányai és pozitívumai összefoglalva: - Szélenergia és tájvédelem: Ebben az esetben meg kell vizsgálni a területhasználat jogát, a vizuális megjelenést és az esztétikai hatást. Egy szélerőmű építése során a park területének körülbelül 99%-a érintetlen marad, hisz csak a tartó oszlop igényel helyet. - A turbinák és a madarak: Megfigyelések szerint a madarak 100-200 méterre a szélerőműtől megváltoztatják a repülési útvonalukat, és biztonságos távolságban elkerülik azt akár éjszaka, akár nappal repülnek a közelébe. - Zajkibocsátás: A zajhatást a 8 m/s nál erősebb szél kelti. Legjobban egy erősen susogó hanghoz lehet hasonlítani. A tervezés során ezért a lakóépületektől távol helyezik el az erőműveket. - Elektromágneses interferencia: Az eddigi tapasztalatok Európa-szerte azt mutatják, hogy nem okoz fennakadást a szélerőművek működése a telekommunikációban. - Személyes biztonság: A Nemzetközi Elektrotechnikai Bizottság nemzetközi szabványt adott ki a szélerőművek biztonsági előírásairól. Az üzemeltetési tapasztalatok azt mutatják, hogy még nem fordult elő személyi sérülést okozó szélerőmű-baleset. Üzemi hiba viszont történt, amit biztos kézből, egy szélerőmű tervező jóvoltából tudtam meg. Egy erőmű mindkét lapátja elszállt, amit hat db 12- es acélcsavar tartott. Az egyik csavar megrepedt, majd a lapátok rezgése miatt a csavarok eltörtek a hajlításuknál. Az csak a csodának köszönhető, hogy épp akkor senki sem tartózkodott a közelében. Így a szakmai megítéléssel szemben, én nem tartom feltétlenül biztonságosnak őket. 35

- Anyag és energiafelhasználás: A modern szélerőművek rövid idő alatt (3-4 hónap alatt) megtermelik azt az energia mennyiséget, melyet a gyártásukra fordítottak. Egy 6 MW teljesítményű szélerőmű park létesítésével elkerülhető mintegy 13, 6 millió kg szén-dioxid, 20 720 kg kén-dioxid, 10 220 kg nitrogén-oxid, valamint 560 kg por kibocsátása. [8] Az elméleti kutatás mellett, mindig fontos szerepet tulajdonítottam adott kérdéskör gyakorlati megközelítésének is, hisz leginkább ily módon nyílik lehetőségem arra, hogy a teoretikus eljárásokat, információkat és ebben az esetben, támogatási rendszert összehasonlítsam a gyakorlati megvalósítással. Ezért szeretnék bemutatni egy általam meglátogatott, magánkézben levő megújuló energiaparkot, ahol napenergiával és szélenergiával fedezi egy gazdálkodó család a mindennapi energiaszükségletét. AZ ÖREGLAKON MŰKÖDŐ MEGÚJULÓ ENERGIAPARK Maga a rendszer Somogy megyében, Öreglakon található, a kivitelezést egy kaposvári cég végezte. A tervező vállalat vezetőjének közreműködésével ismerkedhettem meg magával a parkkal, és a gépek működési mechanizmusaival. Öreglakon egy darab 3 KW-os szélkerék és egy 6 KW teljesítményű napelem működik. Fontos volt a tervezés során, hogy felmérjék a család energia szükségletét, és ahhoz igazítsák a berendezések hatékonyságát. Minél precízebben mérik fel az igényeket, annál gazdaságosabban üzemeltethető a rendszer. A mérési helyszín kiválasztása során fel kellett térképezni az áramlást akadályozó tényezőket (természetes-és mesterséges tereptárgyak, takarónövényzet minősége stb.), a völgy- és dombhatást, a tengerszintfeletti magasságok változását, és az áramlásos turbulenciák jellegét. Ez a rendszer, mint már említettem csak és kizárólag a család igényeit szolgálja, így a többlet energiát nem táplálják a rendszerbe. Ennek oka, hogy a megtermelt és betáplált energia kilowattonkénti ára igen alacsony, ha pedig energiahiányuk támad, és a hálózatból kell vásárolni akkor ugyanezt az energiát már magasabb áron kénytelenek megvásárolni, tehát gazdaságtalan. Másrészt pedig nem megfelelő a hálózat ahhoz, hogy rákapcsolják a megtermelt energiát, fejleszteni kellene a villamos infrastruktúrát. A többlettermelést tehát valahol raktározni kell, hogy ne vesszen el. Ezt a célt szolgálja 36 db akkumulátor, melyek együttes értéke 1 600 000 forint. Élettartamuk mindössze öt év, és félévente felülvizsgálatra is szorulnak. A napelemek és a szélkerék is csatlakoztatva van egy inverteren keresztül az akkumulátorokhoz, a napelemnek azonban más az energia- és feszültségszintje, mint a szélerőműé, így azt az inverternek át kell alakítania, mielőtt az akkumulátorokba kerül az erőforrás. Ha többletenergia termelődik, tárolódik az energia, ha pedig energiahiány lép fel a háztartásban, azaz többre van szükség, mint amennyi termelődik, az akkumulátorok látják el a háztartást. (4. kép) 4. kép: Az inverterek és az akkumulátorok az öreglaki rendszerben; (Forrás: saját készítésű kép: Öreglak, 2007-08-25) 36

A somogyi kúria (5. kép) havi energiafogyasztása 2400 KW, összehasonlításképpen, egy átlagos családi háznál ugyanez az igény 300 KW. A beruházás várható megtérülési ideje az esetükben rövidebb az átlagnál. A képen látható a ház mellett elhelyezkedő napelemes rendszer (7 800 000 forint), 30 darab 200 W-os napelemből épül fel, melyben polikristályos napelemcellák helyezkednek el. Ezek nyelik el a hőt, melyet kábelen vezetnek el az inverterekig. A töltődés folyamán az inverterek maximum teljesítményre állnak, és a felesleges energiát az akkumulátorokba táplálják. Mérőeszközök segítségével érzékelik a háztartás igényeit, így tudják megállapítani a felesleg mértékét. A napelemes rendszer élettartama 25 év, ez alatt 10%-ot amortizálódik, tehát húsz év után a maximális teljesítménye csak 90%-os lehet. Teljesítményének a négyötödét március és október hónap között éri el. A teljes beruházás összegének a 60%-át a napelemek teszik ki. 5. kép: Az öreglaki rendszert üzemeltető kúria és a napelemes rendszer; (Forrás: saját készítésű kép: Öreglak, 2007-08-25) Működik egy kisebb napelemes rendszer is a kúria területén, mely nincs rákapcsolva az energiatároló rendszerre. A bejárati sorompót két darab napelem működteti, melyhez négy akkumulátor csatlakozik, így helyben raktározódik a megtermelt energia, nincs szükség szállításra. Az akkumulátorok akár három hétre elegendő energiát is el tudnak tárolni, amire szükség is van hisz a téli hónapokban igen kevés a napos órák száma. A napelemes rendszer mellett működik még egy, két propellerrel rendelkező szélerőmű is. (6. kép) 37

6. kép: Az öreglakon működő szélerőmű (Forrás: saját készítésű kép: Öreglak, 2007-08-25) A két lapáttal rendelkező szélerőműre jellemző, hogy csak nagyobb szélnél indul el, ellenben a háromlapátos szélkerékkel. A szélerőmű is egyedi méretek alapján készül el, a fent felsorolt kritériumok változatossága miatt. Meteorológiai mérésekkel végzik a pontos helymeghatározást és a magasság megállapítását. Fő alkotórészei: rotor, lapátok, állványzat, szélsebesség-korlátozó, farok szárny, feszítő kötelek. A lapátok üvegszálból készülnek, mely rendkívül kemény anyag, fontos, hogy ellenálló ám mégis rugalmas legyen. Nagy szél esetén egy rugó segítségével behajlítódnak a lapátok, így ellenáll a szélnek, s továbbra is forog. Nagyon nagy szél esetén megállnak a lapátok. Hat méter feletti szélerőműre engedélyt kell kérni, mely kritérium a gyakorlatban soha nem valósul meg, hisz a valóságban nem épülnek ilyen alacsonyan erőművek, mert ott nem megfelelő a széljárás. Empirikus tapasztalatszerzésem során arra is fényderült, hogy nem lehetséges az épületek tetejére telepíteni a szélerőműveket a nagy zajterhelés miatt. Az öreglaki erőmű 24 méter magas, és az Amerikai Egyesült Államokban készítették, egyedi igények alapján. Azért készült ott, mert egész Európában le van kötve a termelés közel egy évre előre, a növekvő érdeklődés miatt. Érdemes lenne tehát elgondolkodni azon, hogy milyen mértékű invesztíció segítené elő ezen iparág hazai felfutását, hisz az igények adottak, a termelés azonban nem képes kielégíteni azokat. A tulajdonos külön kérésére az egész rendszer rá van kapcsolva egy számítógépre, mely az ellenőrzést látja el. A beruházó, így bármelyik napszakban, akár visszamenőleg is képes ellenőrizni a fogyasztást, a termelést és a tartalékot A Somogy megyei energiapark lenyűgöző látványt és új szakmai tudásanyagot nyújtott számomra, ezért hasznosnak vélem, hogy ezen a fórumon még több ember számára ismertté válhat. 38

A VILLAMOS ENERGIA TÖRVÉNY HATÁSA, AZ ALTERNATÍV ENERGIÁT HASZNOSÍTÓ, ÚJ BERUHÁZÁSOKRA A következőkben röviden elemzem a jelenleg hatályos Villamos Energia Törvényt, és összevetem az abban foglaltakat a gyakorlati megvalósíthatóság alternatíváival. Az új Villamos Energia Törvény (2007. évi LXXXVI. Törvény) magyar viszonylatban nagy előrelépést jelent a 2005. évi LXXIX. Törvényhez, és a 2001. évi CX. Törvényhez képest, hisz pontosabban meghatározza a megújuló energiákkal termelt villamos energia átviteli árát. Az új Törvény célja, hogy egy hatékonyan működő villamos energia versenypiac feltételeit megteremtse, elősegítse az energiahatékonyságot, az energiatakarékosságot és a fenntartható fejlődést. A szabályozás értelmében villamos energiát termelni 50MW, vagy azt meghaladó teljesítőképességű erőműben lehet, melyhez termelői működési engedélyt bocsát ki a Magyar Energia Hivatal. A 0, 5 MW, vagy annál nagyobb teljesítőképességű kiserőművekben kiserőművi összevont engedély szükséges, melyet egyszerűsített eljárás során állít ki az Energia Hivatal. A háztartás méretű, kis erőművekben és a villamosműhöz nem csatlakozó kiserőművek létesítése már nem kötött olyan szigorú feltételekhez, mint az előző években. Az Energia Hivatal csak a szélerőművek, szélerőműparkok, és a villamos hálózatra termelő erőművek engedélyezését szabályozza külön szabályzóval. Ahhoz, hogy egy megújuló energiákkal működő erőművet üzembe állíthassunk, pályázni kell, mely pályázat a minimum hat hónappal a lejárta előtt megjelenik az Európai Unió Hivatalos Lapjában, és a Hivatal honlapján. A Törvény megfogalmazza, hogy a környezet megóvása érdekében elő kell segíteni a megújuló energiaforrások bővítését, és az általuk termelt villamos energia termelését. A kötelező átviteli rendszer szabályai: - Biztosítani kell a hosszú távú kiszámíthatóságot, és az energiapolitikai elvekkel való összhangot - A kötelező átviteli rendszernek a termelt villamos energia értékesítése során csökkentenie kell a versenyhiányt - A rendszernek figyelembe kell venni a beruházások megtérülési idejét, az egyes energiaforrások hatékonyságát hazánk szempontjából - Figyelembe kell venni a felhasználók teherbíró-képességét - A technológiák fejlődéséből adódó hatékonyságjavulást, és a technológia hatását a villamos energia rendszer működésére Összességében tehát a kiszámíthatóság, a hosszú távú biztonság és a támogatás jellemzi az új Törvény által kijelölt utat. Azonban nagy hiányossága, hogy nem fogalmazza meg különkülön minden alternatív energiaforrásra a kötelező átvitel értékét. Az értéken van a hangsúly, a kiszámítás módjait és tényezőit kiválóan rögzíti. A szabályzó szerint ugyanis a kötelező átvitel történhet a piaci áron és külön jogszabályban meghatározott áron, de arról nem rendelkezik, hogy melyik milyen célcsoportokra vonatkozik. A kötelezően átvett mennyiséget, és az átvétel tartalmát a Hivatal állapítja meg, az árat pedig a Kormány. Véleményem szerint nem célszerű megosztani ezt a területet, és döntési mechanizmust, hisz a három tényező elválaszthatatlan egymástól, és egy kézben kellene, hogy összpontosuljon. Továbbá kedvezőtlen kritériuma a Törvénynek az is, hogy a kötelező átvételi ár legfeljebb az adott beruházás megtérülési idejére biztosítható. Továbbá a megtérülés időtartamának számításakor negatív tényezőként szerepel az állami támogatások igénybevétele. Magyarországon akkor lehetne több típusú, és teljesítményű szélerőművet üzembe helyezni, és termelését a hálózatra kötni, ha a Magyar Villamos Rendszerirányító Zrt. 39

(MAVÍR) a szélenergia időjárástól függő ingadozását biztonsággal ki tudná egyenlíteni, és be tudná táplálni a termelés- fogyasztás rendszerébe. Ennek feltétele egy nagy kapacitású, kiegyenlítő erőmű lenne, melynek megépítése egyelőre még tervben sincs hazánkban. Sajnos, emiatt számtalan befektető került lehetetlen helyzetbe, az évek óta tartó engedélyeztetések, és költségek nem látszanak megtérülni, mert hiányzik a legutolsó, a MEH engedélye, melyet addig nem is fognak megkapni, amíg a villamos energetikai infrastruktúránk fejletlen. ÖSSZEGZÉS Megállapíthatjuk, hogy hazánkban, fellendülőben van a zöldenergia felhasználás, az állami támogatás hiány azonban továbbra is meghatározó. Részben sikerült megállapítani a garantált átvételi árat, ez azonban továbbra is túl alacsony és csak kevesen juthatnak hozzá. A MEH elbírálási szempontjai sem voltak egyértelműek, és közérdekűek, ami miatt több vesztes beruházó a Gazdasági Versenyhivatalhoz fordult. Két megoldás létezik, az egyik hogy pályázati összegeket különítenek el, magáncélra felhasználható energia-termelésre, azaz kis szélerőművek telepítésére. A másik pedig, ha elkezdik fejleszteni a már több évtizede elöregedett villamos hálózatot, és megépítik a MAVIR által javasolt, energia-elosztó erőművet, így növelhető lenne a kapacitás, és több, a mosonmagyaróvárihoz hasonló nagyteljesítményű szélerőmű park épülhetne. FELHASZNÁLT IRODALOM [1] http://www.ff3.hu/fejlodes.html Letöltési idő: 2007-08-10 [2] Dr. Nagy József: Megújuló energiaforrások a mezőgazdaságban -Megújuló energia piac- Agrár Innovációs Szövetség 2005. [3] Megújulók- Megújuló energiaforrások: típusok, technológiák http://www.energiaklub.hu/hu/megujulok/alapinfo/restechnologiak/ Letöltési idő: 2007-08-10 [4] Bella Sz.: Napenergia, mint megújuló energiaforrás, Magyarországi lehetőségei OMSZ Beszámolókötet 2005. [5] Dr. Kiss Zoltán- Kovács Tibor: Magyarország részvétele a napelemiparban és a napelemes energia előállításban Megújuló energia piac- Agrár Innovációs Szövetség 2005. [6] Dobi I. Országos széltérképek összehasonlítása, magyarországi szél és napenergia kutatás eredményei OMSZ 2005. [7] A Magyar Szélenergia Tanács statisztikai adata alapján http://images.google.hu/imgres?imgurl=http://www.mszet.hu/files/tiny_mce/image/ele ctricity_from_wind20071231.jpg&imgrefurl=http://www.mszet.hu/index.php%3fmid %3D53&usg= lpxm8frxi9ef5kfyjzut-n- HrSA=&h=286&w=501&sz=91&hl=hu&start=11&um=1&tbnid=oTG7qv7gjE1pNM: &tbnh=74&tbnw=130&prev=/images%3fq%3dmagyarorsz%25c3%25a1g%2bsz% 25C3%25A9lenergia%26um%3D1%26hl%3Dhu%26sa%3DN Letöltési idő: 2009-03- 03 [8] Hunyár- Tar- Tóth: Magyarország szélenergia potenciálja Energiagazdálkodás 45. 6. (p. 20-25) 2004. 40