A biogáz gyártás melléktermékének hatása a talaj néhány kémiai tulajdonságára. Összefoglalás



Hasonló dokumentumok
A TALAJOK KÖNNYEN KIOLDHATÓ ELEMTARTALMÁNAK VÁLTOZÁSA BIOGÁZ GYÁRTÁS MELLÉKTERMÉKÉNEK HATÁSÁRA

A biogáz gyártás melléktermékének hatása a talaj néhány mikrobiológiai tulajdonságára. Összefoglalás. Summary

A GEOSAN Kft. célkitűzése a fenntartható fejlődés alapjainak elősegítése

Az NPK-trágyázás hatása a kukorica tápelemfelvételének dinamikájára, öntözött és nem öntözött viszonyok között

Hibridspecifikus tápanyag-és vízhasznosítás kukoricánál csernozjom talajon

Szennyvíziszap komposzt energiafűzre (Salix viminalis L.) gyakorolt hatásának vizsgálata

Információtartalom vázlata: Mezőgazdasági hulladékok definíciója. Folyékony, szilárd, iszapszerű mezőgazdasági hulladékok ismertetése

AGROTECHNIKAI TÉNYEZŐK HATÁSA A KULTÚRNÖVÉNYEKRE ÉS A GYOMOSODÁSRA

KOMMUNÁLIS SZENNYVÍZISZAP KOMPOSZTÁLÓ TELEP KÖRNYEZETI HATÁSAINAK ÉRTÉKELÉSE 15 ÉVES ADATSOROK ALAPJÁN

Biogáz és Biofinomító Klaszter szakmai tevékenysége. Kép!!!

A talaj fémszennyezésének hatása a parlagfű (Ambrosia elatior L.) fémtartalmára tenyészedényes kísérletben. Összefoglalás. Summary.

Búzaszalma felhasználása a denitrifikációs veszteség csökkentésére

Biogáz konferencia Renexpo

A TALAJTAKARÁS HATÁSA A TALAJ NEDVESSÉGTARTALMÁRA ASZÁLYOS IDŐJÁRÁSBAN GYÖNGYÖSÖN. VARGA ISTVÁN dr. - NAGY-KOVÁCS ERIKA - LEFLER PÉTER ÖSSZEFOGLALÁS

MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (1) a NAT /2015 nyilvántartási számú akkreditált státuszhoz

BIODÍZELGYÁRTÁS MELLÉKTERMÉK (GLICERIN) HATÁSA A TALAJ NITROGÉNFORMÁIRA ÉS AZ ANGOLPERJE KEZDETI FEJLŐDÉSÉRE

Mi a bioszén? Hogyan helyettesíthetjük a foszfor tartalmú műtrágyákat

A kukoricahibridek makro-, mezo- és mikroelemtartalmának változása a tápanyagellátás függvényében

PARABOLIKUS HATÁSFÜGGVÉNY ÉRTELMEZÉSE

MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (1) a NAH / nyilvántartási számú akkreditált státuszhoz

Bioszén típusai, előállítása és felhasználása, valamint hatása a saláta, szójabab és más növények növekedésére - esettanulmányok

Szennyvíziszap dezintegrálási és anaerob lebontási kísérlete. II Ökoenergetika és X. Biomassza Konferencia Lipták Miklós PhD hallgató

Kun Ágnes 1, Kolozsvári Ildikó 1, Bíróné Oncsik Mária 1, Jancsó Mihály 1, Csiha Imre 2, Kamandiné Végh Ágnes 2, Bozán Csaba 1

Tápanyag antagonizmusok, a relatív tápanyag hiány okai. Gödöllő,

Magyar Tudományos Akadémia Agrártudományi Kutatóközpont Talajtani és Agrokémiai Intézet

Animal welfare, etológia és tartástechnológia

NITRÁT-SZENNYEZÉS VIZSGÁLATA HOMOKTALAJON

A biometán előállítása és betáplálása a földgázhálózatba

Biogázüzemi fermentlé felhasználásának talajtani hatásai. Összefoglalás. Summary

Szalay Sándor a talaj-növény rendszerről Prof. Dr. Győri Zoltán intézetigazgató, az MTA doktora a DAB alelnöke

YaraLiva TM CALCINIT 15.5% N + 19% CaO

RÖVID ISMERTETŐ A KAPOSVÁRI EGYETEM TALAJLABORATÓRIUMÁNAK TEVÉKENYSÉGÉRŐL

Mikrobiális biomassza és a humuszminőség alakulása trágyázási tartamkísérletben

2005-CSEKK-INNOKD-FOSZFOR

Szerves-, mű- és baktériumtrágyázás hatása a talajok 0,01 M CaCl 2 - oldható tápelem-tartalmára. Összefoglalás

Fenntartható biomassza termelés-biofinomításbiometán

Agrár-környezetvédelmi Modul Talajvédelem-talajremediáció. KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc

KOMPOSZT KÍSÉRLET KUKORICÁBAN

YaraLiva TM CALCINIT 15.5% N + 26,5% CaO

Összefüggések a különböző talaj-kivonószerekkel kivont mikroelemtartalom és a fontosabb talajtulajdonságok között. Összefoglalás. Summary.

Összefoglalás. Summary. Bevezetés

MSZ 20135: Ft nitrit+nitrát-nitrogén (NO2 - + NO3 - -N), [KCl] -os kivonatból. MSZ 20135: Ft ammónia-nitrogén (NH4 + -N),

YaraLiva CALCINIT. 15.5% N + 26,5% CaO 100%-ban vízoldható kalcium-nitrát Kiszerelés: 25 kg, 2 kg

Komposztkezelések hatása az angolperje biomasszájára és a komposztok toxicitása

68665 számú OTKA pályázat zárójelentés

Függelék a 90/2008. (VII. 18.) FVM rendelet 2. és 3. mellékletéhez

Növekvı arzén adagokkal kezelt öntözıvíz hatása a paradicsom és a saláta növényi részenkénti arzén tartalmára és eloszlására

Bábolna. Takarmányozási Program. Húsmarha / Tehén Kiegészítő takarmányok

Norvég kutatási pályázat. Cégcsoport bemutató

SAVANYÚ HOMOKTALAJ JAVÍTÁSA HULLADÉKBÓL PIROLÍZISSEL ELŐÁLLÍTOTT BIOSZÉNNEL

Környezetvédelem / Laboratórium / Vizsgálati módszerek

A KUTATÁS CÉLJA, A MUNKATERVBEN VÁLLALT KUTATÁSOK ISMERTETÉSE

Trágyavizsgáló labor. Csiba Anita, intézeti mérnök Tevékenységi kör

Ipari melléktermékek vizsgálata a növények tápanyag-utánpótlásában

a NAT /2013 nyilvántartási számú akkreditált státuszhoz

NEHÉZFÉMEK ELTÁVOLÍTÁSA IPARI SZENNYVIZEKBŐL Modell kísérletek Cr(VI) alkalmazásával növényi hulladékokból nyert aktív szénen

BORSOD-ABAÚJ-ZEMPLÉN MEGYE

Komposztált vágóhídi melléktermékek hatása szántóföldi növények terméshozamára. Összefoglalás

YaraLiva CALCINIT. 15,5% N + 26,5% CaO 100%-ban vízoldható kalcium-nitrát Kiszerelés: 25 kg, 2 kg

A MAGYARORSZÁGI TERMESZTÉSŰ DOHÁNYOK NITROGÉN TÁPANYAG IGÉNYE A HOZAM ÉS A MINŐSÉG TÜKRÉBEN. Gondola István

4432 Nyíregyháza, Csongor utca 84. Adószám: Cégjegyzékszám: Telefon: 30/

LABORATÓRIUMI PIROLÍZIS ÉS A PIROLÍZIS-TERMÉKEK NÉHÁNY JELLEMZŐJÉNEK VIZSGÁLATA

Adatbázis. Az adatbázis legfontosabb elemei:

A komposztok termékként történő forgalomba hozatalának és felhasználásának engedélyezése

Megnyitó. Markó Csaba. KvVM Környezetgazdasági Főosztály

Minták előkészítése MSZ : Ft Mérés elemenként, kül. kivonatokból *

Környezettudományi Kooperációs Kutató Központ, ELTE TTK, Budapest 2. Analitikai Kémiai Tanszék, ELTE TTK, Budapest

NAGYÜZEMI BAROMFITRÁGYA

Paradicsom és paprika tápoldatozása fejlődési fázisai szerint. Szőriné Zielinska Alicja Rockwool B.V

C,H,O,N,P,S,B,K,Ca,Mg Cu,Mn,Fe,Zn,Mo? (2-3 elem egy kérdésben) o Hogyan változik a növény ásványi anyag tartalma az idő múlásával?

energiaforrása Kőrösi Viktor Energetikai Osztály KUTIK, Summer School, Miskolc, Augusztus 30.

Összefoglalás. Summary

A szója oltás jelentősége és várható hozadékai. Mándi Lajosné dr

a NAT /2009 számú akkreditált státuszhoz

a NAT /2006 számú akkreditálási ügyirathoz

Biogáztelep hulladék CO 2 -jének, -szennyvizének, és -hőjének zárt ciklusú újrahasznosítása biomasszával

Gondolkodjunk komplexen Gondolkodjunk komplexben. Tóth Gábor szaktanácsadó Tel:

A szervesanyag-gazdálkodás jelentsége a mezgazdaságban

TOTAL 44% A VETÉS JOBB MINŐSÉGE Nagyobb hozam és eredmény. NITROGÉN (N) Ammónia nitrogén (N/NH 4 ) 20% 24% KÉN (S)

A trágyázás hatása a 0,01 M kalciumkloridban oldható nitrogén-formák mennyiségének változására

Főbb szántóföldi növényeink tápanyag- felvételi dinamikája a vegetáció során. Gödöllő, február 16. Tóth Milena

Adjuk naprakész a talajtani szaktudást a gazdák kezébe! Dr. Vona Márton

Nitrogén műtrágyázás hatása a torma termésmennyiségére és szövetbarnulására. Összefoglalás. Summary. Bevezetés

RÉSZLETEZŐ OKIRAT (1) a NAH /2018 nyilvántartási számú akkreditált státuszhoz

Állati eredetű veszélyes hulladékok feldolgozása és hasznosítása

MEZŐGAZDASÁGI HULLADÉKOT FELDOLGOZÓ PELLETÁLÓ ÜZEM LÉTESÍTÉSÉNEK FELTÉTELEI

Természetes vizek szennyezettségének vizsgálata

Több komponensű brikettek: a még hatékonyabb hulladékhasznosítás egy új lehetősége

a NAT /2008 számú akkreditálási ügyirathoz

A nád (Phragmites australis) vizsgálata enzimes bonthatóság és bioetanol termelés szempontjából. Dr. Kálmán Gergely

A takarmány mikroelem kiegészítésének hatása a barramundi (Lates calcarifer) lárva, illetve ivadék termelési paramétereire és egyöntetűségére

TÖNKRETESSZÜK-E VEGYSZEREKKEL A TALAJAINKAT?

Dr. Kardeván Endre VM államtitkár

Bio Energy System Technics Europe Ltd

A nitrogén- és káliumműtrágyázás hatása vetésforgóban Interaction between nitrogen and potassium fertilization in crop rotation

A BIOHULLADÉK SZABÁLYOZÁS ÁTALAKÍTÁSA Budapest, szeptember 10.

Talajra gyakorolt műtrágyahatások vizsgálatának legújabb eredményei a karcagi OMTK kísérletekben. Összefoglalás. Summary.

A nagy hatásfokú hasznos hőigényen alapuló kapcsolt hő- és villamosenergia-termelés terén elért előrehaladásról Magyarországon

Lombtrágyázási technológiák

Összefoglalás. Summary

Átírás:

A biogáz gyártás melléktermékének hatása a talaj néhány kémiai tulajdonságára Vágó Imre 1 Makádi Marianna 2 Kátai János 1 Balláné Kovács Andrea 1 Debreceni Egyetem, Agrár- és Műszaki Tudományok Centruma 1 Mezőgazdaságtudományi Kar, Agrokémiai és Talajtani Tanszék, Debrecen 2 Nyíregyházi Kutató Központ E-mail: vago@agr.unideb.hu Összefoglalás A környezeti problémákat okozó CO 2 kibocsátásának csökkentésében fontos eszköz a mezőgazdasági melléktermékek hasznosításán alapuló megújuló energiaforrások mind szélesebb körű gyakorlati felhasználása. A friss biomassza tüzelésű erőművek mellett ennek egyik legfontosabb módja a mezőgazdasági melléktermékek fermentációjával előállított biogáz hasznosítása. Gondot jelent viszont a reduktív viszonyok között képződő fermentációs maradék megnyugtató elhelyezése. Jelenleg a szabályozók előírása szerint a maradékot veszélyes hulladékként kell kezelni. Ugyanakkor ismert, hogy a fermentáció után visszamaradó anyag jelentős mennyiségű növényi tápanyagot is tartalmaz, mezőgazdasági hasznosítása ezért indokoltnak látszik. A melléktermékkel ugyanakkor esetleg nem kívánatos, környezetterhelő komponensek is a talajba juthatnak. A fermentációs maradék hasznosíthatóságának tisztázására ezért indokolt kísérleteket végezni. Nyírbátor közelében, 2007-ben szabadföldi kísérleteket állítottunk be annak tisztázására, hogy a különböző adagokban a talajba juttatott biogáz fermentlé hogyan befolyásolja a talaj táp- és toxikuselem-tartalmát. A cikkben a kalcium-kloridos talajextrakciót követő ICP vizsgálatok eredményeit ismertetjük. Summary To reduce the environmentally problematic CO 2 emission the even more wide spread and functional use of renewable resources based on the utilization of agricultural by-products has become an important implement. Beside power plants firing fresh biomass the utilization of biogas as the end product of the fermentation of agricultural by-products is one of the most important methods for this. The only trouble with this method is the adequate location of the residue of the fermentation that is produced between reductive circumstances. At the present time after the regulations we have to consider and handle this residue as hazardous waste. Whereas it is also well known that the fermentation residue contains quite a significant amount of plant nutrients, that s why its agricultural use seems to be reasonable. With these by-products may some undesirable, environment damaging components also get into the soil. To clear the utilization circumstances of fermentation residues it is reasonable to do new experiments. That s why the authors of this paper set up field experiments near Nyírbátor, in 2007. They objected to clear how different dosages of biogas fermentation residues in the soil affect the nutrient- and toxic element content of soil. In this paper we especially introduce the results of soil extraction with CaCl 2 and of the ICP analysis after that. 555

Talajvédelem különszám 2008 (szerk.: Simon L.) Bevezetés Az utóbbi időkben a nagy szervesanyag-tartalmú mezőgazdasági, esetleg élelmiszer feldolgozási melléktermékek és maradékok energetikai hasznosításának két fő módja van mindinkább elterjedőben: az oxidatív eljárás (elégetés biomassza-erőművekben; SCHIEMENZ et al., 2007), illetve a reduktív eljárás (hasznosítás biogáz előállítására). Az eljárások annyiban is hasonlítanak egymásra, hogy a képződött végtermékek (biomassza erőműveknél a nagy mennyiségű hamu, míg a biogáz telepeknél a fermentációs maradék) elhelyezése gondot okoz. Mivel mindkét melléktermékben jelentős mennyiségű növényi tápanyag található, felvetődik annak lehetősége, hogy ezeket a növénytermesztésben hasznosítsuk. Az irodalomban viszonylag kevés publikáció foglalkozik a fermentációs maradékok hasznosíthatóságának vizsgálatával a növénytermesztésben. QI et al. (2005) Észak-Kínában vizsgálta a biogáz előállítása utáni maradék hatását néhány kertészeti kultúrára, elsősorban uborkára és paradicsomra. Vizsgálataik igazolták, hogy nem csupán a növényi produkció növekedett, hanem a termékek C-vitamin tartalma is. BANIK & NANDI (2004) vizsgálati eredményei szerint a laskagomba nagyobb mennyiségű és jobb minőségű terméssel reagált a fermentációs maradékkal történő táplálásra. Hazánkban az utóbbi néhány évben jelentős mennyiségű biogáz üzemet állítottak üzembe. Ez azért tekinthető szerencsés folyamatnak, mert biogáz előállításra (a szerves vegyipar termékeinek kivételével) szinte valamennyi, szerves vegyületeket tartalmazó anyag (trágya, fekália, élelmiszeripari melléktermékek és hulladékok, zöld növényi részek, háztartási zöldhulladékok, lejárt élelmiszerek, éttermi maradékok, kommunális szennyvíziszap, stb.) alkalmas. A nedves biogáz-gyártás alapanyaga általában a hígtrágya, vagy élelmiszeripari szervesanyag-tartalmú folyadék, melyeknek szárazanyagtartalma 2-8%, és a szervesanyag-tartalma 40-60% között van (FARKAS, 2004). A fermentációs maradvány felhasználása a növénytáplálásban hazánkban is kedvező alternatíva lehet a jelenlegi helyzetre, miszerint a maradványt veszélyes hulladékként kell elhelyezni. Ehhez természetesen további ismeretanyagra van szükségünk arról, hogy milyen hatást fejt ki ez az anyag a talajra, illetve a növényekre. MAKÁDI et al. (2008) eredményei szerint a szójának nemcsak a termésmennyisége növekedett a fermentációs maradék kijuttatásának hatására, hanem a fontosabb minőségi paraméterei is számottevően javultak. Jelen dolgozatban bemutatott kísérleteink célja annak megállapítása volt, hogy a fermentációs maradékkal való kezelés hatására változik-e, és ha igen, milyen mértékben, a talaj 0,01 M dm -3 kalcium-klorid oldható elemtartalma. 556

Talajtani Vándorgyűlés, Nyíregyháza, 2008. május 28-29. Anyag és módszer Szabadföldi kísérlet keretében vizsgáltuk a biogázüzemi fermentlé hatását savanyú kémhatású (ph-kcl: 4,89), homok textúrájú talajon. A kísérlet beállítására Nyírbátor területén került sor 2007-ben. Kísérleteinkhez Európa egyik legnagyobb kapacitású biogáz előállítójának, a Nyírbátori Regionális Biogáz Üzemnek a fermentációs maradékát használtuk fel. Ebben az üzemben szarvasmarha-, sertés- és baromfitrágyák, továbbá növényi maradványok, baromfi vágóhídi és egyéb állati hulladékok ártalmatlanítására, feldolgozására kerül sor. A kiindulási anyagok összetétele, karaktere a vegetációs időszaktól, illetve a mezőgazdasági és élelmiszeripari üzemek technológiai fázisaitól is függ. Ez azt eredményezi, hogy a fermentációs maradék sem állandó összetételű, a nyersanyagok jellemzőin túl még a biogáz üzem aktuális működési paramétereitől is függ. Ezért a szántóföldre juttatás előtt minden esetben meg kell vizsgálni a fermentációs maradék karakterisztikus paramétereit. Az általunk felhasznált anyag nyers állapotban mért jellemző értékei: ph = 8,025, sűrűség = 1 025,75 kg m -3, szárazanyag-tartalom = 1,1824 m m -1 %, összes-n = 0,376 m m -1 %, összes-p = 275 mg kg -1, K = 736 mg kg -1, Mg = 32,7 mg kg -1, Na = 272,5 mg kg -1. Bár a fermentációs maradék sokféle növényi tápanyagot tartalmaz, a kísérletekben kijuttatandó mennyiségét a nitrogén tartalmához igazítottuk. Ennek megfelelően a kontrollkezelés mellett még 5 és 10 dm 3 m -2 adagnak megfelelő mennyiségben juttattuk ki folyékonytrágya szóróval. A randomizált kísérleti parcellákat négy ismétlésben állítottuk be, szója (Glycine max L. Merr. cv. Otilia) jelzőnövénnyel. A szója termését 2007. októberében learattuk, majd a kísérleti parcellák talajának 0-20 cm-es rétegéből mintát vettünk. A talajmintákat légszáraz állapotba hoztuk, a növényi maradványokat eltávolítottuk belőle, majd a talajt addig aprítottuk, míg a teljes mennyisége a 2,0 mm-es lyukméretű szitán áthullott. A talajmintákból 0,01 M dm -3 CaCl 2 extraháló oldattal rázatva kivonatot készítettünk (NAGY, 2003), majd szűrtük. A szűrletben ICP OES módszer alkalmazásával mértük a kioldott elemtartalmakat (KOVÁCS et al., 2000). A kapott eredményeket egy tényezős varianciaanalízissel értékeltük, a Tolner László által kidolgozott számítógépes program segítségével (TOLNER et al., 2007). Vizsgálati eredmények és értékelésük Az 1. táblázatban a 0,01 M CaCl 2 kivonatban ICP OES módszerrel mért elemtartalmakat közöljük. A mérési adatok egy-egy kezelés négy ismétlésének átlagát reprezentálják. A táblázat utolsó két oszlopában feltüntettük a varianciaanalízis eredményeit is. 557

Talajvédelem különszám 2008 (szerk.: Simon L.) 1. táblázat. A biogáz fermentációs maradék alkalmazásának hatása a talaj 0,01 M dm -3 CaCl 2 oldattal extrahálható elemtartalmára (mg kg -1 ) Vegyjel fermentlé fermentlé szignifikancia mg kg -1 Kontroll 5 dm 3 m -2 10 dm 3 m -2 F érték, SzD 5% Al 2,80 2,53 1,50 1,32 n.sz. B 0,33 0,45 0,50 2,92 n.sz. Be 4,54 4,50 3,87 0,58 n.sz. Cd 0,063 0,067 0,545 1,00 n.sz. Co 0,064 0,071 0,057 1,18 n.sz. Cu 0,089 0,112 0,118 5,18+ 0,026 K 44,43 65,3 72,5 9,91* 18,16 La 0,175 0,172 0,173 1,92 n.sz. Li 0,148 0,152 0,160 0,60 n.sz. Mg 46,9 54,1 65,7 45,64** 5,49 Mn 25,5 35,1 35,5 247,5*** 1,41 Na 16,6 31,5 38,0 15,7* 10,92 Ni 0,50 0,52 0,35 0,81 n.sz. P 0,77 1,94 3,62 8,93* 1,88 S 5,92 8,18 9,90 18,79** 1,85 Sc 0,025 0,027 0,029 94,72*** 0,0008 Si 0,32 0,35 0,45 5,08+ 0,12 Sr 8,56 8,60 8,62 0,01 n.sz. Zn 1,40 0,98 0,62 10,92* 0,46 Szignifikancia szintek jelölése: *** P = 0,1 %-os szinten szignifikáns ** P = 1,0 %-os szinten szignifikáns * P = 5,0 %-os szinten szignifikáns + P = 10 %-os szinten szignifikáns n.sz. nem szignifikáns A táblázatban található eredményeket áttekintve az alábbi következtetések vonhatók le: A szója talajára kijuttatott fermentációs maradék nem befolyásolta szignifikáns mértékben a tenyészidő végén a talajból extrahálható Al, B, Be, Ca, Cd, Co, La, Li, Ni és Sr mennyiségét. Feltűnő ennek ellenére, hogy a kontrollhoz képest a nagyobb adagú fermentlé hatására a talaj oldható alumíniumtartalma mintegy a felére csökkent. Ez kedvező jelenség, hiszen a talajoldat nagy alumíniumion tartalma látens, súlyosabb esetben manifesztálódott fitotoxikus hatást fejthet ki. A 558

Talajtani Vándorgyűlés, Nyíregyháza, 2008. május 28-29. szójanövények normális fejlődéséből megállapítottuk, hogy erről ebben a kísérletben nem lehet szó, mégis egyértelműen a fermentációs maradék javára kell írni az alumíniumtartalom csökkentését. Valószínűleg a mért alumínium értékek nagy szórása okozta, hogy a csökkenés nem érte el a szignifikáns mértéket. A kísérleti talaj bórtartalma valamelyest növekedett, ami a növények tápanyag-ellátásának szempontjából szintén kedvező tendenciára utal. Megnyugtató, hogy a kezelések hatására nem változott a mért nehézfémek (Cd, Co, La, Ni, Sr) koncentrációja a talajkivonatokban. Ugyanez a megállapítás vonatkozik a mért könnyűfémek egy részére (Be, Li) is. A mért növényi tápelemek többsége szignifikáns növekedést mutatott a könnyen oldható talajfrakcióban. A makroelemek közül a foszfor- és a káliumtartalom P = 5,0 %-os szinten szignifikáns mértékben fokozódott, míg a kéntartalom növekedése elérte a P = 1,0 %-os megbízhatósági szintet. Különösen szembeötlő, hogy a talaj oldható P-frakciója megötszöröződött (!), de a kálium- és a kéntartalom is a kontroll értékének több mint másfélszeresére növekedett. A talaj P-, K- és S-készletének növekedését a fermentlé kijuttatás egyértelműen pozitív hatásai közé kell sorolnunk. A mezoelemek közül a kalcium változását nem tudjuk figyelemmel kísérni ezen módszerrel. A másik mezoelemről, a magnéziumról viszont megállapítható, hogy a ferment maradék kijuttatása fokozta a visszamérhető mennyiségét. Ezt a jelenséget szintén a fermentlé előnyei között kell számon tartanunk. A mikroelemek közül a mangán mennyisége szorosan, P = 0,1 %-os szinten szignifikáns mértékben, mintegy 40 %-kal növekedett. Az oldható réztartalom növekedése szerényebb mértékű és csak eléggé laza (P = 10 %-os) volt. Figyelemre méltó, hogy a talaj könnyen extrahálható cinktartalma viszont P = 5,0 %-os szinten szignifikáns mértékben kevesebb, mint a felére csökkent a kezelések hatására. A jelenségnek az a magyarázata, hogy a talaj oldható foszfortartalma nagymértékben megnövekedett. A nagy foszfátkoncentráció rosszul oldódó cink-foszfát csapadék képzése útján csökkenti az oldott cinktartalmat. Ez a jelenség viszont a negatív hatások közé sorolandó. Kedvezőtlen, hogy a kezelések hatására a talaj nátriumion-tartalma jelentős mértékben, P = 5,0 %-os szinten, a kétszeresére növekedett. A nátriumtartalom növekedése nemcsak a növények szempontjából lehet hátrányos, hanem hosszabb távon a talaj állapotát is hátrányosan befolyásolhatja. Következtetések A savas ph-jú, homok textúrájú, kis pufferkapacitású, tehát a külső hatásokra érzékeny talajon végzett kísérleteink bizonyítják, hogy a biogáz gyártás melléktermékeként képződött fermentációs maradék hasznosítása a növénytáplálásban kedvező eredményeket hozott, a makro-, mezo- és mikroelemek többségének mennyisége növekedett a talajextraktumban. Toxikus 559

Talajvédelem különszám 2008 (szerk.: Simon L.) elem felhalmozódást nem tapasztaltunk. Megítélésünk szerint a fermentációs maradék jól használható a talajok trágyázására. A talajok nátriumtartalma viszont növekedett, ami a megfelelő óvatosság szükségességét támasztja alá. Irodalomjegyzék BANIK, S., NANDI, R. (2004): Effect of supplementation of rice straw with biogas residual slurry manure on the yield, protein and mineral contents of oyster mushroom. Industrial Crops and Products 20. 311-319. FARKAS, B. (2004): Biogáz lehetőségei a mezőgazdaság, a környezetvédelem és az energetika szempontjából. Budapesti Gazdasági Főiskola, Külkereskedelmi Főiskolai Kar, Nemzetközi Kommunikáció Szak. BGF KKFK Elektronikus Könyvtár, Budapest, 22-23. p. KINCSES, I., FILEP, T., KREMPER, R., SIPOS, M. (2008): Effect of nitrogen fertilization and biofertilization on element content of parsley. Cereal Research Communications 36. 571-574. KOVÁCS, B., PROKISCH, J., GYŐRI, Z., BALLA KOVÁCS, A., PALENCSÁR, A.J. (2000): Studies on soil sample preparation for inductively coupled plasma atomic emission spectrometry analysis. Communications in Soil Science and Plant Analysis 31. 1949-1963. KOVÁCS, B. A.; SIPOS, M.; KREMPER, M., (2008): Influence of bio- and chemical fertilization on nitrate accumulation, phosphorus and calcium content in lettuce (Lactuca sativa L.). Cereal Research Communications 36. 555-559. MAKÁDI, M., TOMÓCSIK, A., EICHLER-LÖBERMANN, B., SCHIEMENZ, K. (2008): Nutrient cycling by using residues of biogas-digestate on plant and soil parameters. Cereal Research Communications 36. 1807-1810. NAGY, P. T. (2003): A trágyázás hatása a 0,01 M kalcium-kloridban oldható nitrogénformák mennyiségének változására. Agrártudományi Közlemények 10. 166-170. QI, X., ZHANG, S., WANG, Y., WANG, R. (2005): Advantages of the integrated pigbiogas-vegetable greenhouse system in North China. Ecological Engineering 24. 177-185. SCHIEMENZ, K., DRESOW, J., EICHLER-LÖBERMANN, B. (2007): Verwertung von Biomasse-Aschen zur P-Düngung im Pflanzenbau. In: Mitteilungen der Gesellschaft für Pflanzenbauwissenschaften; Gesellschaft für Pflanzenbauwissenschaften (Eds.: A. HERRMANN, F. TAUBE) (Hrsg.): 50. 62-63. Jahrestagung in Bonn (18.-20. September 2007). 19. Kiel: Schmidt & Klaunig KG. TOLNER, L., CZINKOTA, I., RÉKÁSI, M., KOVÁCS, A. (2007): Reproductability of soil acidity investigations. VI. Alps-Adria Scientific Workshop, Obervellach, 2007. 560