A transzmutáció témaköréhez kapcsolódó fontosabb fogalmak és szakkifejezések magyarázata Aktinidák Dedikált transzmutációs berendezés A 89-es rendszámú aktínium és az annál nagyobb rendszámú elemek. Legismertebb közülük a tórium (Z = 90), az urán (Z = 92) és a plutónium (Z = 94). A reaktorban az aktinidák az urán neutronbefogása nyomán keletkeznek. Az így létrejött radioaktív izotópok béta-bomlásával egyre nagyobb rendszámú elemek jönnek létre, ezért a kiégett üzemanyagban az uránon túl a neptúnium, a plutónium, az amerícium és a kőrium több izotópja is megtalálható. Az aktinidák általában nagy radiotoxicitású és hosszú felezési idejő izotópok, amelyeknek bomlása során újabb radioaktív anyagok keletkeznek, és ez a bomlási sor csak az ólom, bizmut környékén torkollik stabil izotópokba. A kiégett üzemanyag radiotoxicitásáért és ebbıl adódóan a több százezer éven át fennálló kockázatért elsısorban az aktinidák a felelısök. Olyan transzmutációs berendezés (speciális reaktor vagy gyorsítóval hajtott szubkritikus rendszer), amelyet kifejezetten transzmutációs célra fejlesztettek ki és üzemeltetnek. Az elsısorban energiatermelést és hasadóanyag-tenyésztést szolgáló gyorsreaktorok nem tartoznak ebbe a kategóriába, akkor sem, ha transzmutációs céllal másodlagos aktinidákat is elhelyeznek bennük. A dedikált transzmutációs berendezések (más néven transzmuterek) szolgálhatnak a hosszú felezési idejő hasadási termékek (pl. 99 Tc vagy 129 I) neutronbefogásos átalakítására (nagy termikus neutronfluxussal), vagy a plutónium és a másodlagos aktinidák elhasítására (kemény gyorsneutron-spektrummal). A vonatkozó vizsgálatok szerint egy dedikált transzmutációs berendezés általában 5-10 termikus és/vagy gyorsreaktor transzmutálandó anyagait képes átalakítani. A dedikált transzmutációs berendezések kifejlesztése jelenleg a koncepcionális tervek szintjénél tart. Doppler-effektus, Doppler-együttható, rezonancia-tartomány Bizonyos aktinida-izotópok a termikus neutronok energiájánál nagyobb, úgynevezett epitermikus energiájú neutronok esetében rezonancia-jellegő befogási hajlandóságot mutatnak, azaz csak adott neutronenergia-értékeknél abszorbeálják a neutront, ennél az értéknél azonban nagyon nagy valószínőséggel. Tipikusan ilyen befogási energiafüggést (rezonancia-struktúrát) mutat az 238 U izotóp. Azt a neutronenergia-tartományt, amelyben a fenti jelenség érvényesül, rezonancia-tartománynak nevezzük. A rezonanciák energiában mért szélessége nagyon csekély. Ha azonban az üzemanyag hımérséklete emelkedik, az 238 U magoknak a kristályrácsbeli helyük körül végzett 1
rezgımozgása (hımozgása) intenzívebbé válik, és ezáltal megnı a valószínősége, hogy a mag és a neutron relatív mozgási sebessége éppen a rezonancia-energiának felel meg. Ez a magfizikai Dopplereffektus. Az emelkedı üzemanyag-hımérséklet tehát megnöveli a neutronabszorpció valószínőségét. Ennek pedig az a következménye, hogy a hirtelen megnövekvı teljesítményő reaktor a hımérséklet emelkedésén keresztül önmagát fogja vissza, lefékezve vagy visszafordítva a további teljesítménynövekedést. Az effektus erısségét a Doppler-együtthatóval szokás jellemezni, amely megadja, hogy egy foknyi hımérsékletnövekedés mekkora reaktivitás-csökkenést eredményez. Dóziskonverziós tényezı Elsıdleges aktinidák Az a szorzótényezı, amely megadja, hogy egy bizonyos izotópból egységnyi aktivitás felvétele (lenyelés vagy belélegzés útján) mekkora dózist okoz. A dózis az ionizáló sugárzás által az emberi szervezetben okozott egészségkárosodás mértékét, illetve annak kockázatát jellemzi. A tórium (Th), az urán (U) és a plutónium (Pu). Ezeket az aktinidákat a nukleáris üzemanyagciklusban betöltött fontos szerepükre való tekintettel nevezzük elsıdlegeseknek. Gyorsítóval hajtott szubkritikus rendszer Olyan, önfenntartó láncreakcióra képtelen szubkritikus reaktor, amelyet egy proton- vagy elektrongyorsítóval hajtott spallációs forrásból származó neutronokkal tartunk szubkritikus (neutronerısítı) üzemben. Az ilyen berendezést a neutronforrás közelében igen kemény neutronspektrum jellemzi. A transzmutációs céllal épített szubkritikus rendszer zónája általában uránmentes, azaz csak másodlagos aktinidákat és esetleg plutóniumot tartalmaz. A transzmutációs célú szubkritikus rendszerek kifejlesztése jelenleg a koncepcionális tervek szintjénél tart. Hasadási termékek A maghasadás során keletkezı közepes rendszámú (leginkább Z = 90 és Z = 130 körüli) izotópok. Mintegy 300-féle különbözı hasadási terméket (izotópot) ismerünk. Rendszerint radioaktívak, de kevésbé veszélyesek (kevésbé radiotoxikusak), mint az aktinidák, nem épül rájuk bomlási sor (általában egy-két bomlás után stabil izotóppá alakulnak), és néhány kivételtıl eltekintve 30 évnél rövidebb felezési idejőek. Inkább azért okozhatnak problémát, mert az aktinidáknál könnyebben terjednek a környezetben és jutnak be élı szervezetekbe. A hasadási termékek közül a radioaktívhulladékkezelés szempontjából egyrészt a 90 Sr és a 137 Cs, másrészt a 99 Tc és a 129 I izotópok érdemelnek említést. Elıbbiek azért mert nagy mennyiségben keletkeznek, felezési idejük azonban mindössze ~30 év, ezért lebomlásuk transzmutáció nélkül is kivárható. A második két izotóp is számottevı mennyiségben keletkezik, ezek felezési ideje ellenben nagyon hosszú (a technécium esetében 2,1 10 5 év, a jód esetében pedig 1,7 10 7 év), ezért jelentısen 2
hozzájárulnak a kiégett üzemanyag radiotoxicitásának hosszú távú alakulásához. Mindezek miatt a 99 Tc és a 129 I izotópokat a fontosabb transzmutálandó anyagok között tartják számon. Hasadóanyaghasznosítási hatásfok Egy kilogramm uránból ha azt teljes egészében elhasítanánk kb. 930 MWnap (hı)energiát lehetne nyerni. Ezzel szemben a mai tipikus atomerımővi reaktorokban mindössze 30-60 MWnap (hı)energiát szabadítunk fel üzemanyag-kilogrammonként. Ez mindössze 3-6% körüli hasznosítási hatásfokot jelent. Mivel azonban egységnyi tömegő atomerımővi üzemanyag elıállításához (a manapság jellemzı 4-5% dúsítás esetén) közelítıleg egy nagyságrenddel több természetes uránra van szükség, a mai atomerımővek üzemanyag-hasznosítási hatásfoka, vagy más szóval az uránban rejlı energetikai potenciál kihasználási foka mindössze 0,3-0,6%-a az elméletileg lehetséges maximumnak. Kevert oxid (MOX) üzemanyag Késıneutronok, késıneutron-hányad Kiégettségi szint Plutónium-dioxidból (PuO 2 ) és urán-dioxidból (UO 2 ) álló (kevert) üzemanyag, amely a plutóniumnak a termikus reaktorokba történı visszakeringtetésére (hasadóanyagként való hasznosítására) szolgál. A MOX rövidítés az angol mixed oxid fuel elnevezésbıl ered. A tipikus MOX üzemanyagot a termikus reaktorból származó plutóniumnak természetes uránhoz történı, 6-8%-os arányú hozzákeverésével állítják elı. A MOX üzemanyag fizikai, anyagszerkezeti, mechanikai és sugárállósági jellemzıi közel állnak az uránoxid (UOX) üzemanyag jellemzıihez. A maghasadás következtében keletkezı neutronoknak a legnagyobb része közvetlenül a hasadási folyamatban, a hasadványokkal együtt (a hasadási folyamat kezdetét követı 10-12 s-on belül) szabadul fel. Ezeket promptneutronoknak nevezzük. Mivel a hasadási termékek a hasonló rendszámú stabil izotópokhoz képest neutronfelesleggel rendelkeznek, elıfordul, hogy egy hasadási termék akár több másodperccel a hasadás után béta-bomlást követı neutronkibocsátással szabadul meg neutronfeleslegétıl. Így keletkeznek az úgynevezett késıneutronok. Ezeknek az összes keletkezı neutron számához viszonyított statisztikai aránya a késıneutron-hányad, amelynek nagyságrendje 0,3-0,7%. A késıneutronok teszik lehetıvé a reaktor mechanikai eszközökkel (legjellemzıbben neutronabszorbens rudakkal) történı szabályozását. Ha a késıneutron-hányad alacsony, a reaktor szabályozása (biztonságos üzemeltethetısége) nehezebbé válik. Az atomerımővi üzemanyag elhasználtságának foka, amelyet az egységnyi tömegő üzemanyagból felszabadított (hı)energia mennyiségével mérünk. Mértékegysége a MWnap/kg(HM), ahol a HM (=Heavy Metal) rövidítés arra utal, hogy az üzemanyag tömegeként csak annak fémtartalmát azaz az urán- és plutónium- 3
fémet vesszük figyelembe. A mértékegységben a (HM) utalást legtöbbször nem szokták kiírni. Egy kilogramm uránból ha azt teljes egészében elhasítanánk kb. 930 MWnap (hı)energiát lehetne nyerni. Ezzel szemben a ma üzemelı tipikus atomerımővi reaktorokban mindössze 30-60 MWnap (hı)energiát szabadítunk fel üzemanyagkilogrammonként. Kiégett üzemanyag pihentetése ( hőtése ) Mivel a reaktorból kivett kiégett üzemanyag erısen radioaktív, gondoskodni kell a radioaktív bomlási hı elvezetésérıl. Az üzemanyag kivételét követı elsı három-négy évben ezt a reaktor közelében kialakított úgynevezett pihentetı medencében való tárolással oldják meg. Ez idı alatt az üzemanyag radioaktivitása és ezzel együtt hıtermelése jelentısen (több nagyságrenddel) csökken. A pihentetı medencébıl az üzemanyagot újrafeldolgozás esetén a reprocesszálómőbe, egyébként pedig átmeneti tárolóba szállítják. Az általában több évtizedre tervezett átmeneti tárolás az üzemanyag aktivitásának és hıtermelésének a végleges elhelyezést megelızı (és ezáltal a hulladék kezelését megkönnyítı) csökkentésére szolgál. Az átmeneti tárolás azonban azt is lehetıvé teszi, hogy a kiégett üzemanyaggal kapcsolatos stratégia késıbbi változása (az üzemanyagciklus zárásáról születı döntés) esetén a kiégett üzemanyagot eltemetés helyett újból hasznosítani lehessen. A kiégett üzemanyag zárt ciklusban történı felhasználása hosszú távon (évszázados távlatban) a hasadóanyag potenciális energiatartalmának hasznosítási hatásfokát sokszorosára (a jelenleg tipikus 0,4%-nak akár az ötvenszeresére) is emelheti. Kiégett üzemanyag lebomlási ideje Az az idıtartam, amely alatt a kiégett üzemanyag relatív radiotoxicitása az üzemanyag elıállításához eredetileg kibányászott uránérc radiotoxicitásának szintjére (az úgynevezett referenciaszintre) süllyed. A lebomlási idıt szükséges tárolási idınek is szokás nevezni. Másodlagos aktinidák A neptúnium (Np), az amerícium (Am) és a kőrium (Cm). (Elvileg a kőriumnál magasabb rendszámú elemek (Bk, Cf, stb.) is ide sorolandók, de ezek gyakorlati jelentısége igen kicsi.) A másodlagos aktinidák az uránból, illetve a plutóniumból egymást követı neutronbefogások és béta-bomlások során jönnek létre. Elnevezésük onnan ered, hogy a reaktorban és a kiégett üzemanyagban az elsıdleges aktinidáknál jóval alacsonyabb mennyiségben vannak jelen, és ennélfogva az energiatermelésben betöltött szerepük is kisebb. Általában a másodlagos aktinidák is erısen radiotoxikus és hosszú felezési idejő izotópokból állnak. Az átalakításukra ( transzmutálásukra) kizárólag a hasítás jöhet szóba, mert neutronbefogással csak további (magasabb rendszámú) aktinidává alakulnak. Nevezetes közülük a 244 Cm, amely kiemelkedıen nagy spontán hasadási hajlandóságot mutat, és ezzel jelentısen hozzájárul 4
az erısen kiégetett vagy többszörösen visszakeringetett (a reaktorban többszörösen besugárzott) üzemanyag hıtermeléséhez. Partícionálás Radiotoxicitás A kiégett üzemanyag olyan egy vagy több lépcsıs kémiai, pirometallurgiai vagy lézeres feldolgozása, amely képes a kiégett üzemanyagban lévı elemek szelektív leválasztására. A partícionálás a reprocesszálás olyan továbbfejlesztett változatának tekinthetı, amelynél a kimeneti ágak száma meghaladja a 3-at, és gyakorlatilag megegyezik az üzemanyagciklus, illetve a transzmutáció igényei szerint szétválasztandó elemek számával. A partícionálás elıfeltétele a transzmutációnak, ahol a különbözı módon kezelendı, illetve különbözı berendezésekben átalakítható elemeket (stabil és radioaktív hasadási termékeket, elsıdleges és másodlagos aktinidákat) szelektív módon le kell választani a kiégett üzemanyagból. A radioaktív hulladékok által okozott radiológiai kockázat jellemzésére használt mennyiség, amely a vizsgált hulladéknak a tárolóból történı kiszabadulása esetén várható sugárterhelést jelenti. Ennek egysége lehet Sv/g, ha az adott izotóp, vagy a teljes hulladék tömegére, vagy lehet Sv/(GW(e) év), ha arra a villamosenergiamennyiségre vonatkoztatunk, amelynek megtermelése során a hulladék keletkezik. Az így definiált radiotoxicitás: Θ (t) A (t)dcf, ahol A i (t) az i-edik izotóp aktivitása (Bq), D = i i i DCF i pedig az i-edik izotópra vonatkozó dóziskonverziós tényezı (Sv/Bq), amely megadja, hogy egy bizonyos izotópból egységnyi aktivitás felvétele mekkora dózist okoz. Relatív radiotoxicitás A kiégett üzemanyag egészének vagy valamely komponensének az üzemanyag elıállításához eredetileg kibányászott természetes urán és annak leányelemei együttes radiotoxicitásához (azaz a kibányászott uránérc radiotoxicitásához) viszonyított aránya. A relatív radiotoxicitás egységnyi szintjét referenciaszintnek is szokás nevezni. A kiégett üzemanyag szükséges tárolási ideje vagy más néven lebomlási ideje akkor ér véget, amikor a relatív radiotoxicitás eléri a referenciaszintet, azaz értéke 1 alá csökken. Reprocesszálás A kiégett üzemanyag kémiai feldolgozása a főtıelemekben található el nem használt urán és a keletkezett plutónium visszanyerése céljából. A jelenleg elterjedt technológiánál a kiégett üzemanyagot elıször feldarabolják, majd salétromsavban feloldják. A pálcák cirkóniumötvözetbıl készített burkolata nem oldódik fel, azt leszőrik. A keletkezett oldatból egy szerves vegyület segítségével kivonják és egymástól elválasztják a plutóniumot és az uránt. A maradék oldatot (benne a plutóniumon kívüli transzuránokkal és a hasadási termékekkel) hulladékként kezelik. A reprocesszálás tehát olyan folyamat, amelynek egy bemeneti ága van (kiégett üzemanyag), a kimenete pedig három ágra (uránra, plutóniumra és a jelen esetben hulladéknak minısülı összes többi anyagra) bomlik. Az uránt dúsításhoz újra fel lehet használni, a plutóniumból pedig plutónium- 5
dioxidot (PuO 2 ) gyártanak, ami urán-dioxidhoz (UO 2 ) keverve a MOX üzemanyag alapanyaga. A kiégett főtıelemek újrafeldolgozását az is motiválja, hogy alkalmazásával nagymértékben csökkenthetı a végleges elhelyezésre kerülı nagyaktivitású radioaktív hulladék térfogata és tömege. Spallációs neutronforrás Szegényített urán Transzmutáció Olyan, gyorsítóval hajtott neutronforrás, amelynél a 1-1,5 GeV energiára gyorsított protonokat valamilyen nehézfém (pl. ólom vagy bizmut) céltárgyba lıjük, és itt a protonok a target atommagjainak szétrobbantásával (spallációjával) és az azt követı kaszkád magreakciókkal protononként 20-40 darab nagyenergiájú (2-100 MeV-es) neutront hoznak létre. A transzmutációs célú szubkritikus reaktorokat spallációs forrással tervezik üzemben tartani. A természetes urán izotópdúsításakor keletkezı dúsítási maradék, amelynek izotóp-összetétele: 0,25-0,3% 235 U és 99,7-99,75% 238 U. A szegényített urán zárt üzemanyagciklusban tenyész- (más néven szaporító vagy fertilis) anyagként használható, amelybıl a gyorsneutron-spektrumú (tenyésztı) reaktorban neutron-besugárzás hatására hasadóképes (termikus neutronok által is elhasítható) 239 Pu keletkezik. A szegényített uránból plutónium hozzáadásával kevert oxid (MOX) üzemanyag is elıállítható. A szegényített urán fajlagos aktivitása nagyon kicsi, ugyanakkor a fémurán sőrősége kiemelkedıen nagy (~19 g/cm 3 ), ezért a szegényített urán egy részét felhasználják az energiatermeléstıl távol álló területeken is. A nagy sőrőség miatt jól használható pl. gamma-sugárzás elleni árnyékoláshoz. A hosszú felezési idejő radioaktív izotópok neutron-besugárzással történı olyan átalakítása, amely egy vagy több lépésben (magátalakulásban) rövidebb felezési idejő vagy stabil izotóp kialakulására vezet. A kiégett üzemanyagban található hosszú felezési idejő hasadási termékek átalakítása neutronbefogással lehetséges, a kiégett üzemanyagban ugyancsak jelenlévı erısen radiotoxikus, hosszú felezési idejő aktinidák azonban neutronbefogással csak magasabb rendszámú, hasonló tulajdonságú aktinidává alakulnak. Ezért az aktinidák átalakítására kizárólag a maghasadás (az aktinida neutronbefogás indukálta elhasítása) jöhet szóba, amelyhez általában gyorsneutron-spektrumra van szükség. A hasítás eredményeként keletkezı hasadási termékek már kisebb radiológiai kockázatot jelentenek, mint az aktinidák. A transzmutáció segítségével a kiégett üzemanyag lebomlási ideje az emberi léptékkel beláthatatlanul hosszú millió éves nagyságrendrıl ezer év alá csökkenthetı. Mivel a transzmutáció feltételezi a partícionálást, a két kapcsolódó technológiát P/T-technológiának is szokás nevezni. A P/T-technológia nem jelent alternatívát a radioaktív hulladékok végleges elhelyezésével szemben, csak annak kiegészítésére szolgál. Alkalmazása jelentısen csökkentheti a végleges elhelyezésre kerülı hulladék mennyiségét és annak lebomlási idejét. Ezzel elısegítheti a 6
geológiai tárolók gazdaságosabb kihasználását és a jellemzı felezési idı csökkentésén keresztül növelheti a végleges tárolás biztonságát. Urán-plutónium üzemanyagciklus A természetes uránban 99,3%-ban jelen lévı, termikus reaktorokban nem hasadóképes 238 U izotóp neutronbefogásos átalakítására (termikus hasadóanyaggá konvertálására) épülı üzemanyagciklus. Az 238 U egy lassú vagy intermedier neutron befogásával 239 U izotóppá válik, amely két egymást követı bétabomlással elıbb neptúniummá ( 239 Np), majd plutóniummá ( 239 Pu) alakul. Utóbbi izotóp az 235 U-hoz hasonlóan termikus neutronok hatására is hasadóképes. Az 238 U ilyen konvertálása a keletkezett plutónium felhasználásán, azaz az üzemanyagciklus zárásán keresztül lehetıvé teszi a természetes uránban rejlı energetikai potenciál hasznosítási hatásfokának legalább egy nagyságrenddel történı megnövelését. Ez azt jelenti, hogy a jelenleg jellemzı nyitott (az üzemanyag egyszeri felhasználásán alapuló) üzemanyagciklus 0,4% körüli hasznosítási hatásfokát az urán-plutónium zárt üzemanyagciklussal évszázados távlatban akár 20%-ra is meg lehet emelni. Az urán plutóniummá való hatásos átalakításához (a plutónium szaporításához ) gyorsreaktorokra (kemény neutronspektrumú reaktorokra) van szükség, ezért az U-Pu ciklus megvalósítása gyors és termikus reaktorokat egyaránt tartalmazó úgynevezett szimbiotikus atomerımő-rendszerekben vagy tisztán gyorsreaktorokból álló rendszerekben képzelhetı el. 7