Csoportosítás Mesterségesen előállított szilárd, nemfémes, szervetlen (műszaki) anyagok. nyers formázás hőkezelés

Hasonló dokumentumok
Kerámiák. Csoportosítás. Hagyományos szilikátkerámiák Építőanyagok: cement, tégla, fajansz, stb Üvegekek, Fémoxidok, nitridek, boridok stb.

Kerámiák. Csoportosítás

Kerámiák. Technológia. Csoportosítás. Tulajdonságok. Kerámia típusok. A kerámiák szerkezete

Kerámiák. Csoportosítás. Technológia

Polimerek. Alapfogalmak. Alapstruktúra : Természetes polimerek: Mesterséges polimerek, manyagok. Szabad rotáció

Műanyagok tulajdonságai. Horák György

SiAlON. , TiC, TiN, B 4 O 3

Szigetelőanyagok. Műanyagok; fajták és megmunkálás

MÉRNÖKI ANYAGISMERET AJ002_1 Közlekedésmérnöki BSc szak Csizmazia Ferencné dr. főiskolai docens B 403. Dr. Dogossy Gábor Egyetemi adjunktus B 408

Műanyagok Pukánszky Béla - Tel.: Műanyag- és Gumiipari Tanszék, H ép. 1. em.

Nem fémes szerkezeti anyagok. Kompozitok

Anyagok az energetikában

2. Műszaki kerámiák mechanikai és hővezetési tulajdonságai

Anyagválasztás Dr. Tábi Tamás

Szilárd anyagok. Műszaki kémia, Anyagtan I. 7. előadás. Dolgosné dr. Kovács Anita egy.doc. PTE MIK Környezetmérnöki Tanszék

Társított és összetett rendszerek

Polimer kompozitok alapanyagai, tulajdonságai, kompozitmechanikai alapok

Anyagok az energetikában

ACÉLOK MÉRNÖKI ANYAGOK

GÉPÉSZMÉRNÖKI SZAK. Anyagtudomány II. Műanyagok, kerámiák, kompozitok. Dr. Rácz Pál egyetemi docens

12. Polimerek anyagvizsgálata 2. Anyagvizsgálat NGB_AJ029_1

Műanyag-feldolgozó Műanyag-feldolgozó

Anyagismeret tételek

Hosszú szénszállal ersített manyagkompozitok mechanikai tulajdonságainak vizsgálata

Bevezetés a lézeres anyagmegmunkálásba

Fogorvosi anyagtan fizikai alapjai 8. Képlékeny viselkedés. Terhelési diagram. Mechanikai tulajdonságok 2. s sz (Pa) Tankönyv fejezetei: 16-17

Al 2 O 3 kerámiák. (alumíniumtrioxid - alumina)

Fogorvosi anyagtan fizikai alapjai 7. Képlékeny viselkedés. Terhelési diagram. Mechanikai tulajdonságok 2. s sz (Pa) Tankönyv fejezetei: 16-17

Fogorvosi anyagtan fizikai alapjai 7.

Fogorvosi anyagtan fizikai alapjai 7. Képlékeny viselkedés. Terhelési diagram. Mechanikai tulajdonságok 2. s sz (Pa) Tankönyv fejezetei: 16-17

Szigetelőanyagok. Szigetelők és felhasználásuk

6.3. Polimerek Polimer fogalma, csoportosítása

Villamosipari anyagismeret. Program, követelmények ősz

Polimerek vizsgálatai

Rugalmas műanyagok. Lakos Tamás Groupama Aréna nov. 26.

Polimerek vizsgálatai 1.

1 ábra a) Kompaundálás kétcsigás extruderben, előtermék: granulátum, b) extrudált lemez vákuumformázásának technológiai lépései, c) fröccsöntés

2. Korszerű műszaki kerámiák (bevezetés)

Anyagok az energetikában

Kerámia, üveg és fém-kerámia implantátumok

FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2012/13-es tanév I. félév

- homopolimerek: AAAAAAA vagy BBBBBBB vagy CCCCCCC. - váltakozó kopolimerek: ABABAB vagy ACACAC vagy BCBCBC. - véletlen kopolimerek: AAABAABBBAAAAB

Anyagtudomány: hagyományos szerkezeti anyagok és polimerek

kompozit profilok FORGALMAZÓ: Personal Visitor Kereskedelmi és Szolgáltató Bt Szeged, Délceg utca 32/B Magyarország

biokerámiák félvezetők

Házi feladat témák: Polimerek alkalmazástechnikája tárgyból, I félév

Szerkezet és tulajdonságok

Nemfémes szerkezeti anyagok. Természetes eredetű polimerek

Bevezetés a lézeres anyagmegmunkálásba

Polimerek fizikai, mechanikai, termikus tulajdonságai

A műanyagok szerves anyagok és aránylag kis hőmérsékleten felbomlanak. Hővel szembeni viselkedésük alapján két csoportba oszthatók:

Fogászati anyagok fajtái. Fogorvosi anyagtan fizikai alapjai 5. Általános anyagszerkezeti ismeretek Anyagcsaládok: fémek, kerámiák.

A tételekhez segédeszköz nem használható.

Szilárdságnövelés. Az előkészítő témakörei

Polimer kompozitok technológiái

Optikai tulajdonságok (áttetszőség, szín) Fogorvosi anyagtan fizikai alapjai 10. Optikai tulajdonságok. Összefoglalás

3D bútorfrontok (előlapok) gyártása

Az alapanyag kiválasztás rejtelmei. Grupama Aréna november 26.

Karbonát és szilikát fázisok átalakulása a kerámia kiégetés során (Esettanulmány Cultrone et al alapján)

az Anyagtudomány az anyagok szerkezetével, tulajdonságaival, az anyagszerkezet és a tulajdonságok közötti kapcsolatokkal, valamint a tulajdonságok

Kerámiák és kompozitok (gyakorlati elokész

VASTAGRÉTEG TECHNOLÓGIÁK

A MÛANYAGOK ALKALMAZÁSA

Építőanyagok 2. Anyagjellemzők 1.

Optikai tulajdonságok (áttetszőség, szín) Fogorvosi anyagtan fizikai alapjai 10. Optikai tulajdonságok. Összefoglalás. Tankönyv fej.

Műanyag hegesztő, hőformázó Műanyag-feldolgozó

Lépcsős polimerizáció, térhálósodás; anyagismeret

Budapesti Műszaki és Gazdaságtudományi Egyetem. Polimertechnika Tanszék. Polimerfeldolgozás. Melegalakítás

Szálerősített anyagok fröccsöntése Dr. KOVÁCS József Gábor

RAGASZTÓ- ÉS TÖMÍTŐANYAGOK A HAJÓGYÁRTÁSHOZ

XT - termékadatlap. az Ön megbízható partnere

Kecskeméti Főiskola GAMF Kar. Poliolefinek öregítő vizsgálata Szűcs András. Budapest, X. 18

ÜVEG ÉS ÜVEGMÁZ. (Fórizs István MTA Geokémiai Kutatóintézet Anyagának felhasználásával)

27/2012. (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

tervezési szempontok (igénybevétel, feszültségeloszlás,

Kábel-membrán szerkezetek

Makromolekulák. I. A -vázas polimerek szerkezete és fizikai tulajdonságai. Pekker Sándor

Lépcsős polimerizáció, térhálósodás; anyagismeret

Dr. Farkas György, egyetemi tanár Németh Orsolya Ilona, doktorandusz

Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v)

ANYAGOK, KOMPOZITOK, TERMÉKEK

FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2017/18-es tanév

Analitikusok a makromolekulák nyomában Bozi János MTA TTK AKI

ANYAGTUDOMÁNY ÉS TECHNOLÓGIA TANSZÉK

Tárgyszavak: szálerősítés; erősítőszálak; felületkezelés; tulajdonságok; wollastonit; poliamid; polipropilén.

A töréssel szembeni ellenállás vizsgálata

Nagyhőállóságú műanyagok. Grupama Aréna november 26.

Polimerek fizikai, mechanikai, termikus tulajdonságai

Fogorvosi anyagtan fizikai alapjai 2.

Polimer alapanyagok alkalmazásának előnyei-hátrányai Dr. Tábi Tamás

Soba. FlamLINE. Fugaszalag 3 dimenziós hézagmozgáshoz

Fémtechnológiák Fémek képlékeny alakítása 1. Mechanikai alapfogalmak, anyagszerkezeti változások

Fogorvosi anyagtan fizikai alapjai 5. Általános anyagszerkezeti ismeretek Fémek, ötvözetek

Sztirolpolimerek az autógyártás számára

A szerkezeti anyagok tulajdonságai és azok vizsgálata

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés

Fogorvosi anyagtan fizikai alapjai 6.

A vizsgafeladat ismertetése: A szóbeli vizsgatevékenység központilag összeállított vizsgakérdései a 4.3. sorszámú modultémaköreit tartalmazza.

Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) Bemutatkozás. Számonkérés

Technológiai szigetelések alapanyagai

Átírás:

Kerámiák

Csoportosítás Hagyományos szilikátkerámiák Építőanyagok: cement, tégla, fajansz, stb Üvegek, Fémoxidok, nitridek, boridok stb. Mesterségesen előállított szilárd, nemfémes, szervetlen (műszaki) anyagok. Technológiájukban közös; nyers formázás hőkezelés (kivétel: üveg)

A kerámiák szerkezete Polikristályos anyagok 1. Kristályos fázisok: különböző összetétel, méret, kristályszerkezet mechanikai és villamos tulajdonságok 2. Üveges fázis: szilárdság, ridegség, átütési szilárdság 3. Gáz fázis: rugalmasság, hőszigetelés A fázisok egymáshoz való viszonya szabályozható az összetétellel és a technológiával

Technológia 1. Homogenizálás Nyersanyagok + víz + kötőanyagok 2. Formázás Korongolás (kézi, gépi) Sajtolás (izosztatikus, forró) Extrudálás Fröccsöntés 3. Hőkezelés Szárítás Égetés az op (K) 80 90%-án Nedvesség, kötőanyag eltávozása Polimorf átalakulás Átkristályosodás Olvadék keletkezése Szilárd fázisú reakciók, hőbomlás, diffúzió Tömörödés, zsugorodás 4. Mechanikai utómunkák

Tulajdonságok Nagy mechanikai szilárdság, nyomószilárdság, kopásállóság Ideálisan rugalmas Jó hőállóság Általában jó hőszigetelés Jó villamos szigetelés

Porcelán: kaolin kvarc földpát x(nak) 2 O yal 2 O 3 zsio 2 közepes szigetelőanyag Kerámia típusok Szteatit MgO - SiO 2 alkálimentes, jobb villamos tulajdonságok Ellenállás-hordozók, kondenzátorok, hálózati szigetelők

Alumínium-oxid - Korund -Nagyon jó szigetelő: 10 16 cm tg 10-3 -Készítenek: 90%, 99%, 99,9%-os tisztaságút -Égetés: 1600 2000 C -Finomszemcsés, ~ 100% tömör. Gázfázis nincs, üvegfázis 0 1% között. -Hordozó,(IC, MCM) Na-lámpa kisülőcső Egyéb különleges kerámiák Si 3 N 4, AlN: jobb hővezetők, nagy alkatrész sűrűségű IC hordozó Szupravezető kerámiák: YBa 2 Cu 3 O 7-x MgB 2 Kondenzátorok: I típus: TiO 2 MgTiO 3 II. típus: BaTiO 3 ferroelektromos

Csoport Jell. képviselő Tulajdonság, jellemző Felhasználás Szilikátok: Porcelán (kaolin, földpát, kvarc alkáli-alumínium-szilikát) Szteatit (magnézium-szilikát) nagyfrekv. szigetelő, ellenálláshordozó Korund: Al 2 O 3 jó vill szigetelő, hőálló, jó hővezető, MCM hordozó, nagyfrekv. szövetbarát szigetelő, implantátum Oxidkerámiák: hagyományos dísz és ipari kerámia, hálózati szigetelő BeO: jó vill szigetelő, hőálló, nagyon jó nagyfrekv. szigetelő, ák. hordozó hővezető ZrO 2 Hőálló, ionvezető tűzálló anyag, oxigén szenzor Titanátok: TiO 2 magas dielektromos állandó I. tip. kondenzátor Nitridek: BaTiO 3 Si 3 N 4, AlN, BN nagyon magas dielektromos állandó, ferroelektromos, piezoelektromos jó vill szigetelő, hőálló, nagyon jó hővezető, jó mechanikai tul. II. tip. kondenzátor piezoelektromos elemek nagyfrekv. szigetelő, hordozó, gyémánt helyettesítés Karbidok: SiC, jó mechanikai tul., félvezető, hőálló varisztor, kék LED, fűtőellenállás Ferritek WC B 4 C jó mechanikai tul. atomreaktor lágy és kemény mágnesek Szupravezetők YBa 2 Cu 3 O 7-x MgB 2 T c 100K

Üvegek 1. Anyagtípus 2. Fázisállapot, szerkezet Kialakulása: olvadék túlhűtése Üvegalkotó: SiO 2, (Ge, B, P-oxidok) Jellegzetes lehűlési görbe: a másodlagos intenzív paraméterek folytonosan változnak, de Tg környékén a meredekség változik.

Technológia Alapanyagok: kvarchomok, módosítók: Na 2 O, K 2 O stabilizálók: CaO, MgO, B 2 O 3 Al 2 O 3 színezők, színtelenítők, egyéb speciális adalékok Olvasztás: ~ 1500 C Táblahúzás, csőhúzás, öblösüveg fújás Temperálás Viszkozitás Meghatározza a technológiát, hőkezelést, feszültségeket

Lágy üveg: adott viszkozitást alacsonyabb hőmérsékleten ér el Kemény üveg: ~

Feszültségek Okok: az üveg rossz hővezető nagy a hőtágulása T g alatt nincs képlékeny alakváltozás Veszélyes, mert kicsi a húzószilárdság nincs krisztallithatár a mikrorepedés akadály nélkül terjedhet Típusok: Maradandó: kötési Üveg üveg Fém üveg Kerámia üveg Temperálható: Hűlési Ideiglenes Mechanikai T g alatti hőmérsékletkülönbség

Üvegtípusok Lágy Na, Ca, Mg oxid, Σ 30% Kemény alkáliszegény/mentes B 2 O 3, Al 2 O 3 Laboratóriumi, háztartási hőálló üveg, IC hordozó, fényforrás Kvarc Tiszta SiO 2, legjobb mechanikai, villamos, optikai, termikus tul

Vitrokerámia, üvegkerámia Feldolgozás üvegként, utána kristályosító hőkezelés Egy vagy több kristályfajta kiválik Tulajdonságok: Kerámia: szilárdság, hőállóság Üveg: tömörség, felületi simaság Elérhető negatív vagy 0 hőtágulás LTTC (Low Temperature Cofired Ceramic) üvegkerámia szerkezet kialakulása (Multichip modul hordozó)

Villamos tulajdonságok Ált: jó szigetelő : 10 13-10 17 cm csekély ionos vezetés, (Na + ), keményü, kvarcü. jobb szigetelő Hőmérsékletfüggés exponenciális, T K100 = az a T, ahol = 100M cm Felületi ellenállás: nagyon függ a páratartalomtól és a felület állapotától Átütési szilárdság nagy: kb. 30 60 kv/ cm romolhat: nagy alkáli tartalmú üvegekben Hibás, buborékos üvegben Dielektromos tulajdonságok: rel : 3-10 tg : 10-4 (kvarc) 10-1 lágy üveg

A Név, neptun kód B Név, neptun kód http://www.youtube.com/wat ch?v=tfvbjlen26u

A B A anyag fajlagos vezetőképessége 10 µs, B anyagé 30 µs. Rajzolja le vázlatosan egy grafikonon, hogy változna az ötvözeteik vezetőképessége. A:) ha szilárd fázisban csak részlegesen oldódnak egymásban (kb 10%-ig) B:) ha szilárd fázisban korlátlanul képesek elegykristályt képezni

A Rajzolja le a Fermi- Dirac statisztika szerinti betöltési valószínűségi függvényt! T > 0K Jelöljön minden fontosat az ábrán! B Két fém fázisdiagramja látszik az ábrán. Rajzolja le, hogy változik az ötvözet fajlagos ellenállása az összetétel függvényében! (ρ A = 10μΩcm, ρ B = 5μΩcm)

G H A B B Milyen fázis(ok) vannak az A területen, a G területen? Milyen lesz a kiváló szilárd fázis összetétele, ha az E pontból hűl az olvadék? Indoklás kell! Milyen fázis(ok) vannak a H területen, a B területen? Lehet-e olyan összetételű a kivált szilárd fázis, amilyenre az F nyíl mutat? Indoklás kell!

Polimerek

Alapfogalmak Természetes polimerek: Poliszacharidok (keményítő, cellulóz) Polipeptidek, fehérjék Kaucsuk, gumi Mesterséges polimerek, műanyagok Monomer: építőegység Polimer: főképp szénlánc, különböző oldalágakkal Alapstruktúra: Szabad rotáció

Csoportosítás Láncalkotók (monomerek) szerint Szénlánc: Poli-etilén, PE Poli-propilén, PP Heterolánc Poliéter: - R O R O Poliészter: - R O CO R Poliamid: - R CO NH R Poliuretán, poliszulfid, stb. Szilikonok: Poli-vinilklorid, PVC Poli-sztirol, PS

Polimer lánc alakja szerint Lineáris, fonal Elágazó fonal Térhálós Kissé térhálós: elasztikus Termikus viselkedés szerint Hőre lágyuló Hőre nem lágyuló Hidegen keményedő

Mikroszerkezet Amorf: üvegszerű, összegabalyodott láncmolekulák általában átlátszó (PMMA, PS) Kristályos: részben rendezett tartományok. jell.: kristályosság foka: 50 90% általában átlátszatlan (PE, PP) Feltétel: Nem elágazó láncok Közel azonos lánchossz Esetleg H-híd a láncok között (pl: nylon)

Átlag-móltömeg, polimerizáció-fok: Monomertől, technológiától, katalizátortól függ

Termikus tulajdonságok Hőállóság mésékelt Jellemző hőmérsékleti tartományok: T g : transzformációs hőm T f : lágyulási hőm T D : degradálódási hőm Amorf polimerek termomechanikai görbéi

Használható tartomány: Leggyakoribb T g és T f (ill. T m ) között T g alatt törékeny fagyállóság határa (T m : a kristályos fázis olvadáspontja) Részben kristályos polimerek termomechanikai görbéi

Mechanikai tulajdonságok Minden tulajdonság nagyon függ: Kémiai összetételtől (monomer) Polimer molekula mérete alakja Adalékok Szál, fólia erősebb, mint a tömb Hőmérséklet: T g alatt / fölött Gyakorlatilag tetszőleges mechanikai tulajdonságok előállíthatók Polietilén és polisztirol nyújtási diagramja

Kémiai tulajdonságok Általában jó vegyszerállóság Savaknak, lúgoknak ellenáll Oldószerekben néha duzzad, ritkán oldódik (de PVA vízben oldódik) Korrózió: csekély, de feszültségkorrózió: mech feszültség + oldószer / felületaktív anyag Öregedés, lassú oxidálódás, bomlás Optikai tulajdonságok Üveg helyettesítés: PMMA, PC Amorf: átlátszó Kristályos: matt Mindegyik színezhető UV érzékenység: bomlás, elszíneződés Kettőstörés: Mechanikai feszültségektől Láncmolekulák rendeződésétől

Villamos tulajdonságok Szigetelők: villamosiparban: PE, PP PVC: ált. szigetelő (kábel) PS: fóliakondenzátor Teflon, szilikon: különleges célokra, nagy, kis tg NYHL: (üvegszálas) epoxi Átütési csatorna PP-ben

Vezető polimerek

- + OLED sávszerkezete Egyszerű OLED működése Fém elektród Fénykibocsátó polimer réteg Átlátszó elektród Hordozó Emittált fény

Kopolimerek, adalékok Kopolimer: Együtt polimerizálva több monomer láncon belüli keveredés Pl: PE PP SAN (stirol akrilnitril), ABS (akrilnitril butadién stirol) Adalékok Lágyító Stabilizátor, öregedésgátló UV stabilizátor Öregedés gyorsító Lánggátló Színező Antisztatizáló Habosító

Típusok Rövid ismertetés a jegyzet Polimerek c. fejezetében Poliuretán hab vágási felületének SEM felvétele

Kompozitok

Társított anyag a tulajdonságok tervszerű alakítására Töbfázisú, összetett rendszer: Erősítő, ~ szálerősítő. Nagy szilárdság, nagy rugalmasági modulus (E) Befoglaló, mátrix. Kisebb szilárdság, nagy szívósság Jó kapcsolat a kettő között Cél: egynemű anyagban együtt el nem érhető tulajdonság-kombinációk megvalósítása. Eredetileg: hagyományos fémes szerkezeti anyagok mechanikai jellemzői és kisebb sűrűség, esetleg korrózióállóság, villamos szigetelés.

Erősítő Alapvetően szálas, mert a terhelés legtöbbször irányfüggő d ~ 10 µm A vékony szál általában hibátlanabb szerkezetű, jobb mechanikai tulajdonságok, mint a tömb anyagban. (polimer láncok párhuzamosan rendeződnek, üvegszálban hibátlanabb a felület)

Erősítőanyagok fő mechanikai tulajdonságai Száltípus Sűrűség g/cm 3 Szakítószilárdság (GPa) Rugalmassági modulusz (GPa) Szakadási nyúlás (%) Fajlagos szakadási hossz (km) Üvegszál (E) 2.6 2,5 72 4,8 96 Aramid (Kevlar) Polietilén (UHMWPE) 1,45 3,3 75 3,6 230 0,97 3,3 99 3,7 340 Acél 7,8 0,4 1,2 210 1,1 50 Szénszál(HS) 1,8 3,4 240 1,4 190

Erősítőanyagok Üvegszál: E-üveg : alkáliszegény boroszilikát C-üveg: kémiai ellenállás jobb R, S, T: javított mech. tul. Aramid (kevlár): (aromás poliamid) Szénszál: PAN szál hevítésével. Jó mechanikai tul. mellett kémiai ellenállás (HS: nagy szilárdság, IM: közepes modulus) Bór: C vagy W szálra gőzölve hőálló, alk: repülő Polietilén: ultranagy molekulatömeg, párhuzamos polimer láncok Kvarcüveg, kerámia, Természetes szálak

Rövidszálas erősítés Előnyös hőre lágyuló mátrixban, mert a hagyományos műanyag formázás használható Szálirány áramlás közben rendeződhet Erősítő fajlagos felülete nagy legyen elegendő tapadás Kritikus szálhossz függ a tapadási nyírófeszültségtől, pl. üveg/epoxi esetén 0,25 0,03mm Szövött erősítő Lökhárító: PP és részben irányított üvegszál Felületek kialakítására Különböző mintázattal

Mátrix anyagok Szerep: az erősítő (szálak) elválasztása, a terhelés továbbítása, elosztása, kémiai védelem önálló mechanikai, villamos, termikus tulajdonságok Hőre lágyuló polimerek Térhálós polimerek: epoxi, poliészter Üveg Kerámiák, fémek

A mátrix és az erősítő közötti kötés Megfelelő erős kötés a szál és a mátrix között (ha túl erős, rideggé válik a kapcsolat, a repedés nem áll meg) A mátrix zsugorodása belső feszültséget okozhat. Poliésztereknél ~8% Az üveg epoxi határfelületen erős kémiai kötés jön létre Szója alapú biokompozit törésfelülete

Lehet: Kompozit tulajdonságok csak az erősítő, csak a mátrix eredeti jellemzője, vagy eredő Hőállóság: mátrix Vill.tul: eredő

Technológia Anyagpárosítástól, alaktól függően egyedi, sok kézi munkával Rövidszálú erősítő + hőre lágyuló mátrix: szokásos polimer technológiák (fröccsöntés, sajtolás, extrudálás, stb.) Rövid szál + hőre nem lágyuló mátrix felvitele szórással Hosszú szálú erősítő + hőre nem lágyuló mátrix: Szál, szövet előállítása külön folyamatban

Laminálás Több réteg, szövött erősítő Döntő a térhálósodás teljes végbemenetele. Monomer ne maradjon. Lehet: Hőre térhálósodó Hidegen keményedő (exoterm, rossz hővezető!) Prepreg: szövet bevonva részben térhálósított gyantával (preimpregnated) Kézi laminálás Pultruzió: az erősítő szálak rendezett elhelyezése

Alkalmazások Vonat vezetőfülke Közlekedés: súlycsökkenés, korrózióálló, vízálló, Sporteszközök Villamosipar: NYHL, villanyoszlop, szélkerék

Szénszál-kompozitos kerékpár

Különleges kompozitok Folyadékkristályos polimerek (LCP): Pálcika vagy lemez alakú molekulák Molekuláris méretű erősítő, jó kapcsolat a mátrixszal Orientáció el. térrel szabályozható A mezomorf állapot a mátrix op-je fölött Újraformázás, recycling megoldható Önerősítő kompozitok: Ugyanaz a polimer az erősítő, mint a mátrix, csak szállá húzott, nagyobb móltömegű vagy kristályos PE, PP

Nanokompozitok Molekuláris kapcsolat a mátrix és az erősítő között Nanoméretű anyag lehet szinte hibátlan szerkezetű, jobb szilárdságú Pontosan tervezhető tulajdonságok Erősítő: CNT, csillám, tű-, lemez alakú szervetlen kristályok Dendrimer szerkezet Au atomokkal