Hőtan (BMEGEENATMH) Gyakorlat A gyakorlat célja A gyakorlat eredményes végrehajtásához szükséges előzetes ismeretek Hőközlés

Hasonló dokumentumok
HŐKÖZLÉS ZÁRTHELYI BMEGEENAMHT. Név: Azonosító: Helyszám: K -- Munkaidő: 90 perc I. 30 II. 40 III. 35 IV. 15 ÖSSZ.: Javította:

A BÍRÁLÓ TÖLTI KI! Feladat: A B C/1 C/2 C/3 ÖSSZES: elégséges (2) 50,1..60 pont

MŰSZAKI HŐTAN II. EXTRA PÓTZÁRTHELYI. Hőközlés. Név: Azonosító: Terem Helyszám: Q-II- Munkaidő: 120 perc

BME Energetika Tanszék

A gyakorlat célja az időben állandósult hővezetési folyamatok analitikus számítási módszereinek megismerése;

MŰSZAKI HŐTAN II. Hőátvitel és hőcserélők. Kovács Viktória Barbara Hőátvitel és Hőcserélők 2014 Műszaki Hőtan II. (BMEGEENAEHK) K

A BÍRÁLÓ TÖLTI KI! Feladat: A B C/1 C/2 C/3 ÖSSZES: elégséges (2) 50,1..60 pont

Danfoss Hőcserélők és Gömbcsapok

Lemezeshőcserélő mérés

MŰSZAKI HŐTAN II. (HŐKÖZLÉS) ÍRÁSBELI RÉSZVIZSGA

BME Energetika Tanszék

A vizsgaérdemjegy: elégtelen (1) elégséges (2) közepes (3) jó (4) jeles (5)

1. feladat Összesen 21 pont

B.: HŐTAN. Dr. Farkas Tivadar

A BÍRÁLÓ TÖLTI KI! Feladat: A B C/1 C/2 C/3 ÖSSZES: elégséges (2) 50,1..60 pont

1. feladat Összesen 25 pont

Ellenáramú hőcserélő

MŰSZAKI ISMERETEK, VEGYIPARI GÉPEK II.

1. feladat Összesen 8 pont. 2. feladat Összesen 18 pont

2.GYAKORLAT (4. oktatási hét) PÉLDA

MŰSZAKI HŐTAN I. 1. ZÁRTHELYI. Termodinamika. Név: Azonosító: Helyszám: Munkaidő: 80 perc I. 50 II. 50 ÖSSZ.: 100. Javította: Képzési kódja:

FIZIKA II. 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK

HŐÁTADÁSI FOLYAMATOK SZÁMÍTÁSA

Épületgépész technikus Épületgépészeti technikus

A hőmérséklet-megoszlás és a közepes hőmérséklet számítása állandósult állapotban

BME Energetika Tanszék

1. feladat Összesen 17 pont

Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből november 28. Hővezetés, hőterjedés sugárzással. Ideális gázok állapotegyenlete

Többjáratú hőcserélő 3

1. Milyen hőterjedési formát nevezünk hőmérsékleti sugárzásnak? 2. Milyen kölcsönhatások lépnek fel sugárzás és anyag között?

HŐTRANSZPORT. ANYAGMÉRNÖKI ÉS KOHÓMÉRNÖKI MESTERKÉPZÉSI SZAK ENERGETIKA SZAKIRÁNY KÖZELEZŐ TANTÁRGYA (nappali munkarendben)

MUNKAANYAG. Szabó László. Felületi hőcserélők. A követelménymodul megnevezése:

3. Gyakorlat Áramlástani feladatok és megoldásuk

MŰSZAKI HŐTAN I. 1. ZÁRTHELYI

Jelölje meg (aláhúzással vagy keretezéssel) Gyakorlatvezetőjét! Kovács Viktória Barbara Laza Tamás Ván Péter. Hőközlés.

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA ÉPÜLETGÉPÉSZET ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA MINTAFELADATOK

Ellenörző számítások. Kazánok és Tüzelőberendezések

ÉPÜLETGÉPÉSZET ISMERETEK

ÉPÜLETGÉPÉSZET ISMERETEK

ATMH A: / A: / A: / B: / B: / B: / HŐTAN ÍRÁSBELI RÉSZVIZSGA Munkaidő: 150 perc. Dátum: Tisztelt Vizsgázó! Pontszám: SZ: J.V.: i.j.v.

A szükségesnek ítélt, de hiányzó adatokat keresse ki könyvekben, segédletekben, rendeletekben, vagy vegye fel legjobb tudása szerint.

1. feladat Összesen 5 pont. 2. feladat Összesen 19 pont

ÉPÜLETGÉPÉSZET ISMERETEK

Hallgatói segédlet. Konvekciós szárítás

A. mértékegységek (alap és származtatott mértékegységet, átváltások) neve: jele: neve: jele: hosszúság * l méter m. tömeg * m kilogramm kg

1.1 Hasonlítsa össze a valós ill. ideális folyadékokat legfontosabb sajátosságaik alapján!

1. Feladatok a termodinamika tárgyköréből

2. mérés Áramlási veszteségek mérése

Fűtési rendszerek hidraulikai méretezése. Baumann Mihály adjunktus Lenkovics László tanársegéd PTE MIK Gépészmérnök Tanszék

HŐHIDAK. Az ÉPÜLETENERGETIKÁBAN. Energetikus/Várfalvi/

Ventilátor (Ve) [ ] 4 ahol Q: a térfogatáram [ m3. Nyomásszám:

Hőátviteli műveletek példatár. Szerkesztette: Erdélyi Péter és Rajkó Róbert

Hogyan mûködik? Mi a hõcsõ?

BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR ENERGETIKAI GÉPEK ÉS RENDSZEREK TANSZÉK KALORIKUS GÉPEK

SZÁMÍTÁSI FELADATOK I.

Helyszínen épített vegyes-tüzelésű kályhák méretezése Tartalomjegyzék

Épületgépész technikus Épületgépész technikus

Folyadékok és gázok áramlása

TERMIKUS ELJÁRÁSOK ÉS BERENDEZÉSEK kézirat

Folyadékok és gázok áramlása

BEPÁRLÁS. A bepárlás előkészítő művelet is lehet, pl. porlasztva szárításhoz, kristályosításhoz.

0,00 0,01 0,02 0,03 0,04 0,05 0,06 Q

VIZSGA ÍRÁSBELI FELADATSOR

PONTSZÁM:S50p / p = 0. Név:. NEPTUN kód: ÜLŐHELY sorszám

A diplomaterv keretében megvalósítandó feladatok összefoglalása

AZ INSTACIONER HŐVEZETÉS ÉPÜLETSZERKEZETEKBEN. várfalvi.

VEGYIPARI ALAPISMERETEK

MŰSZAKI TERMODINAMIKA 1. ÖSSZEGZŐ TANULMÁNYI TELJESÍTMÉNYÉRTÉKELÉS

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA ÉPÜLETGÉPÉSZET ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ

HŐTAN ZÁRTHELYI BMEGEENATMH. Név: Azonosító: Helyszám: K -- I. 24 II. 34 III. 20 V. 20 ÖSSZ.: Javította: Adja meg az Ön képzési kódját!

Cseppfolyós halmazállapotú közegek. hőtranszport-jellemzőinek számítása. Gergely Dániel Zoltán

Anyagjellemzők változásának hatása a fúróiszap hőmérsékletére

ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK

Hőátviteli műveletek példatár

MSZ EN :2015. Tartalom. Oldal. Előszó...8. Bevezetés Alkalmazási terület Rendelkező hivatkozások...10

Erőművi kazángépész Erőművi kazángépész

Használati meleg víz termelés

Csőköteges hőcserélők korrózióálló / saválló acélból Típus: EHC6; EHC13; EHC20; EHC26 Általános ismertető

A hő terjedése szilárd test belsejében szakaszos tüzelés esetén

Feladatlap X. osztály

Egyidejű hő- és anyagátadás dobszárítókban

Thermoversus Kft. Telefon: 06 20/ Bp. Kelemen László u. 3 V E R S U S

Nyomástartóedény-gépész Kőolaj- és vegyipari géprendszer üzemeltetője

Ellenőrző kérdések Vegyipari Géptan tárgyból a vizsgárakészüléshez

GYAKORLATI ÉPÜLETFIZIKA

1.feladat. Megoldás: r r az O és P pontok közötti helyvektor, r pedig a helyvektor hosszának harmadik hatványa. 0,03 0,04.

ÉPÜLETGÉPÉSZET ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MŰSZAKI INFORMATIKA SZAK

Vizsgálati jegyzőkönyv

ÉLELMISZER-IPARI ALAPISMERETEK

Bor Pál Fizikaverseny, középdöntő 2016/2017. tanév, 8. osztály

VIZSGA ÍRÁSBELI FELADATSOR

Nukleáris energetikus Környezetvédelmi technikus

BME Energetika Tanszék

Kiegészítő desztillációs példa. 1. feladatsor. 2. feladatsor

Desztilláció: gyakorló példák

Hidrosztatika, Hidrodinamika

POLIMERTECHNIKA Laboratóriumi gyakorlat

VEGYIPARI ALAPISMERETEK

Átírás:

A gyakorlat célja hőátviteli folyamatok analitikus számítási módszereinek megismerése; a hőcserélők működési és méretezési alapfogalmainak megismerése; egyszerűbb hőcserélő konstrukciók alapvető méretezési módszereinek elsajátítása. A gyakorlat eredményes végrehajtásához szükséges előzetes ismeretek a hőátvitel jelensége és jellemzői, a hőcserélő készülékek főbb konstrukciós jellemzői, a hőcserélők alapvető méretezési módszerei, a tantárgyhoz rendelt jegyzet [Hőközlés] 6..5. szakaszában és..,.. és.3. alfejezetében leírtak. Az előzetes ismeretek ellenőrzésére szolgáló ellenőrző kérdések. Definiálja a hőátviteli tényezőt (k vagy U)! Adja meg kiszámításának módját különféle esetekre (síkfal, vastagfalú cső, bordázott testek stb.)!. Milyen módszerekkel, mely helyeken történő beavatkozásokkal fokozható a hőátvitel intenzitása? 3. Ismertesse a hőcserélők típusait és az egyes típusok főbb jellegzetességeit! 4. Ismertesse a hőcserélők méretezésének módszereit! 5. Értelmezze a BOŠNJAKOVIĆ-féle hatásosság (Φ) fogalmát és adja meg a Φ tényező kiszámítására szolgáló összefüggést egy tetszőleges hőcserélő esetére! 6. Hogyan számítható egy hőcserélő logaritmikus hőmérséklet különbsége? Vázlatban mutassa meg a kifejezésben szereplő tényezők jelentését a.) egyenáramú; b.) ellenáramú c.) keresztáramú hőcserélő esetében! 7. Rajzolja fel a hőfokeloszlást hőmérséklet-felület diagramban többféle (véges és végtelen felületű), tetszőleges egyen- és ellenáramú hőcserélő készülék esetére (a két közeg hőkapacitásárama nem egyenlő)! 8. Rajzolja fel a hőfokeloszlást hőmérséklet-felület diagramban többféle, tetszőleges (véges és végtelen felületű) egyen- és ellenáramú hőcserélő készülék esetére (a két közeg hőkapacitásárama egyenlő)! 9. Rajzolja fel különböző kapcsolású és végtelen nagy felületű hőcserélő készülékek hőmérséklet-felület diagramját! Értelmezze az egyes esetekre a BOŠNJAKOVIĆ-féle hatásosságot! 0. Milyen hőcserélő kialakítás és milyen egyéb feltételek teljesülése szükséges a reverzibilis (megfordítható) hőcsere megvalósításához? Elvárt tanulási eredmények a hőátvitel mint összetett hőterjedési folyamat leírására és modellezésére való alkalmasság, hőcserélő konstrukció azonosításának és matematikai modellel való leírásának képessége, egyszerűbb hőcserélő konstrukciók főméreteinek meghatározása, hőcserélők hőtechnikai ellenőrző számítása, az absztrakciós és problémamegoldó készségek fejlesztése.

FELADATOK Egyszerű feladatok., Egy mm vastag üvegfal egyik oldalán C hőmérsékletű levegő áramlik, a hőátadási tényező a levegő és az üvegfal között 4 W/(m K). A másik oldalon 5 C hőmérsékletű víz van, a hőátadási tényező a víz és az üvegfal között 3 W/(m K). Az üveg hővezetési tényezője W/(m K). Mekkora a levegő és a víz közötti konvektív hőáramsűrűség? M: A hőátviteli tényező:,, k U qu t t 3,87 W/m.., Mekkora hőáramsűrűség halad keresztül azon a 45 cm vastag téglafalon, melynek hővezetési tényezője 0,95 W/(m K), egyik felszíne mellett 5 C levegő van és a levegő és a fal közötti hőátadási tényező 4 W/(m K), míg a másik felszíne mellett 5 m/s sebességű és C hőmérsékletű szél fúj, ami 0 W/(m K) nagyságú hőátadási tényezőt eredményez. M: A hőátviteli tényező: A hőáramsűrűség: k U,4 W/(m K); belső külső qu t t 44,9 W/m. 3., Egy hőcserélő hőteljesítménye 60 kw. A 800 W/K hőkapacitásáramú közeg 5 C-on lép be. A melegebb közeg hőkapacitásrama 400 W/K és 40 C-ra hűlve távozik. Mekkora a hőcserélő hatásossága, a logaritmikus közepes hőmérséklet-különbség, valamint a hőcserélőre jellemző UA szorzat? Egyen- vagy ellenáramú hőcserélőről van szó? M: A hőkapacitásáram: C cm. Q -es (felmelegedő) közeg kilépő hőmérséklete: t,ki t,be 00 C C Q -es (lehűlő) közeg belépő hőmérséklete: t,be t,ki 90 C C A kapcsolás ellenáramú Hőcserélők hatásossága: a kisebb hőkapacitású közeg hőmérsékletváltozása osztva annak maximálisan lehetséges megváltozásával. t,be t,ki 0,909 t t,be,be t, be t, ki t, ki t, be A logaritmikus közepes hőmérsékletkülönbség: t 4,86 C t, be t, ki t, ki t, be A hőcserélőre jellemző UA szorzat: U AQ / t 433,4 W/K

4., Egy ellenáramú hőcserélő hatásossága 0,6. Az 500 W/K hőkapacitásáramú közeg belépő hőmérséklete 0 C, a 750 W/K hőkapacitásáramú közeg belépő hőmérséklete 95 C. Mekkora a hőcserélő felülete, ha hőátviteli tényezője 500 W/(m K) t t M: t t t t6 C t t Q C t t 5500 W Q Q C t t t t 6 C C tmax tmin t 4,93 C tmax tmin Q QUAt A 0,405 m. U t 5., Egy ellenáramú hőcserélő berendezésnél a következő be- és kilépő hőmérsékleteket mérték: egyik közeg: 70 C és 0 C, másik közeg 0 C és 60 C. A hidegebb közeg hőkapacitásárama 4 kw/k, a hőcserélő hőátviteli tényezője 800 W/(m K). Mekkora a hőcserélő hőteljesítménye, hőátvivő felülete és hatásossága? Az adatokból következik, hogy a hőkapacitásáramok azonosak, így t 0 000 900 C. Q Ct 00 kw. Q A 5 m. U t 5/60,8333. 6., Egy hőcserélőben,98 kj/(kg K) fajhőjű, t/h tömegáramú közeg 80 C-ról 0 C-ra hűl, a másik közeg pedig 00 C-on forr. Határozza meg a hőcserélő hőátadó felületének nagyságát, ha a hőátviteli tényező értéke 500 W/(m K)! M: Kétféleképpen is megoldható: tbe tki 0,75 t t be s UA mc e mc A,5 m U t t t t be s ki s t 43,8 C tbe ts t t ki mc tbe tki A Ut s,5 m. 7., Egy 5 MW hőteljesítményű kondenzátorban a gőz 00 C-on kondenzálódik, miközben a hűtővíz 40 C-ról 85 C-ra melegszik fel. Hányszorosára kell megnövei a kondenzátor felületét, ha a hűtővíz tömegáramát 5%-kal növelve változatlan be- és kilépő hőmérsékleteket kívánunk elérni? * NTU NTU M: A feltételből következik, hogy állandó, azaz e e, ahol * C,5C, feltételezve, hogy k állandó, így A,5A. * 3

Összetett feladatok 8., Egy kórházban a dializáló gépet kezelő technikus elmulasztotta a vesebetegek dializálásához szolgáló oldatot a megfelelő hőmérsékletre előmelegíteni, így a kezelés 8 C hőmérsékletű oldattal történik. A dialízis egy anyagátadási eljárás, melynek a során a vesebeteg véréből az abban nagy mennyiségben jelen lévő ásványi sókat és egyéb testidegen anyagokat eltávolítják. Anyagátvitel növelése és a dialízishez szükséges idő csökkentése érdekében a pácienst a dializáló géppel össze kell kötni és a teljes véráramot a gépen keresztül kell áramoltatni. A dializáló gép lényegében felfogható cső a csőben hőcserélőként. Ennek jellemzői a következők: 00 darab, párhuzamosan kapcsolt, speciális anyagú, féligáteresztő műanyag cső, műanyag köpenycsővel, egy cső hossza 0 cm, belső átmérője 0, cm, vastagsága 0,05 cm, hővezetési tényezője 0,6 W/(m K). A számítások során vastagfalú csőként kell kezei! A csövekben a 00 g/min tömegáramú dializáló oldat áramlik, a hőátadási tényező a csőfal és az oldat között 400 W/(m K). A csövek körül áramlik az artériából érkező 37 C hőmérsékletű, 50 g/min tömegáramú és a vénába visszatérő vér. A vér és a cső külső felülete közötti hőátadási tényező 00 W/(m K). A vér fajhője 3600 J/(kg K), a dializáló oldaté 400 J/(kg K). A vér és a dializáló oldat áramlási iránya egymással megegyező. Milyen hőmérsékletű a vénába visszatérő vér? M: Vázlat és jelölések (nem méretarányos!): n00 darab vér dializáló oldat vér L0 cm d b 0, cm δ0,05 cm Alapadatok: hőkapacitásáramok vér: C m c 3 W/K, vér vér vér dializáló oldat: C m c 7 W/K. A 00 járat párhuzamosan kapcsolt, egy járatba jutó vér és dializáló oldat hőkapacitásárama: C vér Cvér, 30 W/K, Co, Co, 70 W/K n n A csőfal hőellenállása: vastagfalú csőként: sík falként modellezve: db Rcső 3,978 K/W. db Aközepes db L Rcső 4,033 K/W. L Elfogadható, ha az utasítás ellenére sík falként számítják ki a hőellenállást. Egy csőjárat UA szorzata: UA 0,053699 W/K. Rcső A A oldat belső vér külső e Az egyenáramú hőcserélő hatásossága a segédlet alapján: C C o UA C vér, C vér, Co, vér, o, o o 0,7. 4

t A hatásosság definíciója t vér,be vér,be t t vér,ki o,be t t t t 3,7 C. vér,ki vér,be vér,be o,be alapján a vér visszatérő hőmérséklete: 9., Egy csapágyolaj-hűtő hőcserélő a mellékelt ábra szerinti kialakítású. Az olaj [fajhő, kj/(kg K), tömegáram 0, kg/s, belépő hőmérséklet 45 C] a köpenytérben, míg a víz [fajhő 4,8 kj/(kg K), tömegáram 0, kg/s, belépő hőmérséklet 4 C] a csőben áramlik. A cső vékonyfalú, rézből készült és átmérője,8 cm, hossza pedig,5 m. A hőcserélőre jellemző hőátviteli tényező 850 W/(m K), az olaj önmagával keveredik az áramlás során. olaj belépés olaj kilépés víz kilépés víz belépés Határozza meg, a hőcserélő hőteljesítményét, hatásosságát, valamint a közegek kilépő hőmérsékletét! M: W/K; W/K W/K; W/K ; m. W 5.3../A) eset: Egyszeres köpenytér, két csőjárat [lásd Segédlet 5 7. (a) ábra], a köpenytérben áramló közeg önmagával keveredik: W C C 5

0., Egy, a mellékelt ábra szerinti kialakítású keresztáramú hőcserélő 400 db vékonyfalú, cm átmérőjű (külső és belső azonosnak vehető) csőből és ezekre merőlegesen elhelyezkedő áramlásterelő lemezekből áll. A csövekben víz, a lemezek közötti résekben levegő áramlik. A hőcserélőre jellemző átlagos hőátviteli tényező 30 W/(m K) Határozza meg a kilépő hőmérsékleteket, és a hőcserélő hatásosságát, valamint hőteljesít-ményét, ha levegőoldali vezetőlemezek olyan sűrűn helyezkednek el, hogy a levegő nem keveredhet önmagával! forró levegő 40C 00 kpa m/s m m m víz a csövekben belépő értékek: 0 C; 0, m/s; 5 bar A közegek hőmérsékletváltozása nem lesz jelentős, ezért az anyagjellemzőket a belépő (az ábrán feltüntetett) hőmérsékleten vegye figyelembe! A vezetőlemezek elegendően vékonyak ahhoz, hogy az áramlási keresztmetszetet észrevehetően ne csökkentsék. m kg/s W/K W/K W/K W/K Tiszta, nem keveredő keresztáramú hőcserélő: 5..3.. szerint számítandó K C W K C 6

Kiegészítő ismereteket (hőátadás, hőátadási tényező számítása) igénylő összetett feladat., Forró füstgáz hőtartalmának hasznosítására az alábbi ábra szerinti, egyszerű, vékony fémlemezekből kialakított járatokból álló keresztáramú hőcserélőt építették. Mind a 0 C hőmérsékleten belépő levegő, mind a 45 C hőmérsékleten belépő forró füstgáz áramlási sebessége egyaránt 6 m/s. Feltételezve, hogy a füstgáz magas hőmérsékletű levegőként kezelhető és a fémlemez hőellenállása elhanyagolható, határozza meg a hőcserélőre jellemző hőátviteli tényezőt (U) és átviteli hányadost (NTU)! Határozza meg a közegek kilépő hőmérsékletét! Tegyen javaslatot olyan konstrukciós módosításra, amivel a hőcserélő hatásossága javítható (ha ez lehetséges)! Indokolja a javaslatot! 0 cm 0 cm 0 cm forró füstgáz 0 cm levegő 0 cm Adott Keresett A konstrukció az ábra szerint Közegek belépő sebessége (wa we) 6 m/s Levegő belépő hőmérséklete (Ta,in) 0 C Forró füstgáz belépő hőmérséklete (Te,in) 45 C Áramlási (konstrukciós) hossz (L), m (a) Hőátviteli tényező (U) (b) Átviteli hányados (NTU) (c) Levegő kilépő hőmérséklete (Ta,out) (d) Forró füstgáz kilépő hőmérséklete (Te,out) Feltételek/feltételezések Állandósult állapot A forró füstgáz levegőnek tekinthető Az elválasztó fal hőellenállása elhanyagolható Az anyagjellemzők átlagos hőmérsékleten számítandók A környezet felé távozó hőáram (hőveszteség) elhanyagolható Az elválasztó fal minősége nem befolyásolja a hőátadást Hőtechnikai jellemzők 0 cm 7

A segédlet alapján a levegő és a füstgáz anyagjellemzői a közepes 00 C hőmérsékleten: Sűrűség (ρ) 0,73 kg/m 3 Hővezetési tényező (λ) 0,0370 W/(m K) Kinematikai viszkozitás (ν) 35,5 0 6 m /s Prandtl szám (Pr) 0,7 Izobár fajhő (cp) 035 J/(kg K) FIGYELEM! A Segédletben nem ilyen (egyszerű) összefüggés alapján kell a hőátadási tényezőket meghatározni, de az a végeredményen érdemben nem változtat. SOLUTION (a) The Reynolds number at the flow is VDh Re D h ν where D h Hydraulic diameter 4 A P 4 (0.m) 4 (0.m) 0. m (6 m/s) (0.m) Re D h 35.5 0 6 m /s.7 0 5 (Turbulent) The Nusselt number for turbulent flow through ducts is given by Equation (6.63) For the air being heated Nu D 0.03 Re 0.8 D Pr n where n 0.4 for heating, 0.3 for cooling Nu D 0.03 (.7 0 5 ) 0.8 (0.7) 0.4 309.5 h a For the exhaust being cooled NuD k D 309.5 0.0370 W/(mK) 0.m h 4.5 W/(m K) Nu D 0.03 (.7 0 5 ) 0.8 (0.7) 0.3 30.3 h e 8.5 W/(m K) The overall heat transfer coefficient is U h e + ha 4.5 W/(m K) + 8.5 W/(m K) U 58. W/(m K) (b) The heat capacity of both fluids is 3 C mc p V νa c c p (60 m/s) 0.73 kg/m (. m) (0. m) 8.5 W/(m K) (Ws)/J 5477 W/K The number of transfer units is U A NTU t 58. W/(m K) (. m) (. m) 0.05 C 5477 W/(m K) min A Segédlet 9.3. ábrája (9..3.. összefüggés alapján) Φ0,0, Ta,out4 C (közelítő eredmény). A csekély hatásosság a kis értékű NTU következménye. Ezen javítani a következő módokon lehet: - sebesség növelése mindkét közeg esetében, ami az U növekedését eredményezi (valós körülmények között növekszik az áramlási ellenállás!) - a mostani 0x0-es csatornaméret csökkentése, ami felületnövelést (A) eredményez. 8