COMPLEX ENERGY SUPPLY FOR BUILDINGS, FACILITIES BY HYDROGEN FUEL CELL TECHNOLOGY



Hasonló dokumentumok
MAGYAR ENERGIA HIVATAL

Energetikai gazdaságtan. Bevezetés az energetikába

Megújuló energiák szerepe a villamos hálózatok energia összetételének tisztítása érdekében Dr. Tóth László DSc - SZIE professor emeritus

Aktuális kutatási trendek a villamos energetikában

A Magyar Virtuális Mikrohálózatok Mérlegköri Klaszter (MIKROVIRKA) fejlesztésének eredményei és a bükkaranyosi hidrogénfalu tervei

Idıszerő felszólalás (5 dia): Vízenergia hıhasznosítása statisztika a hıszivattyúzásért

rendszerszemlélet Prof. Dr. Krómer István BMF, Budapest BMF, Budapest,

A villamosenergia-termelés szerkezete és jövıje

STS GROUP ZRt. FUELCELL (Hidrogén üzemanyagcellás erőművek). Előadó: Gyepes Tamás (Elnök Igazgató) Kriston Ákos. Vándorgyűlés előadás,

Hálózati akkumulátoros energiatárolás merre tart a világ?

Tüzelıanyag cellák befektetıi piaca. Magyar Energetikai Társaság Hidrogén Tagozat Dr. Kovács Antal Ferenc Március 3.

Energiagazdálkodás c. tantárgy 2010/1011. tanév, 1. félév

Energiatermelés, erőművek, hatékonyság, károsanyag kibocsátás. Dr. Tóth László egyetemi tanár klímatanács elnök

Üdvözli Önt a KONTAKT-Elektro Kft.

Az Energia[Forradalom] Magyarországon

A napenergia hasznosítás támogatásának helyzete és fejlesztési tervei Magyarországon Március 16. Rajnai Attila Ügyvezetı igazgató

Kapcsolt energiatermelés hazai helyzetének áttekintése

MCFC ALKALMAZÁSOK: William Robert Grove KITEKINTÉS A MINDENNAPOK VILÁGÁBA

Energiatárolás szerepe a jövő hálózatán

CHP erőmű trendek és jövője a villamosenergia rendszerben

Kogeneráció biogáz motorokkal

Energiatárolási lehetőségek és megvalósítás

Energiahatékonysági és energetikai beruházások EU-s forrásból történı támogatása

Melegvíz nagyban: Faluház

Mikrobiális folyamatok energetikai hasznosítása a depóniagáz formájában

Külföldi gyakorlatok a napkollektor-használat ösztönzésére

Kárpát-medencei Magyar Energetikai Szakemberek XXII. Szimpóziuma (MESZ 2018) Magyarország energiafelhasználásának elemzése etanol ekvivalens alapján

A HINKLEY POINT C ATOMERŐMŰ GAZDASÁGI VIZSGÁLATA A RENDELKEZÉSRE ÁLLÓ ADATOK ALAPJÁN

Szőcs Mihály Vezető projektfejlesztő. Globális változások az energetikában Villamosenergia termelés Európa és Magyarország

Protoncserélő membrános hidrogén - levegő tüzelőanyag-cellák működési elve, szabályozása és alkalmazása

Fosszilis energiák jelen- és jövőképe

Energiamenedzsment ISO A SURVIVE ENVIRO Nonprofit Kft. környezetmenedzsment rendszerekről szóló tájékoztatója

A biomassza rövid története:

Tápvízvezeték rendszer

A s d zor o pc p iós ó h h t el a kör ö ny n e y zettud u a d tos o ene n rgi g afelha h szná n lásért

Innovációs lehetőségek a szennyvíziszap kezelésében

A FÖLDGÁZ SZEREPE A VILÁGBAN ELEMZÉS ZSUGA JÁNOS

Élelmiszerhulladék-csökkentés a Jövő Élelmiszeripari Gyárában Igények és megoldások

Tóthné Szita Klára Miskolci Egyetem, GTK VRGI

Megújuló energiák hasznosítása: a napenergia. Készítette: Pribelszky Csenge Környezettan BSc.

Magyarország energiaellátásának általános helyzete és jövıje

I. Nagy Épületek és Társasházak Szakmai Nap Energiahatékony megoldások ESCO

KOGÁT - Környezetvédelmi, Olaj- és Gázipari Technológiákat Kutató-fejlesztı Közhasznú Nonprofit Korlátolt Felelısségő Társaság

FELVONÓK ENERGIA-HATÉKONYSÁGA

Megújuló energia, megtérülő befektetés

A legfontosabb fizikai törvények. Fenntartható fejlıdés és atomenergia. A legfontosabb fizikai törvények. A legfontosabb fizikai törvények

Tüzelıanyag-cellák. Kriston Ákos, PhD hallgató, Inzelt György, egyetemi tanár ELTE Kémiai Intézet, Elektrokémiai és Elektroanalitikai Laboratórium

4. Az energiatermelés és ellátás technológiája 1.

Emissziócsökkentés és az elektromos közlekedés jelentősége október 7. Energetikai Körkép Konferencia

a jövő energiahordozója

Légszennyezők szerepe az

Prof. Dr. Krómer István. Óbudai Egyetem

110/2007. (XII. 23.) GKM rendelet

Energiapolitika hazánkban - megújulók és atomenergia

Erőművi technológiák összehasonlítása

Dél-dunántúli Energetikai Klaszter

NCST és a NAPENERGIA

A megújuló erőforrások használata által okozott kihívások, a villamos energia rendszerben

Tartalom Szkeptikus Konferencia

Környezet és Energia Operatív program A megújuló energiaforrás-felhasználás növelése prioritási tengely Akcióterv

A BÜKK-MAK LEADER vidékfejlesztési közösség 1 falu 1 MW energiatermelési integrációja

Megújulóenergia-hasznosítás és a METÁR-szabályozás

Szakolyi Biomassza Erőmű kapcsolt energiatermelési lehetőségei VEOLIA MAGYARORSZÁGON. Vollár Attila vezérigazgató Balatonfüred, 2017.

Létesítményi energetikus Energetikus Megújuló energiaforrás Energetikus

Nukleáris alapú villamosenergiatermelés

ENERGIA KÖZPONT Kht. Információs Igazgatóság

Megújuló energia: mit, miért, mennyibıl? Varró László Stratégia Fejlesztés Igazgató MOL Csoport 2010 Március 10

ALTERNATÍVÁJA-E MA A NÖVÉNYI BIOMASSZA A SZÉNNEK A VILLAMOS ENERGIA TERMELÉSÉBEN?

KOGÁT - Környezetvédelmi, Olaj- és Gázipari Technológiákat Kutató-fejlesztı Közhasznú Nonprofit Korlátolt Felelısségő Társaság

Éves energetikai szakreferensi jelentés

ERŐMŰVI FÜSTGÁZBÓL SZÁRMAZÓ CO₂ LEVÁLASZTÁS KÖRNYEZETI HATÁSAINAK VIZSGÁLATA ÉLETCIKLUS ELEMZÉSSEL. Sziráky Flóra Zita

A biomassza, mint energiaforrás. Mit remélhetünk, és mit nem?

Napenergiás helyzetkép és jövőkép

Frank-Elektro Kft. BEMUTATKOZÓ ANYAG

A mikro-chp rendszerek alkalmazhatósága a decentralizált energiatermelésben

A villamosenergia-termelés szerkezete és jövője

CSOLNOKY FERENC KÓRHÁZ ENERGETIKAI SZAKREFERENSI ÖSSZEFOGLALÓ 2017 ÉVRE

Nagy létesítmények használati melegvíz készítı napkollektoros rendszereinek kapcsolásai

Varga Katalin zöld energia szakértő. VII. Napenergia-hasznosítás az Épületgépészetben Konferencia és Kiállítás Budapest, március 17.

a nemzeti vagyon jelentıs

Megnyitó. Markó Csaba. KvVM Környezetgazdasági Főosztály

ÁRAMLÁS-ÉS HİTECHNIKAI MÉRÉSEK BMEGEÁTAG02 Dr. Vad János / oktatás / tantárgylista / BMEGEÁTAG02

A HAZAI MEGÚJULÓ ENERGIA SZABÁLYOZÁS KRITIKÁJA

A szén dioxid leválasztási és tárolás energiapolitikai vonatkozásai

A nagy hatásfokú hasznos hőigényen alapuló kapcsolt hő- és villamosenergia-termelés terén elért előrehaladásról Magyarországon

Energetikai trendek, klímaváltozás, támogatás

Kiss János Ferenc ügyvezető műszaki igazgató Ecoflotta-ház Szolgáltató Kft.

Energetikai szakreferensi jelentés

A VPP szabályozó központ működési modellje, és fejlődési irányai. Örményi Viktor május 6.

A bányászat szerepe az energetikában és a nemzetgazdaságban

A szén alkalmazásának perspektívái és a Calamites Kft. üzleti törekvései

2018. ÉVES SZAKREFERENS JELENTÉS. A Beton Viacolor Térkő Zrt. Készítette: Group Energy kft

Éves energetikai szakreferensi jelentés

University of Miskolc Energiagazdálkodás Energiahordozó készletek

Mannheim Viktória, egyetemi docens Hulladékhasznosítási konferencia szeptember Gyula, Cívis Hotel Park

tiszta, halk és teljesen emisszió mentes. A hidegén -mint energiahordozó- lehetővé teszi a megújuló energiák felhasználást a közeledésben.

Szikra Csaba. Épületenergetikai és Épületgépészeti Tsz.

Az EU Energiahatékonysági irányelve: és a kapcsolt termelés

LCA - életciklus felmérés

Biomassza alapú hıszolgáltatási mintaprojektek MÉGSZ - Megújuló energia szakmai nap november 21.

Átírás:

ÉPÜLETEK, LÉTESÍTMÉNYEK KOMPLEX ENERGIAELLÁTÁSA HIDROGÉN TÜZELİANYAG-CELLA TECHNOLÓGI GIÁVAL COMPLEX ENERGY SUPPLY FOR BUILDINGS, FACILITIES BY HYDROGEN FUEL CELL TECHNOLOGY Dr. EMHİ LÁSZLÓ emho@mti.bme.hu c. egyetemi docens, BME Mérnöktovábbképzı Intézet ügyvezetı igazgató, EMTECH-S Kft. Hidrogéngazdas ngazdaság: g: Lehetıségek és s kihívások Magyarország és s az EU számára Workshop Budapest, 2011. szeptember 29. 1

TARTALOM CONTENT A) BEVEZETÉS A) INTRODUCTION B) ALAP MEGOLDÁSOK RÉSZÖSSZEFOGLALÁSSAL C) KÜLÖNLEGES RENDSZEREK, TAPASZTALATOK B) BASE SOLUTIONS PARTIAL SUMMARY C) SPECIAL SYSTEMS, EXPERIENCES D) ÖSSZEFOGLALÁS D) SUMMARY 2

MOTTO FROM THE INVITATION OF DEVELOPING GRID STORAGE PROJECT 2011 CONFERENCE-NETWORK WITH POTENTIONAL BUISESS PARTNERS (October 5-6, Sheraton Dallas Hotel, TX): Driven by the proliferation of intermittent renewable energy sources such as wind and solar the onset of the smart grid and a shift to electric and plug-in vehicles, energy storage will play a large role in the electricity grid of the future. With annualized growth estimated to be over 25 % the combination of state and federal incentives and regulations, combined with energy business models, are driving exponential growth and attracting intense excitement. 3

A) BEVEZETÉS/ÁTTEKINTÉS Hagyományos energiaellátás fosszilis (Büki Gergely: kimerülı ) megújuló (Oláh György: 4,5 milliárd évre, de tárolni kell! ) nukleáris (150 évre elegendı urán készlet!) 4

A LEGFONTOSABB SARKANTYÚK: A hagyományos jól tárolható fosszilis energiahordozó készletek kimerülıben vannak Az olcsó olaj és földgáz 35-45 éven belül elfogy Kína és India nemzeti összterméke 10 %-kal nı évente Ott is mindenki autóval kíván közlekedni, jogosan Kínában 4 naponta 1000 (!) MW új széntüzeléső erımő teljesítmény lép be Következmény: Malthust meghaladó világvilágháború az energiaforrásokért Hacsak 5

Hacsak, többek között Energiahatékonysággal Megújuló és nukleáris energiákkal Köztük a villamosenergia tárolását megoldó hidrogén technológiákkal Benne az üzemanyag/tüzelıanyag-cella felhasználással Nem vágunk elébe kitörésének Ez mindnyájunk felelıssége! Történetükrıl, alapjaikról, fajtáikról nemzetközi hidrogén konferenciáinkon többször, és részletesen is foglalkoztunk már. Most csak röviden: 6

16.század:Paracelsus: fémoldás savban 1766: Cavendish: éghetı levegı 1781: Lavoisier: a víz alkotója 1838-39: Schönbein: Philosophical Magazine 1843: Grove gyakorlati kísérletek 1865: Verne Gyula: víz hidrogén főtés 1880: Az olajbirodalom 100+ évre visszavág 1959: Bacon: elsı használható tüzelıanyagcella, hegesztı berendezés Ihrig: 15 kw-os traktor 1960-tól: Gemini, Apollo, Space Shuttle: 1; 2,3; 12 kw Ma: 2000 telepített rendszer, több mint 2500 jármőben: vízen, talajon, levegıben és az őrben 7

ESZKÖZÜNK, A HIDROGÉN KIVONÁSA A MAI NAGYVILÁGBAN: Jelenleg: földgázból: 48 % olajból: 30 % szénbıl: 18 % vízbontással: 4 % Az elsı három kimerülı, a vegyiparban is jól használható szénhidrogén készleteinket pazarolja (zabla) A víz bıségben áll rendelkezésre, de hagyományos fosszilis energiaforrással elıállított villamosenergia felhasználása háromszoros CO 2 kibocsátást és rendkívül alacsony hatásfokot jelent a közvetlen megújulók felhasználásához képest (sarkantyú) 8

Így energia-, és környezettudatos megoldásként maradnak a megújulók, Másodlagosan a kockázatosabb hagyományos nukleáris energia felhasználása Illetve késıbb negyedik generációs nukleáris reaktorban a közvetlen hidrogén-kinyerés Ezért tekintjük kétszeresen: elıállításában és felhasználásában is optimális, jövıbemutató, szinergikus megoldásnak a hidrogéntechnológiát és kiszolgálására a nukleáris energiát, illetve a megújulók igénybevételét. 9

1. ábra: Üzemanyagcella mőködési vázlata 10

B) ALAP MEGOLDÁSOK A HIDROGÉN ÉS TÜZELİANYAG- CELLA JÓL ISMERTEK: villamosenergia elıállítási, tárolási, közvetlen felhasználási, közlekedési, és egyéb alkalmazásai IGEN KEVÉSSÉ ISMERTEK: a vonatkozó épület energiaellátási megoldások, szempontok (pl. főtés, hőtés, kogen, trigen, quadgen) nézzük meg ezek fıbb lehetıségeit: 11

2. ábra: A felhasználási lehetıségek alap tárháza hı-, és villamosenergiára 12

3. ábra: Megújuló energia és hidrogéntechnológia teljes körő együttmőködése villamosenergia-, és hı-, fogyasztók kiszolgálása (Utsira-sziget, Norvégia) 13

ILLESZTÉSI LEHETİSÉGEK ÁTTEKINTÉSE ÜZEMI HİMÉRSÉKLET SZERINT: A. POLIMER ELEKTROLIT MEMBRÁN tüzelıanyag-cella Anód katód: platina alapú szén részecskékkel Elektrolit: proton vezetı polimer membrán Üzemi hımérséklet 60-90 C ez alacsonyabb, mint a többinél szokásos 200-1000 C Ez kevés kogen, illetve trigen alkalmazásokhoz, beágyazott sugárzó főtésekhez viszont jól illeszthetı! 14

B. SZILÁRD OXID TÜZELİANYAG- CELLA Magasabb üzemi hımérséklet: 750-1000 C Céljainkhoz kiválóan illeszkedik Esetleg 600 C alsó határ Kerámia oxid vezetık, oxid katódok, kerámia/fém ( cermet ) anódok Szendvics-szerkezető torony kivitel Csöves-lap formáció: robosztus, egyszerő tömítés Sík-lap formáció: tömör, nem anyag-igényes, az alacsony hımérséklet miatt igénytelenebb, költséghatékonyabb anyagfelhasználás Kompresszoros, abszorpciós folyadékhőtıhöz, kogenerációhoz, trigenerációhoz optimálisan illeszthetı! 15

4. ábra: Egyszerő szilárd oxid tüzelıanyag-cella rendszer jellemzı hımérsékleti-, és nyomás-viszonyai 16

5. ábra: Hibrid szilárd oxid tüzelıanyag-cella rendszer turbókompresszor kiegészítéssel, jellemzı hımérsékleti-, és nyomás-viszonyai 17

C. FOSZFORSAVAS TÜZELİANYAG- CELLA Az elektrolit foszforsav pl. szilikon karbid rácsban Max. 220 C-on üzemelnek Főtési célra megfelelı Kevésbé érzékeny CO mérgezésre a PEM egységekhez képest Széleskörő alkalmazás: több, mint 300 rendszer világszerte, 100-200 kw teljesítmény-tartományban Legtöbb: Japán, USA 95+ % rendelkezésre állási gyakorlat Elsısorban radiátoros és sugárzó főtéshez, kogenerációhoz, kisebb mértékben trigenerációhoz 18

D. OLVASZTOTT KARBONÁT TÜZELİANYAG-CELLA 600-700 C üzemi h ımérséklet Olvasztott karbonát só kerámia kötıanyagban A földgáz itt magában a cellában reformálható (költségcsökkentés, egyszerő felépítés) Érzéketlen CO-ra, CO 2 -re, ezért a jövıben széngázzal is üzemelhet egy vagy kétlépcsıs reformálással Kompresszoros, abszorpciós folyadékhőtıkhöz, kogenerációhoz, trigenerációhoz illeszthetı! 19

RÉSZ ÖSSZEFOGLALÁS: A FİBB TÜZELİANYAG-CELLA TÍPUSOK KOGENERÁCIÓHOZ, TRIGENERÁCIÓHOZ TÖRTÉNİ FELHASZNÁLHATÓSÁGÁRÓL Az alacsony hımérséklető polimer elektrolit membrán és közepes hımérséklető foszforsavas tüzelıanyag-cella elsısorban főtési célra jön számításba, beágyazott sugárzó rendszereknél, a villamosenergia ellátáson túl (kogeneráció) A szilárd oxid, az és olvasztott karbonátos tüzelıanyag cellák 600-700-1000 C üzemi hımérsékletükkel már nemcsak kompresszoros, hanem abszorpciós folyadékhőtı mőködtetését is lehetıvé teszik, hıcserélın keresztül, így ezek segítségével épületek főtése, villamosenergia ellátása mellett azok hőtését, klimatizálását is komplex módon, gazdaságosan megoldhatjuk (trigeneráció) 20

Ezzel az össz energiafogyasztásunk 35-40 %-át képviselı épületeink belsı rendszereihez hozzáilleszthetjük megfelelı tüzelıanyag-cella párját Fokozatos széleskörő kiépítésükkel erıteljesen függetleníteni tudjuk magunkat a kimerülı olaj-, és földgáz készletektıl, azok CO 2 és más káros gáz szennyezı kibocsátásától Optimális megoldásként szél-, vagy napenergiával vízbontásból kinyert majd eltárolt hidrogén felhasználásával a szükségletek szerinti idıben tudjuk kielégíteni épületeink villamos-, és hıenergia-igényét Hozzájárulhatunk a világ-világháború elkerülésének lehetıségéhez. (Malthus: An Essay on the Principle of Population (1798): Population is prevented from increasing beyond limits by the positive checks of war, famine and pestilence and by the influence of misery and vice.) 21

C) ÚJ KÜLÖNLEGES RENDSZEREK, TAPASZTALATOK A legutóbbi idıben ezek fıbb szempontjait Yun Wang és társai (University of California,Irvine)* illetve Whitney Colella és társa (Sandia National Laboratories)** dolgozták fel. * A Review of Polymer Electrolyte Membrane Fuel Cells: Technology, Applications, and Needs on Fundamental Research ** Reducing Building Energy Costs and Carbon Dioxide (CO 2 ) Emissions by Operating Stationary Co-Generative Fuel Cell Systems (FCS) with Novel Strategies 22

Wang szerint: A letelepített erımővi rendszerek eddig 1-50 MW teljesítménytartományban valósultak meg, nagy részük kapcsolt energiatermelésre (kogen) Távközlési, kereskedelmi épület és lakóház ellátására mintegy 15.500 db 1-10 kw-os rendszer épült ki, fıleg Észak- Amerikában, Indiában, Japánban, nagyrészük kapcsolt energiatermelésre Hazánkban a Magyar Telekom jár élen távközlési épületekben, míg a BÜKK-MAK LEADER MIKROVIRKA komplex falu energiaellátásban A gyártás 2/3-a az Egyesült Államokban valósult meg (Ballard, stb.) Az amerikai Energiaügyi Minisztérium élettartam elvárása 2011- re 40.000 óra volt, 2010-ben még csak 10.000 óránál tartottak A fajlagos ár 2009-re $ 61/kW-ra csökkent, a 2010-es $ 45/kW volt, 2015-re $ 30 kw az elvárt 23

Collela alapgondolatai szerint: Az Egyesült Államok energiafelhasználásának 20 %-át (21 EJ) elveszti az erımővi elıállítás, a szállítás és a végfelhasználás során A hőtési-főtési igény sokszor átfedi egymást, így ko-, és trigenerációs rendszerekkel hatékonyabban kielégíthetıek Ha ezt reformerben fosszilis földgázból, propánból, vagy megújulónak tekintett biogázból történı hidrogén elıállítással is kiegészítjük (ezt nevezzük quadgenerációnak az elıbbiek mintájára, Emhı L.), akkor a ma széles körben használt módszerek, infrastruktúra ellátottság egyik legoptimálisabb összetételő rendszerét kapjuk meg Kezdve azon, hogy itt nem kell távolról szállítani a helyszínre a H 2 -t, ahhoz nem kell külön infrastruktúrát kiépíteni, mőködtetni (meglévı földgáz infrastruktúra, helyi biogáz elıállítás rendelkezésre áll, vagy kedvezı körülmények között létesíthetı, vagy az utóbbit kedvezı körülmények között létre lehet hozni.) 24

SZINERGIÁK: A hidrogén tüzelıanyag-cella 19 %-kal kevesebb energiát használ fel villamosenergia termeléshez a kapcsolt rendszerben, mivel a keletkezı hıt a folyamaton belül hasznosítani tudjuk és kisebb kiegészítı terhelés fog elıállni Ugyanez a megtakarítás H 2 termelésnél 16 %, a gızüzemő metán reformerhez képest, mivel ez utóbbinál többlet-hıt kell bevezetnünk. Az átlagos tüzelıanyag megtakarítás ~ 17 % A H 2 reformáláshoz 600 C hımérséklet szükséges, az abszorpciós hőtéshez, főtéshez és villamosenergia elıállításhoz 100-300 C hımérséklető közeget tudunk gazdaságosan felhasználni, így reformert elhagyó főtıközeg az utóbbiakat optimálisan el tudja látni 25

A programban vizsgált esetek az alábbiak voltak: CHP: kapcsolt hı- és villamosenergia termelés CHHP: kapcsolt hı-, villamosenergia és hidrogén termelés CCHP: kapcsolt hı-, hőtés és villamosenergia CCHHP: kapcsolt hı-, hőtés-, tüzelıanyagcellás-, villamosenergia-, és hidrogén termelés A vizsgálatokhoz a Stanford Egyetem 20 legnagyobb épületét vették figyelembe 26

Az egyes rendszereken belül hı- villamos- és hőtési együttmőködést változtatható hı-villamosenergia arányt változtatható hı-hidrogén arányt állítható hőtés-hı arányt villamos, hidrogén hőtés vagy főtés követést vettek figyelembe A modellekkel optimalizálták az elızı dián jelzett esetek beépítési %-át, vagy ezek kombinációját, minimális CO 2 kibocsátás, maximális kapcsolt energia megtakarítás vagy legalább minimális légszennyezést csökkentı egészségügyi hatás elérésére 27

Nagy rendszereknél 10 éves idı intervallumra, életciklusra számítva CCHHP FCs esetén a nagyobb rendszer a gazdaságosabb, költségoptimalizálás esetén viszont emelkedhet a CO 2 kibocsátás CO 2 kibocsátásra optimalizálás esetén az alapesethez képest 41 % CO 2 elkerülés adódik Mindegyik stratégia jelentıs levegıtisztasági javulást hoz, az un. egészségfenntartásiköltség csökkenésével. 28

Vizsgálat tárgya volt a kompresszoros vagy abszorpciós folyadékhőtık használatának kihatása is a quadgenerációs rendszerekben, ezek szerint: mind az abszorpciós, mind a kompresszoros folyadékhőtıknél változik a hatásfok a tüzelıanyag-mennyiség függvényében, de a kompresszorosból több hıt nyerhetünk vissza a kondenzációs oldalon 29

ez a főtéshez jól felhasználható abszorpciós folyadékhőtıvel a.) több villamos- és hőtıenergiát kapunk, mivel a villamosenergiát nem csökkenti a kompresszor fogyasztása b.) magasabb villamos- és hőtési hatásfokot kapunk c.) kevesebb hıenergiát kapunk a villamos-hajtású folyadékhőtınek magasabb összhatásfoka van 30

Táblázatban: quadgeneráció tüzelıanyag cellával magasabb villamos hatásfok magasabb hőtési hatásfok magasabb hıvisszanyerési hatásfok magasabb összendszerő hatásfok abszorpciós folyadékhőtıvel villamos kompresszoros folyadékhőtıvel 31

Hatásfok összehasonlítás: Quadgenerációs tüzelıanyagcellával, abszorpciós folyadékhőtıvel: közelíti a 100 %-ot Ugyanez villamos kompresszoros folyadékhőtıvel: 125-145 % Mindkét körfolyamat korlátai miatt adott alkalmazásnál bármelyik választható lehet! A fenti vizsgálat-sorozat a mai, még fosszilis domináciájú korra vonatkozik! Ennek utolsó, kimerülı szakaszában járunk! 32

Hagyományos és hidrogén/tüzelıanyag cellás energiatermelés/átalakítás összehasonlítása CO 2 kibocsátás szempontjából, 2 MWh villamosenergia + 1 MWh hıenergia termeléssel: Rendszer Rendszer CO 2 kibocsátás kg 1. Hagyományos Széntüzeléső erımő gázturbinával, szenes kiegészítı kazánnal 2. Átlagos Átlagos amerikai erımő, 72 % hatásfokú kiegészítı kazánnal 2130 kg 1479 kg 3. Fejlett Kogenerációs kombinált ciklusú gázturbinás, 92 % hatásfokú kiegészítı kazánnal 4. Tüzelıanyag-cellás Kogenerációs,pl. olvasztott karbonátos tüzelıanyag-cellás 824 kg 746 kg 5. Tüzelıanyag-cellás, megújuló alapú H 2 elıállítás/leválasztás Kogenerációs, pl. olvasztott karbonátos tüzelıanyag-cellás 0 kg (!) 33

D) ÖSSZEFOGLALÁS Épületek és létesítmények komplex energiaellátására világszerte évtizedek óta, hazánkban mintegy másfél évtizede létesülnek ko-, és trigenerációs rendszerek. Ezek kiegészítése helyi, meglévı vagy új, föld-, vagy biogázellátásra épülı hidrogéntermeléssel (quadgeneráció) tovább növeli hatékonyságukat, teljesítıképességüket, sokoldalúságukat, és lehetıvé teszi épületek energiatároló rendszereként való üzemelésüket. A H 2 elıállítás itt jelenleg még szénhidrogén alapon is történhet, de a jövı egyik legígéretesebb, optimálisabb megoldása a megújuló alapú vízbontásos rendszer, elvezetve a világot a káros szén (szénhidrogén, azaz CO 2 kibocsátással és globális felmelegedéssel terhelt) alapú gazdaságból, társadalomból a tiszta víz (hidrogén) alapú gazdaságba, társadalomba Ken-ichiro OTA valóban Szép Új Világába! 34

D) SUMMARY Co-, and trigeneration systems were built all over the world in several decades, while in Hungary and during the last one and a half decades for complex energy supply of buildings and facilities. Adding existing or new natural-, or bio-gas based local hydrogen production to these systems (quadgeneration), one can improve their efficiency, capacity, versatility, making possible to operate as energy storage systems of buildings. Hydrogen production can happen here nowadays on hydrocarbon base, but one of the most promising and optimal solution of the future is water electrolysis, leading the world from the harmful carbon (hydrocarbon, with CO 2 emission and global warming overloaded) economy, society, to the pure water (hydrogen, the really Nice New World of Ken-ichiro OTA) economy, society! 35

Köszönöm m a figyelmet! Thanks for your attention! 36