Kerámiák. Csoportosítás



Hasonló dokumentumok
Kerámiák. Csoportosítás. Hagyományos szilikátkerámiák Építőanyagok: cement, tégla, fajansz, stb Üvegekek, Fémoxidok, nitridek, boridok stb.

Kerámiák. Technológia. Csoportosítás. Tulajdonságok. Kerámia típusok. A kerámiák szerkezete

Csoportosítás Mesterségesen előállított szilárd, nemfémes, szervetlen (műszaki) anyagok. nyers formázás hőkezelés

Kerámiák. Csoportosítás. Technológia

Polimerek. Alapfogalmak. Alapstruktúra : Természetes polimerek: Mesterséges polimerek, manyagok. Szabad rotáció

Műanyagok tulajdonságai. Horák György

Szigetelőanyagok. Műanyagok; fajták és megmunkálás

SiAlON. , TiC, TiN, B 4 O 3

MÉRNÖKI ANYAGISMERET AJ002_1 Közlekedésmérnöki BSc szak Csizmazia Ferencné dr. főiskolai docens B 403. Dr. Dogossy Gábor Egyetemi adjunktus B 408

Nem fémes szerkezeti anyagok. Kompozitok

Anyagok az energetikában

Műanyagok Pukánszky Béla - Tel.: Műanyag- és Gumiipari Tanszék, H ép. 1. em.

2. Műszaki kerámiák mechanikai és hővezetési tulajdonságai

Anyagválasztás Dr. Tábi Tamás

Polimer kompozitok alapanyagai, tulajdonságai, kompozitmechanikai alapok

Szilárd anyagok. Műszaki kémia, Anyagtan I. 7. előadás. Dolgosné dr. Kovács Anita egy.doc. PTE MIK Környezetmérnöki Tanszék

Szigetelőanyagok. Szigetelők és felhasználásuk

Társított és összetett rendszerek

Műanyag-feldolgozó Műanyag-feldolgozó

6.3. Polimerek Polimer fogalma, csoportosítása

GÉPÉSZMÉRNÖKI SZAK. Anyagtudomány II. Műanyagok, kerámiák, kompozitok. Dr. Rácz Pál egyetemi docens

12. Polimerek anyagvizsgálata 2. Anyagvizsgálat NGB_AJ029_1

Anyagok az energetikában

Hosszú szénszállal ersített manyagkompozitok mechanikai tulajdonságainak vizsgálata

1 ábra a) Kompaundálás kétcsigás extruderben, előtermék: granulátum, b) extrudált lemez vákuumformázásának technológiai lépései, c) fröccsöntés

Polimerek vizsgálatai

Szerkezet és tulajdonságok

Fogorvosi anyagtan fizikai alapjai 8. Képlékeny viselkedés. Terhelési diagram. Mechanikai tulajdonságok 2. s sz (Pa) Tankönyv fejezetei: 16-17

Fogorvosi anyagtan fizikai alapjai 7. Képlékeny viselkedés. Terhelési diagram. Mechanikai tulajdonságok 2. s sz (Pa) Tankönyv fejezetei: 16-17

Fogorvosi anyagtan fizikai alapjai 7.

Fogorvosi anyagtan fizikai alapjai 7. Képlékeny viselkedés. Terhelési diagram. Mechanikai tulajdonságok 2. s sz (Pa) Tankönyv fejezetei: 16-17

Polimerek vizsgálatai 1.

- homopolimerek: AAAAAAA vagy BBBBBBB vagy CCCCCCC. - váltakozó kopolimerek: ABABAB vagy ACACAC vagy BCBCBC. - véletlen kopolimerek: AAABAABBBAAAAB

Anyagismeret tételek

Al 2 O 3 kerámiák. (alumíniumtrioxid - alumina)

Anyagok az energetikában

ACÉLOK MÉRNÖKI ANYAGOK

Kerámia, üveg és fém-kerámia implantátumok

Bevezetés a lézeres anyagmegmunkálásba

Rugalmas műanyagok. Lakos Tamás Groupama Aréna nov. 26.

2. Korszerű műszaki kerámiák (bevezetés)

Villamosipari anyagismeret. Program, követelmények ősz

Házi feladat témák: Polimerek alkalmazástechnikája tárgyból, I félév

FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2012/13-es tanév I. félév

kompozit profilok FORGALMAZÓ: Personal Visitor Kereskedelmi és Szolgáltató Bt Szeged, Délceg utca 32/B Magyarország

Polimer kompozitok technológiái

Anyagtudomány: hagyományos szerkezeti anyagok és polimerek

Az alapanyag kiválasztás rejtelmei. Grupama Aréna november 26.

3D bútorfrontok (előlapok) gyártása

Nemfémes szerkezeti anyagok. Természetes eredetű polimerek

A műanyagok szerves anyagok és aránylag kis hőmérsékleten felbomlanak. Hővel szembeni viselkedésük alapján két csoportba oszthatók:

A MÛANYAGOK ALKALMAZÁSA

Lépcsős polimerizáció, térhálósodás; anyagismeret

biokerámiák félvezetők

Műanyag hegesztő, hőformázó Műanyag-feldolgozó

Szálerősített anyagok fröccsöntése Dr. KOVÁCS József Gábor

Karbonát és szilikát fázisok átalakulása a kerámia kiégetés során (Esettanulmány Cultrone et al alapján)

Kerámiák és kompozitok (gyakorlati elokész

Optikai tulajdonságok (áttetszőség, szín) Fogorvosi anyagtan fizikai alapjai 10. Optikai tulajdonságok. Összefoglalás

az Anyagtudomány az anyagok szerkezetével, tulajdonságaival, az anyagszerkezet és a tulajdonságok közötti kapcsolatokkal, valamint a tulajdonságok

ANYAGOK, KOMPOZITOK, TERMÉKEK

Kábel-membrán szerkezetek

Polimerek fizikai, mechanikai, termikus tulajdonságai

RAGASZTÓ- ÉS TÖMÍTŐANYAGOK A HAJÓGYÁRTÁSHOZ

XT - termékadatlap. az Ön megbízható partnere

A tételekhez segédeszköz nem használható.

Tárgyszavak: szálerősítés; erősítőszálak; felületkezelés; tulajdonságok; wollastonit; poliamid; polipropilén.

ÜVEG ÉS ÜVEGMÁZ. (Fórizs István MTA Geokémiai Kutatóintézet Anyagának felhasználásával)

Kecskeméti Főiskola GAMF Kar. Poliolefinek öregítő vizsgálata Szűcs András. Budapest, X. 18

Optikai tulajdonságok (áttetszőség, szín) Fogorvosi anyagtan fizikai alapjai 10. Optikai tulajdonságok. Összefoglalás. Tankönyv fej.

tervezési szempontok (igénybevétel, feszültségeloszlás,

Makromolekulák. I. A -vázas polimerek szerkezete és fizikai tulajdonságai. Pekker Sándor

Bevezetés a lézeres anyagmegmunkálásba

Dr. Farkas György, egyetemi tanár Németh Orsolya Ilona, doktorandusz

Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v)

Soba. FlamLINE. Fugaszalag 3 dimenziós hézagmozgáshoz

Fogászati anyagok fajtái. Fogorvosi anyagtan fizikai alapjai 5. Általános anyagszerkezeti ismeretek Anyagcsaládok: fémek, kerámiák.

A vizsgafeladat ismertetése: A szóbeli vizsgatevékenység központilag összeállított vizsgakérdései a 4.3. sorszámú modultémaköreit tartalmazza.

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés

Építőanyagok 2. Anyagjellemzők 1.

27/2012. (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

Aktuátorok korszerű anyagai. Készítette: Tomozi György

2. tétel. 1. Nemfémes szerkezeti anyagok: szerves ( polimer ) szervetlen ( kerámiák ) természetes, mesterséges ( műanyag )

Analitikusok a makromolekulák nyomában Bozi János MTA TTK AKI

FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2017/18-es tanév

Budapesti Műszaki és Gazdaságtudományi Egyetem. Polimertechnika Tanszék. Polimerfeldolgozás. Melegalakítás

VASTAGRÉTEG TECHNOLÓGIÁK

A töréssel szembeni ellenállás vizsgálata

BME Department of Electric Power Engineering Group of High Voltage Engineering and Equipment

FBN206E-1 és FSZV00-4 csütörtökönte 12-13:40. I. előadás. Geretovszky Zsolt

Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) Bemutatkozás. Számonkérés

ANYAGTUDOMÁNY ÉS TECHNOLÓGIA TANSZÉK

Polimerek fizikai, mechanikai, termikus tulajdonságai

Lépcsős polimerizáció, térhálósodás; anyagismeret

Nagyhőállóságú műanyagok. Grupama Aréna november 26.

MŰANYAGOK A GÉPJÁRMŰIPARBAN

VEGYIPAR ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA KÖZÉPSZINTEN SZÓBELI TÉMAKÖRÖK május - június

Kerámiák és kompozitok a munkavédelemben

Műanyaghulladék menedzsment

Polimer alapanyagok alkalmazásának előnyei-hátrányai Dr. Tábi Tamás

Átírás:

Kerámiák Csoportosítás Hagyományos szilikátkerámiák Építőanyagok: cement, tégla, fajansz, stb Üvegekek, Fémoxidok, nitridek, boridok stb. Mesterségesen előállított szilárd, nemfémes, szervetlen (műszaki) anyagok. Technológiájukban közös; nyers formázás hőkezelés (kivétel: üveg) 1

A kerámiák szerkezete Polikristályos anyagok 1. Kristályos fázisok: különböző összetétel, méret, kristályszerkezet mechanikai és villamos tulajdonságok 2. Üveges fázis: szilárdság, ridegség, átütési szilárdság 3. Gáz fázis: rugalmasság, hőszigetelés A fázisok egymáshoz való viszonya szabályozható az összetétellel és a technológiával Technológia 1. Homogenizálás Nyersanyagok + víz + kötőanyagok 2. Formázás Korongolás (kézi, gépi) Sajtolás (izosztatikus, forró) Extrudálás Fröccsöntés 3. Hőkezelés Szárítás Égetés az op (K) 80 90%-án Nedvesség, kötőanyag eltávozása Polimorf átalakulás Átkristályosodás Olvadék keletkezése Szilárd fázisú reakciók, hőbomlás, diffúzió Tömörödés, zsugorodás 4. Mechanikai utómunkák 2

Tulajdonságok Nagy mechanikai szilárdság, nyomószilárdság, kopásállóság Ideálisan rugalmas Jó hőállóság Általában jó hőszigetelés Jó villamos szigetelés Kerámia típusok Porcelán: kaolin kvarc földpát x(nak) 2 O yal 2 O 3 zsio 2 közepes szigetelőanyag Szteatit MgO - SiO 2 alkálimentes, jobb villamos tulajdonságok Ellenállás-hordozók, kondenzátorok, hálózati szigetelők 3

Alumínium-oxid - Korund -Nagyon jó szigetelő: ρ > 10 16 Ωcm tgδ < 10-3 -Készítenek: 90%, 99%, 99,9%-os tisztaságút -Égetés: 1600 2000 C -Finomszemcsés, ~ 100% tömör. Gázfázis nincs, üvegfázis 0 1% között. -Hordozó,(IC, MCM) Na-lámpa kisülőcső Egyéb különleges kerámiák Si 3 N 4, AlN: jobb hővezetők, nagy alkatrész sűrűségű IC hordozó Szupravezető kerámiák: YBa 2 Cu 3 O 7-x MgB 2 Kondenzátorok: I típus: TiO 2 MgTiO 3 II. típus: BaTiO 3 ferroelektromos Csoport Jell. képviselő Tulajdonság, jellemző Felhasználás Szilikátok: Porcelán (kaolin, földpát, kvarc alkáli-alumínium-szilikát) hagyományos dísz és ipari kerámia, hálózati szigetelő BeO: jó vill szigetelő, hőálló, nagyon jó nagyfrekv. szigetelő, ák. hordozó hővezető ZrO 2 Hőálló, ionvezető tűzálló anyag, oxigén szenzor Titanátok: TiO 2 magas dielektromos állandó I. tip. kondenzátor Nitridek: BaTiO 3 Si 3 N 4, AlN, BN nagyon magas dielektromos állandó, ferroelektromos, piezoelektromos jó vill szigetelő, hőálló, nagyon jó hővezető, jó mechanikai tul. II. tip. kondenzátor piezoelektromos elemek nagyfrekv. szigetelő, hordozó, gyémánt helyettesítés Karbidok: SiC, jó mechanikai tul., félvezető, hőálló varisztor, kék LED, fűtőellenállás Ferritek WC B 4 C jó mechanikai tul. atomreaktor lágy és kemény mágnesek Szteatit (magnézium-szilikát) nagyfrekv. szigetelő, ellenálláshordozó Korund: Al 2 O 3 jó vill szigetelő, hőálló, jó hővezető, MCM hordozó, nagyfrekv. szövetbarát szigetelő, implantátum Oxidkerámiák: Szupravezetők YBa 2 Cu 3 O 7-x MgB 2 T c 100K 4

1. Anyagtípus 2. Fázisállapot, szerkezet Kialakulása: olvadék túlhűtése Üvegalkotó: SiO 2, (Ge, B, P-oxidok) Üvegek Jellegzetes lehűlési görbe: a másodlagos intenzív paraméterek folytonosan változnak, de Tg környékén a meredekség változik. Technológia Alapanyagok: kvarchomok, módosítók: Na 2 O, K 2 O stabilizálók: CaO, MgO, B 2 O 3 Al 2 O 3 színezők, színtelenítők, egyéb speciális adalékok Olvasztás: ~ 1500 C Táblahúzás, csőhúzás, öblösüveg fújás Temperálás Viszkozitás Meghatározza a technológiát, hőkezelést, feszültségeket 5

Lágy üveg: adott viszkozitást alacsonyabb hőmérsékleten ér el Kemény üveg: ~ Feszültségek Okok: az üveg rossz hővezető nagy a hőtágulása T g alatt nincs képlékeny alakváltozás Veszélyes, mert kicsi a húzószilárdság nincs krisztallithatár a mikrorepedés akadály nélkül terjedhet Típusok: Maradandó: kötési Üveg üveg Fém üveg Kerámia üveg Temperálható: Hűlési Ideiglenes Mechanikai T g alatti hőmérsékletkülönbség 6

Üvegtípusok Lágy Na, Ca, Mg oxid, Σ30% Kemény alkáliszegény/mentes B 2 O 3, Al 2 O 3 Laboratóriumi, háztartási hőálló üveg, IC hordozó, fényforrás Kvarc Tiszta SiO 2, legjobb mechanikai, villamos, optikai, termikus tul Vitrokerámia, üvegkerámia Feldolgozás üvegként, utána kristályosító hőkezelés Egy vagy több kristályfajta kiválik Tulajdonságok: Kerámia: szilárdság, hőállóság Üveg: tömörség, felületi simaság Villamos tulajdonságok Ált: jó szigetelő ρ: 10 13-10 17 Ωcm csekély ionos vezetés, (Na + ), keményü, kvarcü. jobb szigetelő Hőmérsékletfüggés exponenciális, T K100 = az a T, ahol ρ = 100MΩcm Felületi ellenállás: nagyon függ a páratartalomtól és a felület állapotától Átütési szilárdság nagy: kb. 30 60 kv/ cm romolhat: nagy alkáli tartalmú üvegekben Hibás, buborékos üvegben Dielektromos tulajdonságok: ε rel : 3-10 tgδ: 10-4 (kvarc) 10-1 lágy üveg 7

Polimerek Alapfogalmak Természetes polimerek: Poliszacharidok (keményítő, cellulóz) Polipeptidek, fehérjék Kaucsuk, gumi Mesterséges polimerek, műanyagok Monomer: építőegység Polimer: főképp szénlánc, különböző oldalágakkal Alapstruktúra: Szabad rotáció 8

Csoportosítás Láncalkotók (monomerek) szerint Szénlánc: Poli-etilén, PE Poli-propilén, PP Heterolánc Poliéter: - R O R O Poliészter: - R O CO R Poliamid: - R CO NH R Poliuretán, poliszulfid, stb. Szilikonok: Poli-vinilklorid, PVC Poli-sztirol, PS Polimer lánc alakja szerint Lineáris, fonal Elágazó fonal Térhálós Kissé térhálós: elasztikus Termikus viselkedés szerint Hőre lágyuló Hőre nem lágyuló Hidegen keményedő 9

Mikroszerkezet Amorf: üvegszerű, összegabalyodott láncmolekulák általában átlátszó (PMMA, PS) Kristályos: részben rendezett tartományok. jell.: kristályosság foka: 50 90% általában átlátszatlan (PE, PP) Feltétel: Nem elágazó láncok Közel azonos lánchossz Esetleg H-híd a láncok között (pl: nylon) Átlag-móltömeg, polimerizáció-fok: Monomertől, technológiától, katalizátortól függ 10

Termikus tulajdonságok Hőállóság mésékelt Jellemző hőmérsékleti tartományok: T g : transzformációs hőm T f : lágyulási hőm T D : degradálódási hőm Amorf polimerek termomechanikai görbéi Használható tartomány: Leggyakoribb T g és T f (ill. T m ) között T g alatt törékeny fagyállóság határa (T m : a kristályos fázis olvadáspontja) Részben kristályos polimerek termomechanikai görbéi 11

Mechanikai tulajdonságok Minden tulajdonság nagyon függ: Kémiai összetételtől (monomer) Polimer molekula mérete alakja Adalékok Szál, fólia erősebb, mint a tömb Hőmérséklet: T g alatt / fölött Gyakorlatilag tetszőleges mechanikai tulajdonságok előállíthatók Polietilén és polisztirol nyújtási diagramja Kémiai tulajdonságok Általában jó vegyszerállóság Savaknak, lúgoknak ellenáll Oldószerekben néha duzzad, ritkán oldódik (de PVA vízben oldódik) Korrózió: csekély, de feszültségkorrózió: mech feszültség + oldószer / felületaktív anyag Öregedés, lassú oxidálódás, bomlás Optikai tulajdonságok Üveg helyettesítés: PMMA, PC Amorf: átlátszó Kristályos: matt Mindegyik színezhető UV érzékenység: bomlás, elszíneződés Kettőstörés: Mechanikai feszültségektől Láncmolekulák rendeződésétől 12

Villamos tulajdonságok Szigetelők: villamosiparban: PE, PP PVC: ált. szigetelő (kábel) PS: fóliakondenzátor Teflon, szilikon: különleges célokra, nagy ρ, kis tgδ NYHL: (üvegszálas) epoxi Átütési csatorna PP-ben Vezető polimerek 13

OLED sávszerkezete Egyszerű OLED működése Fém elektród Fénykibocsátó polimer réteg Átlátszó elektród Hordozó + - Emittált fény Kopolimerek, adalékok Kopolimer: Együtt polimerizálva több monomer láncon belüli keveredés Pl: PE PP SAN (stirol akrilnitril), ABS (akrilnitril butadién stirol) Adalékok Lágyító Stabilizátor, öregedésgátló UV stabilizátor Öregedés gyorsító Lánggátló Színező Antisztatizáló Habosító 14

Típusok Rövid ismertetés a jegyzet Polimerek c. fejezetében Poliuretán hab vágási felületének SEM felvétele Kompozitok 15

Társított anyag a tulajdonságok tervszerű alakítására Töbfázisú, összetett rendszer: Erősítő, ~ szálerősítő. Nagy szilárdság, nagy rugalmasági modulus (E) Befoglaló, mátrix. Kisebb szilárdság, nagy szívósság Jó kapcsolat a kettő között Cél: egynemű anyagban együtt el nem érhető tulajdonság-kombinációk megvalósítása. Eredetileg: hagyományos fémes szerkezeti anyagok mechanikai jellemzői és kisebb sűrűség, esetleg korrózióállóság, villamos szigetelés. Erősítő Alapvetően szálas, mert a terhelés legtöbbször irányfüggő d ~ 10 µm A vékony szál általában hibátlanabb szerkezetű, jobb mechanikai tulajdonságok, mint a tömb anyagban. (polimer láncok párhuzamosan rendeződnek, üvegszálban hibátlanabb a felület) 16

Erősítőanyagok fő mechanikai tulajdonságai Száltípus Sűrűség g/cm 3 Szakítószilárdság (GPa) Rugalmassági modulusz (GPa) Szakadási nyúlás (%) Fajlagos szakadási hossz (km) Üvegszál (E) 2.6 2,5 72 4,8 96 Aramid (Kevlar) Polietilén (UHMWPE) 1,45 3,3 75 3,6 230 0,97 3,3 99 3,7 340 Acél 7,8 0,4 1,2 210 1,1 50 Szénszál(HS) 1,8 3,4 240 1,4 190 Erősítőanyagok Üvegszál: E-üveg : alkáliszegény boroszilikát C-üveg: kémiai ellenállás jobb R, S, T: javított mech. tul. Aramid (kevlár): (aromás poliamid) Szénszál: PAN szál hevítésével. Jó mechanikai tul. mellett kémiai ellenállás (HS: nagy szilárdság, IM: közepes modulus) Bór: C vagy W szálra gőzölve hőálló, alk: repülő Polietilén: ultranagy molekulatömeg, párhuzamos polimer láncok Kvarcüveg, kerámia, Természetes szálak 17

Rövidszálas erősítés Előnyös hőre lágyuló mátrixban, mert a hagyományos műanyag formázás használható Szálirány áramlás közben rendeződhet Erősítő fajlagos felülete nagy legyen elegendő tapadás Kritikus szálhossz függ a tapadási nyírófeszültségtől, pl. üveg/epoxi esetén 0,25 0,03mm Szövött erősítő Lökhárító: PP és részben irányított üvegszál Felületek kialakítására Különböző mintázattal Mátrix anyagok Szerep: az erősítő (szálak) elválasztása, a terhelés továbbítása, elosztása, kémiai védelem önálló mechanikai, villamos, termikus tulajdonságok Hőre lágyuló polimerek Térhálós polimerek: epoxi, poliészter Üveg Kerámiák, fémek 18

A mátrix és az erősítő közötti kötés Megfelelő erős kötés a szál és a mátrix között (ha túl erős, rideggé válik a kapcsolat, a repedés nem áll meg) A mátrix zsugorodása belső feszültséget okozhat. Poliésztereknél ~8% Az üveg epoxi határfelületen erős kémiai kötés jön létre Szója alapú biokompozit törésfelülete Lehet: Kompozit tulajdonságok csak az erősítő, csak a mátrix eredeti jellemzője, vagy eredő Hőállóság: mátrix Vill.tul: eredő 19

Technológia Anyagpárosítástól, alaktól függően egyedi, sok kézi munkával Rövidszálú erősítő + hőre lágyuló mátrix: szokásos polimer technológiák (fröccsöntés, sajtolás, extrudálás, stb.) Rövid szál + hőre nem lágyuló mátrix felvitele szórással Hosszú szálú erősítő + hőre nem lágyuló mátrix: Szál, szövet előállítása külön folyamatban Laminálás Több réteg, szövött erősítő Döntő a térhálósodás teljes végbemenetele. Monomer ne maradjon. Lehet: Hőre térhálósodó Hidegen keményedő (exoterm, rossz hővezető!) Prepreg: szövet bevonva részben térhálósított gyantával (preimpregnated) Kézi laminálás Pultruzió: az erősítő szálak rendezett elhelyezése 20

Alkalmazások Vonat vezetőfülke Közlekedés: súlycsökkenés, korrózióálló, vízálló, Sporteszközök Villamosipar: NYHL, villanyoszlop, szélkerék Szénszál-kompozitos kerékpár 21

Különleges kompozitok Folyadékkristályos polimerek (LCP): Pálcika vagy lemez alakú molekulák Molekuláris méretű erősítő, jó kapcsolat a mátrixszal Orientáció el. térrel szabályozható A mezomorf állapot a mátrix op-je fölött Újraformázás, recycling megoldható Önerősítő kompozitok: Ugyanaz a polimer az erősítő, mint a mátrix, csak szállá húzott, nagyobb móltömegű vagy kristályos PE, PP Nanokompozitok Molekuláris kapcsolat a mátrix és az erősítő között Nanoméretű anyag lehet szinte hibátlan szerkezetű, jobb szilárdságú Pontosan tervezhető tulajdonságok Erősítő: CNT, csillám, tű-, lemez alakú szervetlen kristályok Dendrimer szerkezet Au atomokkal 22