Az alábukó lemezből felszabaduló fluidumok és szerepük szubdukciós környezetben. Patkó Levente Szubdukció és köpenyék Ph.D. kurzus

Hasonló dokumentumok
Fluidumok a köpenyékben Szubdukció, köpenyék PhD kurzus

KLÓR. A Cl geokémiailag: erősen illó, oldható mobilis.

Supporting Information

Oxigén és hidrogén stabil izotópjai

A köpeny és olvadékai

Correlation & Linear Regression in SPSS

FAMILY STRUCTURES THROUGH THE LIFE CYCLE

Melléklet BAZALT ANYAGÚ CSISZOLT KŐESZKÖZÖK KŐZETTANI ÉS GEOKÉMIAI VIZSGÁLATA (BALATONŐSZÖD - TEMETŐI DŰLŐ LELŐHELY)

Construction of a cube given with its centre and a sideline

Li, Be, B stabil izotópjai

FÖLDRAJZ ANGOL NYELVEN

Szubdukció geofizikai jellemzői. Németh Alexandra 2014 szeptember

Correlation & Linear Regression in SPSS

On The Number Of Slim Semimodular Lattices

Bór. Jelentőségének felismerése ~25 éve oka: gyakorisága és elemi tulajdonság, analitikai korlát. ma: a B geokémia és izotópgeokémia virágzik

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Nonparametric Tests

Statistical Inference

Cluster Analysis. Potyó László

FÖLDRAJZ ANGOL NYELVEN GEOGRAPHY

FÖLDRAJZ ANGOL NYELVEN

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Correlation & Linear. Petra Petrovics.

Sebastián Sáez Senior Trade Economist INTERNATIONAL TRADE DEPARTMENT WORLD BANK

STUDENT LOGBOOK. 1 week general practice course for the 6 th year medical students SEMMELWEIS EGYETEM. Name of the student:

Supplementary Table 1. Cystometric parameters in sham-operated wild type and Trpv4 -/- rats during saline infusion and

Rezgésdiagnosztika. Diagnosztika

A rosszindulatú daganatos halálozás változása 1975 és 2001 között Magyarországon

FÖLDRAJZ ANGOL NYELVEN

TDA-TAR ÉS O-TDA FOLYADÉKÁRAMOK ELEGYÍTHETŐSÉGÉNEK VIZSGÁLATA STUDY OF THE MIXABILITY OF TDA-TAR AND O-TDA LIQUID STREAMS

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Nonparametric Tests. Petra Petrovics.

FÖLDRAJZ ANGOL NYELVEN GEOGRAPHY

7 th Iron Smelting Symposium 2010, Holland

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Factor Analysis

IV. IV. KŐZETTANI ÉS GEOKÉMIAI VÁNDORGYŰLÉS KIADVÁNYA. Orfű, szeptember A rendezvény támogatói: A rendezvény szervezői:

Full piblications. Papers: Extended abstracts

Heterogén hegesztett kötés integritásának értékelése

Contact us Toll free (800) fax (800)

Phenotype. Genotype. It is like any other experiment! What is a bioinformatics experiment? Remember the Goal. Infectious Disease Paradigm

GEOGRAPHICAL ECONOMICS B

A szilikátolvadékok jelentősége a Pannon-medencéből származó felsőköpeny zárványokban

First experiences with Gd fuel assemblies in. Tamás Parkó, Botond Beliczai AER Symposium

izotópfrakcion Demény Attila, Kele Sándor, Siklósy Zoltán Geokémiai Kutatóintézet

Budapesti Műszaki és Gazdaságtudományi Egyetem Építőmérnöki Kar

Hibridspecifikus tápanyag-és vízhasznosítás kukoricánál csernozjom talajon

EN United in diversity EN A8-0206/419. Amendment

KN-CP50. MANUAL (p. 2) Digital compass. ANLEITUNG (s. 4) Digitaler Kompass. GEBRUIKSAANWIJZING (p. 10) Digitaal kompas

Effect of sowing technology on the yield and harvest grain moisture content of maize (Zea mays L.) hybrids with different genotypes

FÖLDRAJZ ANGOL NYELVEN

Összefoglalás. Summary

Using the CW-Net in a user defined IP network

Revenue Stamp Album for Hungary Magyar illetékbélyeg album. Content (tartalom) Documentary Stamps (okmánybélyegek)

(c) 2004 F. Estrada & A. Jepson & D. Fleet Canny Edges Tutorial: Oct. 4, '03 Canny Edges Tutorial References: ffl imagetutorial.m ffl cannytutorial.m

Can/be able to. Using Can in Present, Past, and Future. A Can jelen, múlt és jövő idejű használata

FÖLDRAJZ ANGOL NYELVEN

A klímaváltozás természetrajza

USER MANUAL Guest user

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Hypothesis Testing. Petra Petrovics.

Flowering time. Col C24 Cvi C24xCol C24xCvi ColxCvi

A évi fizikai Nobel-díj

NYOMÁSOS ÖNTÉS KÖZBEN ÉBREDŐ NYOMÁSVISZONYOK MÉRÉTECHNOLÓGIAI TERVEZÉSE DEVELOPMENT OF CAVITY PRESSURE MEASUREMENT FOR HIGH PRESURE DIE CASTING

Mapping Sequencing Reads to a Reference Genome

Cashback 2015 Deposit Promotion teljes szabályzat

Széchenyi István Egyetem

A katalógusban szereplő adatok változásának jogát fenntartjuk es kiadás

Az fmri alapjai BOLD fiziológia. Dr. Kincses Tamás Szegedi Tudományegyetem Neurológiai Klinika

2. Local communities involved in landscape architecture in Óbuda

PETER PAZMANY CATHOLIC UNIVERSITY Consortium members SEMMELWEIS UNIVERSITY, DIALOG CAMPUS PUBLISHER

Bevezetés a kvantum-informatikába és kommunikációba 2015/2016 tavasz

Lexington Public Schools 146 Maple Street Lexington, Massachusetts 02420

Statistical Dependence

Ércteleptan IV. 4/20/2012. Intermedier és savanyú intrúziók ásványi nyersanyagai. Babeş-Bolyai Tudományegyetem, Geológia Szak, 3.

A KELET-BORSODI HELVÉTI BARNAKŐSZÉNTELEPEK TANI VIZSGÁLATA

Résbefúvó anemosztátok méréses vizsgálata érintõleges légvezetési rendszer alkalmazása esetén

Play Wellness Panzió

Extraktív heteroazeotróp desztilláció: ökologikus elválasztási eljárás nemideális

A Föld belső szerkezete

Modular Optimization of Hemicellulose-utilizing Pathway in. Corynebacterium glutamicum for Consolidated Bioprocessing of

2 level 3 innovation tiles. 3 level 2 innovation tiles. 3 level 1 innovation tiles. 2 tribe pawns of each color. 3 height 3 tribe pawns.

FÖLDRAJZ ANGOL NYELVEN GEOGRAPHY

A modern e-learning lehetőségei a tűzoltók oktatásának fejlesztésében. Dicse Jenő üzletfejlesztési igazgató

± ± ± ƒ ± ± ± ± ± ± ± ƒ. ± ± ƒ ± ± ± ± ƒ. ± ± ± ± ƒ

Utolsó frissítés / Last update: február Szerkesztő / Editor: Csatlós Árpádné

A controlling és az értékelemzés összekapcsolása, különös tekintettel a felsőoktatási és a gyakorlati alkalmazhatóságra

A kerámiaipar struktúrája napjainkban Magyarországon

NASODRILL ORRSPRAY: TARTÁLY- ÉS DOBOZFELIRAT, VALAMINT A BETEGTÁJÉKOZTATÓ SZÖVEGE. CSECSEMŐ GYERMEK FELNŐTT 100 ml-es üveg

FÖLDRAJZ ANGOL NYELVEN

A TALAJTAKARÁS HATÁSA A TALAJ NEDVESSÉGTARTALMÁRA ASZÁLYOS IDŐJÁRÁSBAN GYÖNGYÖSÖN. VARGA ISTVÁN dr. - NAGY-KOVÁCS ERIKA - LEFLER PÉTER ÖSSZEFOGLALÁS

Formula Sound árlista

EEA, Eionet and Country visits. Bernt Röndell - SES

EN United in diversity EN A8-0206/445. Amendment

Influence of geogas seepage on indoor radon. István Csige Sándor Csegzi Sándor Gyila

Szundikáló macska Sleeping kitty

Tertiary Quaternary subduction related magmatism in the Carpathian-Pannonian Region

INDEXSTRUKTÚRÁK III.

PIACI HIRDETMÉNY / MARKET NOTICE

36% more maize was produced (Preliminary production data of main crops, 2014)

Ültetési és öntözési javaslatok. Planting and watering instructions

NEUTRÍNÓ DETEKTOROK. A SzUPER -KAMIOKANDE példája

Genome 373: Hidden Markov Models I. Doug Fowler

fátyolka tojásgy jtœ lap [CHRegg] összeszereléséhez

Kvantum-informatika és kommunikáció 2015/2016 ősz. A kvantuminformatika jelölésrendszere szeptember 11.

Átírás:

Az alábukó lemezből felszabaduló fluidumok és szerepük szubdukciós környezetben Patkó Levente Szubdukció és köpenyék Ph.D. kurzus 2014.11.22.

Vázlat Szükségszerű e a devolatilizáció archaikumi TTG, adakit Devolatilizáció kőzettani modell Alábukó lemez köpeny kölcsönhatása (Catalina Schist) Devolatilizáció numerikus modell Devolatilizáció elem konzerválás/felszabadulás (természetes minták és kísérletek) Devolatilizáció fázis diagramok

Bevezetés Diagram of a typical ocean ocean subduction zone. Davidson JP, Reed W, and Davis PM (2002)

Van e mindig fluidum felszabadulás? Archaikumi TTG gránát reziduum a forrásrégióban 2,5 Ga nál fiatalabb granitoidok plagioklász a forrásrégióban Arndt, 2013

Van e mindig fluidum felszabadulás? Present PT útvonal modern szubdukciós zónákban Archean PT útvonal archaikumi szubdukciós zónákban Arndt, 2013 Kiindulási alap: az archaikumi óceáni kéreg nagyobb hőmérsékletű, mint a jelenlegi óceáni kéreg. Következmény: az archaikumi óceáni kéreg parciális olvadása beindul a víztartalmú fázisok elbomlása előtt felzikus olvadékok direkt képződése

Van e mindig fluidum felszabadulás? H = hornblende-out A = anthophyllite-out C = chlorite-out Ta = talc-out Tr = tremolite-out Z = zoisite-out The stability fields of both garnet and plagioclase are delimited by the G and P lines. The grey field is the P T domain where a magmatic liquid generated by partial melting. OC = oceanic crust CC = continental crust ms = solidus of an hydrated mantle black areas = magma dotted areas = fluids Archaikumi TTG Adakitok Mészalkáli kőzetek Martin, 1999

Adakitok geokémiai jegyei Adakites are intermediate to felsic volcanic rocks, andesitic to rhyolitic in composition. Adakites have trondhjemitic affinities (high Na 2 O contents and K 2 O/Na 2 O~ 0.5) and their #Mg (0.5), Ni (20 40 ppm) and Cr (30 50 ppm) contents are higher than in typical calc alkaline magmas. Their Sr contents are high (>300 ppm, until 2000 ppm) and REE show strongly fractionated patterns with very low heavy REE contents (Yb 1.8 ppm, Y 18 ppm). Consequently, high Sr/Y and La/Yb ratios are typical and discriminating features of adakitic magmas, indicative of melting of a mafic source where garnet and/or hornblende are residual phases. Adakitic magmas are only found in subduction zone environments, exclusively where the subduction and/or the subducted slab are young 20 Ma.

Adakitok geokémiai jegyei A) Üres kör (Costa Rica) és négyzet B) Archaikumi TTG REE lefutás (Equador) tipikus adakit REE lefutást jelez, míg a fekete négyzet mészalkáli dácitot mutat be (Chile) Martin, 1999

Adakitok geokémiai jegyei The HREE are compatible in garnet and the presence of this phase in the residue of melting provides a ready explanation for this distinctive geochemical feature. The Sr-Y ratio and Y concentration are commonly used in conjunction with La/Yb and Yb: classical island arc basalts generally do not show the depletion of the HREE and have relatively low Sr/Y and high Y, features that are ascribed to the presence of plagioclase (in which Sr is compatible) in the solid residue of melting. Martin, 1999

Adakitos vulkanizmus Adakitos vulkanizmus ismert helyei: 1. Austral Chile; 2. Ecuador; 3. Panama and Costa Rica; 4. Mexico; 5. Cascade; 6. Aleutians; 7. Kamchatka; 8. Japan; 9. Philippines; 10. New Guinea Martin, 1999

KPR magmás kőzetei Harangi és Lenkey, 2007

Adakitok a KPR ben A mészalkáli kőzetsorozaton belül Segedhi és Downes 4 alcsoportot különített el, amelyek közül az egyik az adakitszerű kőzetek alcsoportja. Jellemzőjük az amfibol és biotit fenokristályok jelenléte, a nagy Sr/Y arány. Megjelenésük: Erdélyi Érchegység (12,5 7,5 ma) és Dél Hargita (3,5 0,03). Generation of most adakite like magmas suggests delamination and partial melting of a high density garnet bearing (eclogitic) lower crust. /Seghedi and Downes, 2011/ Kenyér hegy Arany (falu) mellett, Hunyad megye

Devolatizáció kőzettani modell Köpenyék stabilitás Fekete nyíl olvadék Fehér nyíl fluidum Vékony nyíl köpeny áramlás klorit stabilitás alábukó kéreg alábukó köpeny Stabilitás nő krizotil ~ lizardit antigorit Hideg lemez esetén a szerpentin (azaz ilyen mélységben antigorit) stabilitása nem szűnik meg az A fázis megjelenése előtt. Következésképp az A fázis, amely szintén víztartalmú, még nagyobb mélységbe képes fluidumot szállítani. Schmidt and Poli, 1998

OH tartalmú ásványok stabilitása óceáni kéreg Experimentally determined phase relationships for watersaturated MOR basalt: amph = amphibole chl = chlorit cld = chloritoid cpx = jadeitic or omphacitic clinopyroxene epi = epidote gar = garnet law = lawsonite zo = zoisite. Schmidt and Poli, 1998

OH tartalmú ásványok stabilitása óceáni litoszféra Phase diagram for H2O-saturated average mantle peridotite and maximum H2O contents bound in hydrous phases in average peridotites. Upper value: harzburgite; middle value: lherzolite; lower value: pyrolite. A = phase A amph = amphibole chl = chlorite cpx = clinopyroxene gar = garnet ol = olivine opx = orthopyroxene serp = serpentine sp = spinel tc = talc Schmidt and Poli, 1998

Devolatizáció kőzettani modell átalakulás a köpenyékben és a hangingwall köpenyrészen Serpentine and the 10Å phase are two hydrous minerals, in addition to chlorite, that are stable to considerable depths in the subducted oceanic lithosphere (up to 150 km, depending on the pressure temperature structure of the slab). Amphibole was once proposed as a carrier for transporting water to depth in the mantle, but amphibole becomes unstable at depths shallower than the depths at which melting begins beneath most arc volcanoes. As shown in the new vapour-saturated peridotite melting experiments, amphibole is stable from,0.8 to 2 GPa on the solidus and chlorite is stable from 2 to 3.6 Gpa. Grove et al., 2009

Felszabaduló elemek forrása Lithologic thicknesses used: sedimentary rocks (400 m), altered oceanic crust (1000 m), fresh oceanic crust (1000 m), gabbro (3000 m), depleted mantle (6000 m), serpentinite (2000 m). Tenthorey and Hermann, 2004 Serpentinites contain significant amounts of fluid mobile elements such as B, Cs, As, and Ba, which during seafloor alteration are incorporated into mantle rocks. During the later highpressure breakdown of the serpentinites, these trace elements are redistributed among the residual olivine, orthopyroxene and fluid. We find that B is far more compatible in these minerals than previously assumed. High B concentrations in mantle olivines might be a fingerprint for previous metasomatism or serpentinization.

Alábukó lemez köpeny kölcsönhatása Catalina Schist Kalifornia A Catalina Schist különféle tektonometamorf egységekből áll. Ezek az egységek mélange-ként értelmezhetők, amely mafikus, ultramafikus, metaszediment blokkokból és mátrixból építkeznek különböző arányokban.

Keletkezési modell mechanikus keveredés A vizsgált egységben mafikusultramafikus blokkok keveredése. Al Cr összefüggésnél a mechanikus keveredés magyarázza a mátrix összetételét. Az Al Si diagramnál a 2 blokk mechanikus keveredésével nem kapjuk meg a mátrix Si tartalmát, ami szükségessé teszi összetettebb modell felállítását metaszomatózis integrálása a modellbe. Bebout and Barton, 2002

Keletkezési modell mechanikus keveredés és metaszomatózis Plot of trace element concentrations in metasedimentary rock having undergone metasomatic exchange with ultramafic mélange matrix, relative to the concentrations in the same layer but away from the interface with this mélange matrix (from. Breeding et al 2004). (a) Cartoon demonstrates schematically the textural and mineralogical relationships between the siliceous ultramafic mélange matrix and mafic and ultramafic blocks floating in the mélange. (b) Sketch illustrating the complex mineralogical zonations at the rims of ultramafic blocks in the mélange, indicating additions of Si and other components. Bebout and Barton, 2002

A Catalina Schist geodinamikai elhelyezése Bebout, 2007

Képaláírás az előző diához Sketch of an ocean continent subduction zone, illustrating key structural elements, some selected flux pathways. Oceanic crust (and its associated mantle part of the oceanic lithosphere), variably altered geochemically at mid ocean ridges (MOR), and sediment deposited onto this crust, are deeply subducted, contributing fluids and elements to the mantle wedge (hanging wall). It is possible that fluids are also contributed from the ultramafic part of the subducting oceanic lithosphere previously hydrated during slab bending in trench regions. On this figure (insets and main figure), the blue arrows indicate additions of slab derived fluids to the mantle wedge. At shallower levels (forearc regions, in particular), these fluids are thought to be aqueous fluids, whereas the fluids added to the mantle wedge at greater depths (beneath volcanic arcs and into the deeper mantle) likely transition into being silicate melts.

Alábukó lemez köpeny kölcsönhatása assumed kilometre-scale dragging folds Angiboust et al., 2012

H 2 O eloszlás a köpenyékben Olvadék eloszlás a köpenyékben Numerikus modellek A) eset peremfeltételei: öreg, 130 ma korú óceáni lemez 6 cm/év sebesség, köpenyék T-je 1250C B) eset peremfeltételei: fiatal, 10 ma korú óceáni lemez 6 cm/év sebesség, köpenyék T-je 1250C Mindkét eset az equilibrium transport feltételezésével készült (azaz nincsenek törések és inhomogenitások miatt kitüntetett irányok), viszont van köpenyék áramlás. Iwamori, 1998

Numerikus modellek Iwamori, 1998 Idős lemez (A kép) The subducted oceanic crust, which initially contains ~6 wt. % H 2 O mainly in chlorite, lawsonite and amphibole, undergoes dehydration and produces aqueous fluids of total ~3 wt. % at a depth of 50 km. As it enters the mantle wedge, a layer of serpentinite thinner than the oceanic crust is formed to accommodate all H 2 O released, since it can absorb 8 wt. %H 2 O. The serpentine breaks down where this layer thickens to reach an inner wedge region of above 600 C. At ~150 km depth, serpentine and chlorite break down to form a vertical column through which H 2 Ois transported by a fluid discussed. When the fluid reaches a depth of ~80 km, the temperature of the system exceeds the practical solidus temperature to cause significant melting. Then H 2 O is absorbed into the melt and transported towards the trench side along the solid stream lines, resulting in a horizontal melting layer. Fiatal lemez (B kép) By subduction of a relatively hot slab (age about 10 Myr), with the same parameters due to the higher temperature along the slab, the relevant dehydration reactions occur at shallower depths. Consequently, hydrous columns are formed at shallower levels, closer to the trench.

Devolatizáció szerpentin Az alábukó óceáni litoszféra szerpentinesedését elősegítik a nagy számban jelentkező lisztrikus vetők. A felszabaduló fluidum szerpentinek kialakulásához vezet a köpenyékben (serpentinization 2). Guillot and Hattori, 2013 A possible phase diagram for the MgO SiO 2 H 2 O system. To illustrate the uncertainty, two steep H 2 O-conserved reactions are shown as wide gray bands (modified after Evans 2004). Mineral compatibilities in the divariant fields are shown on the MgO SiO 2 binary line after projection from H 2 O. Abbreviations: A, Atg = antigorite; B, Brc = brucite; F, Fo = forsterite; L, Liz = lizardite; T, Tlc = talc. Evans et al., 2013

Numerikus modellek fluidum vándorlás A T a szilikátok oldhatóságátot jobban befolyásolja, hiszen csökkenő P melett is nő a Szilikátos részarány a fluidumban. A felszabaduló fluidum karaktere útja során is jelentősen változik (köpeny karakterekben gazdagodik). Manning, 2004

A fluidum jellege szubdukciós környezetekben L. P.1 A szubdukciós zónában a víz a domináns fluidum fázis A devolatizáció jellege/mértéke elsősorban a szubdukáló lemez OH tartalmú ásványokstabilitásátólfügg A többi illóhoz képest a poláris vízmolekula jóval nagyobb mértékben képes elemek oldására, ezáltal szállítására A víz, mint oldószer tulajdonságai függ a sűrűségétől, a rendezettségétől, a hidrogén kötéstőlésa molekula disszociációs tulajdonságaitól. Növekvő hőmérséklettel a rövidtávú rend felbomlik a H 2 O molekulákban. A szuperkritikus H 2 O esetén a hidrogénkötések hálózata már szétszakadozott. Ennek ellenére a H 2 O a fő oldóképes fluidum egészen 10 Gpa és 1000 C kondícióig, bár egyre kisebb hatékonysággal.

Slide 28 L. P.1 H2O density is 1.2 1.4 g/cm3 at sub-arc depths and 1.0 1.1 g/cm3 at the thermal maximum in the mantle wedge Levente Patkó, 11/21/2014

Fluidum változatosság szubdukciós környezetekben Poli et al., 2009 Schematic illustration showing the complexities in fluid speciation, from ocean floor metamorphism to volatile release at high pressure. A heterogeneous pattern of volatile addition is suggested by heterogeneity in vent chemistry in the oceans. Relatively CO 2 -rich fluids can be released in the forarc region, whereas fluids dominated by H 2 O are liberated at higher pressure. Similarly to what observed at very low temperature conditions, H 2 O CH 4 fluid mixtures might form locally at high-pressure, assuming that Fe 3+ -mineral phases (e.g. skiagitic garnet) sequester oxygen. Fluid-mixing promotes graphite/diamond precipitation. Depth and extent of carbonate hydrate phase assemblages are a function of volatile addition.

Felszabaduló fluidum főelemgeokémiája The deeper fluids are similar to the direct, shallow samples in one important way: total solute concentrations are low, regardless of pressure, temperature, or chlorinity. Deep fluids have TDS only two to three times that of seawater, and no more than 50% higher than shallow fluids from near the entrance to the subduction zone. TDS, though generally modest, nevertheless increases with depth. This arises from changes in solubility of rock forming minerals due to the PT enhancement of the solvent power of H 2 O. There are important changes in major elements with depth. The dominant solutes in deep fluids are Si and Na. Al concentrations are higher than Ca, Fe, and usually Mg. Thus, the solutes in H 2 O rich fluids in subduction zones are dominated by alkali and aluminosilicate components. This contrasts with fluids from shallow environments, where alkali and other metals predominate and Al is virtually insoluble. Manning, 2004

Felszabaduló elemek A diagramok bemutatják az AOC (altered oceanic crust = tengeralatti metamorfózis által érintett) és a szubdukció során metamorfizálódott bazaltos kéreg (metabazalt) geokémiai összevetését. A: K és Rb átfedésben tenger alatti mmf során felvett elemtartalom a szubdukció során nem módosul B: Ba és K csökkenése mmf dehidratáció során Th hoz képest ΣAB LILE elememek szubdukció folyamán kevéssé mobilisak C: Pb mobilisek lehetnek HP és UHP fluidumokban és olvadékokban D: az U koncentrációja a tengerfenéki mm során nő viszonyítva a REE, HFSE, Pb és THhoz képest. E: Th hozzáadódás mmf. Körülmények között történő metaszomatózis során F: LREE veszteség metamorfózis során MREE hez képest Bebout, 2007

Felszabaduló elemekmetamorf analógia Trace element data for a range of pelitic rocks of varying metamorphic grade. All of the samples are from northern New Caledonia and are understood to originally comprise part of the same sedimentary sequence. There is some variation in the trace element composition of the pelitic rocks, but there is no systematic loss (or gain) of trace elements (including the fluid mobile elements) associated with prograde metamorphism. We suggest that the trace element variations are not due to metamorphism, but are largely inherent variations in the composition of the original sedimentary rocks. Spandler et al., 2004

N isotopic composition in the Schistes Lustrés metasediments (deep-sea J-C sediments) With increasing metamorphic conditions, δ 15 N range remains constant N was preserved during subduction The Alpine and Corsican Schistes lustrés (SL) are Jurassic-Cretaceous metasediments often associated with ophiolites. Deep-sea sediments, and particularly the SL, are made up of a hemipelagic-pelagic background (HPB) associated with detrital components of local or distant origin. The nature of the HPB, mostly conditioned by Tethyan and world- wide events, is of great help as an at least rough stratigraphic marker. Busigny et al., 2003

Instruments for high pressure research Diamond anvil cell (DAC) 100 GPa (> 1 Mbar) > 5000 C Piston cylinder press 6 GPa (60 kbar) 1700 C Multi anvil press 25 GPa (250 kbar) 3000 C Keppler, short course slide

Kísérleti munkák módszerek Keppler, short course slide

Kísérleti munkák módszerek Hermann, 2009 EURISPET

Felszabaduló elemek szerpentinitit Trace element concentrations (normalized to primitive mantle values) of starting serpentinite (squares), dehydrated olivine-rich residual phase (dark gray shading), and dehydration fluid (light gray shading) as measured from quench precipitate in diamond traps. In starting material only B, As, and Cs are significantly enriched with respect to primitive mantle values. Nearly all fluid-mobile elements are greatly enriched in fluid phase relative to their concentration in residue, except for B, which is only enriched by factor of ~5. We suggest that B release is limited during dehydration of serpentinite. Piston cylinder kísérlet Tenthorey and Hermann, 2004

L. P.4 Felszabaduló elemek kísérleti munkák P = 2.2 GPa, T = 600-750 C, time 10-20 days under H 2 O saturated conditions EPSM = experimental pelite starting material Quartz for synthetic fluid inclusions Spandler et al., 2007 Slight T gradient driven circulation inside the capsule. Piston cylinder kísérlet

Slide 38 L. P.4 The trapping and subsequent analysis of synthetic fluid inclusions in quartz is routinely used to quantify hydrothermal fluid compositions and element solubilities at relatively low P. Levente Patkó, 2/3/2015

Felszabaduló elemek kísérleti munkák Subsolidus fluid inclusions Supersolidus mixed fluid+melt inclusions Photomicrographs of synthetic fluid and melt inclusions trapped in quartz during experiments. A. Pure water inclusions with distinct vapour bubbles from experiment TEST 1 (1.0 GPa, 650 C). B. high-density (N1.0 g/cm3) pure water inclusions from experiment TEST 2 (1.5 GPa, 650 C). C. High-density fluid inclusions from experiment PFI 3 (2.2 GPa, 600 C). Note, the distinct daughter crystals in the inclusion in focus. D. Highdensity fluid inclusions from experiment PFI 2 (2.2 GPa, 650 C). Note, the cluster of daughter crystals. E. Quartz chip from experiment PFI 7 (2.2 GPa, 675 C) with abundant large fluid/melt inclusions. F. Cluster of large quasi-rectangular fluid/melt inclusions from experiment PFI 4 (2.2 GPa, 700 C). G. Large rectangular fluid/melt inclusion within a trail of smaller fluid/melt inclusions from PFI 4 (2.2 GPa, 700 C). Note, the large vapour bubbles and complex daughter Spandler et al., 2007 crystals in the inclusions.

Felszabaduló elemek kísérleti munkák Residue method:is simply the ratio of the extrapolated subsolidus fluid composition to the analysed EPSM residue composition. Mass balance method:using the following formula: Spandler et al., 2007 where X is the starting mass ratio of fluid to EPSM and Ci is the element concentration.

Felszabaduló elemek kísérleti munkák The degree of element loss is calculated to be less than 0.1% of the original composition for almost all elements! Gránát növekedése az EPSM reziduumban Na and Cs are the most fluid soluble elements HFSE and REE are the most fluid insoluble elements Aqueous fluids are surprisingly dilute Spandler et al., 2007

Felszabaduló elemek kísérleti munkák Megfigyelések: As Pb alloys with the capsule during the experiments, only the residue method was used to calculate Pb partitioning. The partition coefficients produced using the two methods are remarkably similar for all other elements, indicating that most elements are not significantly affected by fluid transport and precipitation during the experiments. The precipitated alkali sheet silicates on the capsule walls of explains the significantly lower partition coefficients calculated for Na, Rb, and Cs using the residue method. It should be noted that the solid/fluid partitioning data for U is regarded as a maximum value, as U oxides are most likely present in the residue of the subsolidus experiments. These U oxides probably form due to the high initial U content of the EPSM starting material. Examination of the partitioning data reveals that all elements preferentially partition into the solid residue rather than the fluid at subsolidus conditions.

Fluidum összetétele oldódás The solubility of rutile was measured in apiston cylinder apparatus. Solubility was determined by weight loss using a doublecapsule method. Variation in rutile solubility in H 2 O with inverse temperature at 1 GPa (a) and with pressure at 800 C (b). Rutile solubility rises with increasing P and T. Antignano és Manning, 2008

Fluidum összetétele oldódás 800 C and 2.6 GPa 2.6 GPa REE concentration versus ionic radius a) in pure H 2 O and in various solutions containing ligands; each solution, shown in different color and symbol, displays a distinct REE pattern d) In pure H 2 O (circles) and in NaCl bearing solution (diamonds) at 600 and 800 C; arrows and numbers next to them show the difference in La solubility with addition of NaCl to the solution. Tsay et al., 2014

Képaláírás az előző diához All the ligands promoted the increase in REE solubility relative to pure H2O. In case of the NaCl bearing aqueous solution, experiments performed at 600 C show that at this lower temperature the presence of NaCl yields arelativelylarger increase in REE solubility in the fluid phase compared to that observed at 800 C. Furthermore, the fractionation between LREE and HREE due to the presence of chloride was even more pronounced.

Szubdukálódó lemez és az elemfelszabadulás kapcsolata A Catalina Schist különböző egységeinek P T útjai Minél hidegebb a szubdukálódó lemez (kor és lebukási szög függés) annál több fluidmobilis elemet szállít a mélybe. Bebout, 2007

L. P.2 A fluidum összetétele fázisdiagramok A kritikus görbe és az oldódási görbe teljes hosszukban elkülönülnek. pl. NaCl-H2O rendszer Manning, 2004

Slide 47 L. P.2 This figure possess a critical point marking termination of the distinction between the liquid and the vapor phase. At T and P above this point, there is only one phase, a supercritical fluid. In a system with both A and H2O, the two critical points are linked together by a critical curve that marks the boundary between the stability region of a single supercritical fluid, and that of two fluids, a denser liquid and a less-dense vapor. Another curve extends from the point at which ice and mineral A coexist with liquid and vapor (the A-ice eutectic). This is the solubility curve, which marks the stable coexistence of mineral A with liquid and vapor. Compositions of liquid, gas, and supercritical fluid vary along critical and solubility curves. For example, with increasing T along the solubility curve, the liquid composition changes continuously from nearly pure H2O to pure A. Levente Patkó, 11/21/2014

L. P.3 A fluidum összetétele fázisdiagramok pl. albit-h2o rendszer A kritikus görbe és az oldódási görbe keresztezi egymást és így két kritikus pont alakul ki. Manning, 2004

Slide 48 L. P.3 In some, the critical curve and solubility curve remain separated over their entire lengths; in others, they intersect to yield two critical end-points. The lower (first) critical end-point typically lies near the critical point of H2O. The upper, or second, critical end-point lies at high P and T, potentially near subduction paths. Levente Patkó, 11/21/2014

A fluidum összetétele fázisdiagramok Teoretikus megközelítésben az SiO 2 H 2 O rendszert szokták alkalmazni leegyszerűsítve a kőzetfluid rendszert. Addition of H 2 O to anhydrous systems significantly lowers melting temperatures, giving rise to the so called wet solidus, which is also commonly called the vapor or fluidsaturated melting curve. Hermann et al., 2006

Aqueous fluid dilute Transitional soluterich Hydrous melt very concentrated A fluidum összetétele fázisdiagramok At high pressure the wet solidus terminates at a position known as the second critical endpoint and marks the condition where hydrous melt and aqueous fluid become completely miscible on the wet solidus. Hermann, 2009 EURISPET

Szubdukálódó lemez és belőle felszabaduló fluidum oldási képessége Hermann et al., 2006

Hermann and Rubatto, 2009 Fázisdoagrammok és lehetséges p T utak Trace element concentrations in hydrous melts are at least one order of magnitude higher than in aqueous fluids. Therefore, sediment melts provide an efficient way of extracting incompatible elements from the subducted slab. Thermal models for top of slab T(I: Peacock et al., 1994, II: Kincaid and Griffiths, 2004, III: van Keken et al., 2002) determines whether an aqueous fluid, hydrous melt or a transitional fluid is released from subducted sediments at sub arc depth. Squares refer to experiments where trace element concentrations of the hydrous melts have been analysed. Also shown is the stability of phengite, which is the major host for LILE in the solid residue (Hermann and Spandler, 2008). The transition from accessory allanite (A) to monazite (M), which are the main hosts for LREE, Th and U in the residue, is shown.

Hydrous melt vs. aqueous fluid The concentration of buffered elements in the produced hydrous melts (open symbols) compared to aqueous fluid from Spandler et al. (2007), red symbols (A); Green and Adam (2003), green symbols (B); and Antignano and Manning (2008), yellow symbol (C). Note the strong drop in concentration of elements at the transition from hydrous melt to aqueous fluid. Concentration buffered Phengite: K Rutile: Ti Zircon: Zr Allanite/Monazite La, Ce, Th Hermann and Rubatto, 2009

A szubdukálódó lemez és belőle felszabaduló fluidumok elemtranszportja Az eredmények azt mutatják, hogy a szubdukciós övek vulkáni kőzeteiben nagy koncentrációval bíró elemek (LILE, LREE, B, Pb) felszabadulása a szubdukálódó lemezből csak nagy mélységben történik meg. Mindez ezen elemek hatékony transzportjára utal, amiből a köpenyék erőteljes átjárhatósága következik (highly chanellized mantle wedge).

Irodalomjegyzék Davidson, J.P., Reed, W.E. & Davis, P.M. (2002). Exploring Earth (second edition). New Jersey: Prentice Hall. Arndt, N. (2013). Formation and Evolution of the Continental Crust. Volume 2, Number 3 (pages 405 533) October 2013. Martin, H. (1999). Adakitic magmas: modern analogues of Archaean granitoids. Lithos, 46(3), 411 429. Harangi, S., & Lenkey, L. (2007). Genesis of the Neogene to Quaternary volcanism in the Carpathian Pannonian region: Role of subduction, extension, and mantle plume. Geological Society of America Special Papers, 418, 67 92. Seghedi, I., & Downes, H. (2011). Geochemistry and tectonic development of Cenozoic magmatism in the Carpathian Pannonian region. Gondwana Research, 20(4), 655 672. Schmidt, M. W., & Poli, S. (1998). Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth and Planetary Science Letters, 163(1), 361 379. Grove, T. L., Till, C. B., Lev, E., Chatterjee, N., & Médard, E. (2009). Kinematic variables and water transport control the formation and location of arc volcanoes. Nature, 459(7247), 694 697. Tenthorey, E., & Hermann, J. (2004). Composition of fluids during serpentinite breakdown in subduction zones: evidence for limited boron mobility. Geology, 32(10), 865 868. Bebout, G. E., & Barton, M. D. (2002). Tectonic and metasomatic mixing in a high T, subduction zone mélange insights into the geochemical evolution of the slab mantle interface. Chemical Geology, 187(1), 79 106.

Breeding, C. M., Ague, J. J., & Bröcker, M. (2004). Fluid metasedimentary rock interactions in subduction zone mélange: implications for the chemical composition of arc magmas. Geology, 32(12), 1041 1044. Bebout, G. E. (2007). Metamorphic chemical geodynamics of subduction zones. Earth and Planetary Science Letters, 260(3), 373 393. Angiboust, S., Wolf, S., Burov, E., Agard, P., & Yamato, P. (2012). Effect of fluid circulation on subduction interface tectonic processes: Insights from thermo mechanical numerical modelling. Earth and Planetary Science Letters, 357, 238 248. Iwamori, H. (1998). Transportation of H 2 O and melting in subduction zones. Earth and Planetary Science Letters, 160(1), 65 80. Evans, B. W., Hattori, K., & Baronnet, A. (2013). Serpentinite: what, why, where?. Elements, 9(2), 99 106. Guillot, S., & Hattori, K. (2013). Serpentinites: essential roles in geodynamics, arc volcanism, sustainable development, and the origin of life. Elements, 9(2), 95 98. Manning, C. E. (2004). The chemistry of subduction zone fluids. Earth and Planetary Science Letters, 223(1), 1 16. Poli, S., Franzolin, E., Fumagalli, P., & Crottini, A. (2009). The transport of carbon and hydrogen in subducted oceanic crust: an experimental study to 5 GPa. Earth and Planetary Science Letters, 278(3), 350 360. Spandler, C., Hermann, J., Arculus, R., & Mavrogenes, J. (2004). Reply to comments on Redistribution of trace elements during prograde metamorphism from lawsonite blueschist to eclogite facies: implications for deep subduction zone processes. Contributions to Mineralogy and Petrology, 148(4), 506 509.

Busigny, V., Cartigny, P., Philippot, P., Ader, M., & Javoy, M. (2003). Massive recycling of nitrogen and other fluid mobile elements (K, Rb, Cs, H) in a cold slab environment: evidence from HP to UHP oceanic metasediments of the Schistes Lustrés nappe (western Alps, Europe). Earth and Planetary Science Letters, 215(1), 27 42. Spandler, C., Mavrogenes, J., & Hermann, J. (2007). Experimental constraints on element mobility from subducted sediments using high P synthetic fluid/melt inclusions. Chemical Geology, 239(3), 228 249. Antignano, A., & Manning, C. E. (2008). Rutile solubility in H 2 O, H 2 O SiO 2, and H 2 O NaAlSi 3 O 8 fluids at 0.7 2.0 GPa and 700 1000 C: implications for mobility of nominally insoluble elements. Chemical Geology, 255(1), 283 293. Tsay, A., Zajacz, Z., & Sanchez Valle, C. (2014). Efficient mobilization and fractionation of rare earth elements by aqueous fluids upon slab dehydration. Earth and Planetary Science Letters, 398, 101 112. Hermann, J., Spandler, C., Hack, A., & Korsakov, A. V. (2006). Aqueous fluids and hydrous melts in high pressure and ultra high pressure rocks: implications for element transfer in subduction zones. Lithos, 92(3), 399 417. Hermann, J., & Rubatto, D. (2009). Accessory phase control on the trace element signature of sediment melts in subduction zones. Chemical Geology, 265(3), 512 526.