Ismételjük a geometriát egy feladaton keresztül!

Hasonló dokumentumok
Koordinátageometriai gyakorló feladatok I ( vektorok )

Koordináta-geometria feladatgyűjtemény

Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók)

Helyvektorok, műveletek, vektorok a koordináta-rendszerben

Síkgeometria 12. évfolyam. Szögek, szögpárok és fajtáik

Érettségi feladatok Koordinátageometria_rendszerezve / 5

Érettségi feladatok: Koordináta-geometria 1/5

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Koordináta-geometria feladatok (középszint)

Geometriai feladatok, 9. évfolyam

Skaláris szorzat: a b cos, ahol α a két vektor által bezárt szög.

10. Tétel Háromszög. Elnevezések: Háromszög Kerülete: a + b + c Területe: (a * m a )/2; (b * m b )/2; (c * m c )/2

Geometria 1 összefoglalás o konvex szögek

54. Mit nevezünk rombusznak? A rombusz olyan négyszög,

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

Koordináta - geometria I.

2. ELŐADÁS. Transzformációk Egyszerű alakzatok

Koordináta-geometria feladatok (emelt szint)

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK TENGELYES TÜKRÖZÉS

GEOMETRIA. b a X O Y. A pótszögek olyan szögpárok, amelyek az összege 90. A szögek egymás pótszögei. b a

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

HASONLÓSÁGGAL KAPCSOLATOS FELADATOK. 5 cm 3 cm. 2,4 cm

Egybevágóság szerkesztések

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Koordinátageometria Megoldások

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Koordináta-geometria

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Háromszögek, négyszögek, sokszögek 9. évfolyam

Lehet hogy igaz, de nem biztos. Biztosan igaz. Lehetetlen. A paralelogrammának van szimmetria-középpontja. b) A trapéznak két szimmetriatengelye van.

5. előadás. Skaláris szorzás

Témák: geometria, kombinatorika és valósuínűségszámítás

Középpontos hasonlóság szerkesztések

Országos Középiskolai Tanulmányi Verseny 2011/2012 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló - megoldások. 1 pont Ekkor

Egyenes mert nincs se kezdő se végpontja

Nagy András. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 2010.

Exponenciális és logaritmusos kifejezések, egyenletek

, D(-1; 1). A B csúcs koordinátáit az y = + -. A trapéz BD

(d) a = 5; c b = 16 3 (e) b = 13; c b = 12 (f) c a = 2; c b = 5. Számítsuk ki minden esteben a háromszög kerületét és területét.

Elemi matematika szakkör

Telepítő programok. Euklides 2.4 (Geometriai szerkesztőprogram) (A makrók megnyitásához szükséges!) Wingeom (Geometriai szerkesztőprogram)

Geometriai transzformációk

A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA ( SZAKKÖZÉPISKOLA ) Javítási-értékelési útmutató

A kör. A kör egyenlete

Egybevágósági transzformációk. A geometriai transzformációk olyan függvények, amelyek ponthoz pontot rendelnek hozzá.

Hasonlóság. kísérleti feladatgyűjtemény POKG osztályos matematika

Add meg az összeadásban szereplő számok elnevezéseit!

Vektorgeometria (1) First Prev Next Last Go Back Full Screen Close Quit

Racionális számok: Azok a számok, amelyek felírhatók két egész szám hányadosaként ( p q

KOORDINÁTA-GEOMETRIA

3 m ; a víz sodráé sec. Bizonyítsuk be, hogy a legnagyobb szöge os! α =. 4cos 2

Koordinátageometria. M veletek vektorokkal grakusan. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1

Bartha Gábor feladatjavaslatai az Arany Dániel Matematika Versenyre

Koordináta geometria III.

Érettségi feladatok: Síkgeometria 1/6

Feladatok. 1. a) Mekkora egy 5 cm oldalú négyzet átlója?

VEKTOROK. 1. B Legyen a( 3; 2; 4), b( 2; 1; 2), c(3; 4; 5), d(8; 5; 7). (a) 2a 4c + 6d [(30; 10; 30)]

10. Koordinátageometria

3. előadás. Elemi geometria Terület, térfogat

A keresett kör középpontja Ku ( ; v, ) a sugara r = 1. Az adott kör középpontjának koordinátái: K1( 4; 2)

Pitagorasz-tétel. A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! 2 2 2

Síkbeli egyenesek Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III.

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria

10. Síkgeometria. I. Elméleti összefoglaló. Szögek, nevezetes szögpárok

Bevezetés a síkgeometriába

16. tétel Egybevágósági transzformációk. Konvex sokszögek tulajdonságai, szimmetrikus sokszögek

Komplex számok a geometriában

4 = 0 egyenlet csak. 4 = 0 egyenletből behelyettesítés és egyszerűsítés után. adódik, ennek az egyenletnek két valós megoldása van, mégpedig

15. Koordinátageometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria

Minimum követelmények matematika tantárgyból 11. évfolyamon

EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY

Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint

4. Vektorok. I. Feladatok. vektor, ha a b, c vektorok által bezárt szög 60? 1. Milyen hosszú a v = a+

KOSZTOLÁNYI MIKE MATEMATIKA ÖSSZEFOGLALÓ FELADATGYÛJTEMÉNY ÉVESEKNEK MEGOLDÁSOK (II. KÖTET)

Feladatok a májusi emelt szintű matematika érettségi példáihoz Hraskó András

Síkgeometria. Ponthalmazok

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk)

Hatvány, gyök, normálalak

9. Írjuk fel annak a síknak az egyenletét, amely átmegy az M 0(1, 2, 3) ponton és. egyenessel;

egyenletrendszert. Az egyenlő együtthatók módszerét alkalmazhatjuk. sin 2 x = 1 és cosy = 0.

Matematika javítóvizsga témakörök 10.B (kompetencia alapú )

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny MATEMATIKA II. KATEGÓRIA (GIMNÁZIUM)

Koordinátageometria. , azaz ( ) a B halmazt pontosan azok a pontok alkotják, amelynek koordinátáira:

18. Kerületi szög, középponti szög, látószög

Kisérettségi feladatsorok matematikából

15. Koordinátageometria

1. GONDOLKODÁSI MÓDSZEREK, HALMAZOK, KOMBINATORIKA, GRÁFOK

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató

Vektorok és koordinátageometria

3 függvény. Számítsd ki az f 4 f 3 f 3 f 4. egyenlet valós megoldásait! 3 1, 3 és 5 3 1

8. feladatsor. Kisérettségi feladatsorok matematikából. 8. feladatsor. I. rész

λ 1 u 1 + λ 2 v 1 + λ 3 w 1 = 0 λ 1 u 2 + λ 2 v 2 + λ 3 w 2 = 0 λ 1 u 3 + λ 2 v 3 + λ 3 w 3 = 0

1. Középpontos tükrözés, középpontos szimmetria 146/1. a) 0; 3; 8; A;B;C; D; E;H; I; M; O; T; U; V; W; X; Y;Z. b) 0; H; I; N; O; S; X; Z

Szélsőérték problémák elemi megoldása II. rész Geometriai szélsőértékek Tuzson Zoltán, Székelyudvarhely

11. osztály. 1. Oldja meg az egyenletrendszert a valós számok halmazán! (10 pont) Megoldás: A három egyenlet összege: 2 ( + yz + zx) = 22.

2004_02/10 Egy derékszögű trapéz alapjainak hossza a, illetve 2a. A rövidebb szára szintén a, a hosszabb b hosszúságú.

Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok)

Feladatok Elemi matematika IV. kurzushoz

Átírás:

Laczkó László Készült a Fazekas ihály Oktatási Kulturális és Sport lapítvány támogatásával z árák elektronikus változatát Véges árton (009c) diák készítette feladat z hegyesszögű háromszög -nél levő szöge. a háromszög magasságpontja. izonyítsuk e, hogy =! I. megoldás szakasz hossza legyen x, az T szakaszé y. T háromszög egyenlő szárú, derékszögű. Ezért T hossza x+y. z T háromszög is egyenlő szárú, derékszögű. Ezért T =y. T, T háromszögek egyevágók, mert két-két oldaluk és közezárt szögük egyenlő. Ezért =. II. megoldás T =, mert merőleges szárú hegyesszögek. z T, T háromszögek derékszögűek és még van T egy-egy egyenlő szögük, ráadásul a T és T egymásnak megfelelő oldalak egyenlőek (a T háromszög egyenlő szárú derékszögű) ezért a két háromszög egyevágó. Eől következik, hogy =. x+y T y y z I., II. és III. megoldás árája x T III. megoldás z, oldalak hosszát jelölje és a. T egyenlő szárú derékszögű háromszög, ezért T =, T = a. T egyenlő szárú derékszögű háromszög, ezért T = a. Felírjuk a cosinus tételt az háromszögre: (*) = a + acos = a + a = = + a =. z utolsó egyenlőség a T derékszögű háromszögre felírt Pithagoras tétel. (*) sor elejére és végére nézve látjuk, hogy már készen vagyunk. IV. megoldás Tükrözzük az pontot a oldalra, a tükörképet jelöli. Ismeretes, hogy a háromszög köré írt körön van. = a tükrözés miatt. =. =, mert mindegyikhez -os kerületi szög tartozik. Így =. 1/6 ' T IV. megoldás árája ' T

V. megoldás szakaszt oldal felezőpontjára tükrözve kapjuk -t. a körülírt körön van. Tudjuk, hogy átmérője a körnek, ezért = 90. =, mert ívhez tartozó kerületi szög. egyenlő szárú derékszögű háromszög, ezért =. tükrözés miatt =, ezért készen vagyunk. VI. megoldás Legyen O a háromszög köré írható körének középpontja. z O vektort jelölje m, az ' O, O, O, vektorokat a,, c, d. z V. megoldás árája Felhasználjuk, hogy m = a + + c. Eől pld d = m c = a + + c c = a +. = a. z a és vektorok által kifeszített paralelogramma egyik átlója, a másik. kerületi és középponti szögek tétele miatt O = 90. Így az a és vektorok által kifeszített paralelogramma négyzet, mert az a, vektorok hossza a köré írt kör sugarával egyenlő. négyzet átlói egyenlőek, így =. '' F O T F T ' VI. megoldás és a VII. megoldás árája VII. megoldás z pontot, egyenesekre tükrözve kapjuk az, pontokat, melyek a köré írt körön vannak. a tükrözés miatt a duplája, azaz 90, ezért Thales tétele miatt átmérő. tükrözés miatt háromszög egyenlő szárú is. Ha a kör sugara R, akkor = R, és = ' = R. z oldalhoz tartozó kerületi szög, ezért = Rsin = R. Így =. /6

VIII. megoldás z háromszöget úgy helyezzük el a koordinátarendszere, hogy az origóa, az x tengely pozitív részére kerüljön, pont az y = x egyenes első negyeden lévő részén legyen. Koordinátákkal: (;), (a;0). egyenes egyenlete y = x. pont első koordinátája. egyenes merőleges -re, ezért egyenlete y = a x. z x = és az y = a x egyenesek metszéspontja adja az magasságpontot, melynek második koordinátája (a ) lesz. és pontok távolsága ( a ) +, és pontok T (;) (; ) VIII. megoldás árája (a;0) távolsága + ( a ). Látható, hogy =. IX. megoldás Tekintsük az háromszöget a köré írt körével együtt, melynek középpontja O. -t O körül 90 -kal a háromszög körüljárásával ellenkező irányan elforgatjuk. elforgatottja, elforgatottja legyen, egyeesik -val. = 90 a forgatás miatt, ezért Thales tétel miatt átmérő. párhuzamos egyenessel, mert mindketten -re merőlegesek. Thales tétele miatt 90. magasság merőleges egyenesre, ezért párhuzamos egyenessel. négyszög paralelogramma, mert szemközti oldalai párhuzamosak. Így = =. = ' F O T O S T IX. megoldás és a X. megoldás árája X. megoldás Legyen O a háromszög köré írható kör közepe, F az oldal felezőpontja, S a háromszög súlypontja. a háromszög magasságpontja. Kerületi és középponti szögek tétele miatt O derékszögű háromszög, és egyenlő szárú. OF =, mert OF az Thales körének sugara, pedig az átmérője. Tudjuk, hogy az S-re vonatkozó (-) szeres hasonlóság FO-t -e viszi. Így = FO =. 3/6

XI. megoldás háromszög oldalai a szokásos etűzés szerint a,, c. T háromszög egyenlő szárú, derékszögű, ezért T = T = T = T =. T T négyszög húrnégyszög, mert van két szemközti derékszöge. pontnak a húrnégyszög köré írható körére vonatkozó hatványa a T = T = = asin = T, ahol T a háromszög területe. Eől T c T következik, hogy T = T Ezt rendezve = = = c =. T T T T T XI. megoldás és a XII. megoldás árája T XII. megoldás háromszög jelölései legyenek a szokásosak. legyen a háromszög magasságpontja, T az csúcshoz, T a csúcshoz tartozó magasság talppontja. T háromszög és T a háromszög egyenlő szárú és derékszögű. Eől következik, hogy T = és T =. z T T négyszög húrnégyszög Thales tétel miatt, erre a húrnégyszögre alkalmazzuk Ptolemaiosz tételét: T T = T T T T. T T húrhoz a T T húrnégyszög köré írt köréen -os kerületi szög tartozik. kör átmérője, ezért T T = * sin = T T = sin =. Felhasználjuk, hogy a 3a a T T = a =. megfelelő értékeket eírva a a + a Ptolemaiosz tétele, a következő egyenlőséget kapjuk: =. jo oldal számlálója az háromszögre vonatkozó cosinus tétel szerint tel egyenlő. Eől következik, hogy =. 4/6

XIII. megoldás legyen a háromszög magasságpontja. oldalra tükrözzük az háromszöget, legyen tükörképe. T és a tükörképe, T is, sőt T is annyi. Ezért szakasz -os látókörén van és. =90 a tükrözés miatt, ezért szakasz párhuzamos szakasszal, így húrtrapéz, melynek szárai és egyenlőek. Ezért =. XIV. megoldás Tekintsük háromszöget a köré írt körével együtt húrhoz kerületi szög tartozik, ezért a köre írt négyzet oldalával egyenlő. Rajzoljuk e az KL négyzetet! -ől induló magasság LK oldalt T-en, oldalt T -en a köré írt kört -en metszi. az magasságpont oldalra tükrözött képe. tükrözés és a szimmetriák miatt T = T = T. z egyenlő szakaszokól következik, hogy = K =. T ' XIII. megoldás árája T L T T ' T T K XIV. megoldás és a XV. megoldás árája XV. megoldás legyen a háromszög magasságpontja, T = T = T =. Két szakasz egyenlőségéhez elég megmutatni azt, hogy van olyan pont, ami körül az egyiket a másika 90 -kal tudjuk forgatni. Ez jelen eseten a T pont, ezért =. 5/6

XVI. megoldás legyen a háromszög magasságpontja, T az csúcshoz tartozó magasság, T a -hez tartozó magasság csúcspontja. T =. T T négyszög és T T négyszög is húrnégyszög Thales tétele miatt. z első körnek, a másodiknak az átmérője. T T szakasz a két kör közös húrja, melyhez mindkét kören -os kerületi szög tartozik. Ezért a két kör átmérője illetve is egyenlők. XVII. megoldás legyen a háromszög magasságpontja, T az csúcshoz tartozó magasság, T a -hez tartozó magasság talppontja. T =. T T négyszög húrnégyszög, T T négyszög húrnégyszög Thales tétele miatt. z első körnek, a másodiknak az átmérője. T T a T húr és a T húr kerületi szöge az egyik, illetve a másik kören. T = T =, ezért T = T. Egyenlő szakaszok ugyanolyan szögű látóköreinek átmérői egyenlők, ezért =. T 135 T XVIII. megoldás árája T XVIII. megoldás jelöli a magasságpontot, T, T, T a magasságvonalak talppontjait., háromszögeknek az -nál fekvő közös szögükön kívül van még egy-egy derékszöge, így a harmadik szögük is egyenlő: = =. z az T háromszög külső szöge, így 135. Írjunk fel két szinusz-tételt: sin : = sin 45 =. sin : = sin135 T T XVI., XVII. megoldások árája XIX. megoldás Húzzuk meg az K párhuzamost a magasságponton át a oldallal. z K, háromszögek hasonlók, mert szögeik egyenlők: az K, szögpár és a K, szögpár is merőleges szárú. K háromszög szögei alapján egyenlő szárú derékszögű háromszög, azaz K =. Ezért az K, háromszögek egyevágóak: =. XVIII., XIX. megoldások a törökálinti álint árton Ált. és Középiskola diákjaitól, Kiss Gariellától, ill. Vágó Lajostól, Szomju László tanítványaitól származnak. T β x x K β XIX. megoldás árája T 6/6