A hiperbolikus síkgeometria Poincaré-féle körmodellje Ha egy aiómarendszerre modellt adunk, az azt jelenti, hogy egy matematikai rendszerben interpretáljuk az aiómarendszer alapfogalmait és az aiómák a vizsgált rendszer tételei. A segítségül hívott rendszer jelen esetben R 2 geometriája. R 2 el van látva a kanonikus skaláris szorzattal, melyből R 2 kanonikus metrikája származik: a P = (p 1, p 2 ), Q = (q 1, q 2 ) pontok P Q-val jelölt távolsága: P Q = (p 1 p 2 ) 2 + (q 1 q 2 ) 2. Legyen O = (0, 0) és: = { (, y) R 2 2 + y 2 = 1 }, int = { (, y) R 2 2 + y 2 < 1 }. A továbbiakban gyakran használjuk az inverziót (-ra vonatkozót és más inverziót is), s a fogalmazás megkönnyítése végett R 2 egydimenziós lineáris sokaságaira és köreire egyaránt mint körökre, vagy E-körökre hivatkozunk. Inverzió alatt pedig tengelyes tükrözést vagy közönséges inverziót értünk. (Ld. az inverzív síknál alkalmazott terminológiát.) Az interpretálandó struktúra: (E, L, d, m). 1. Definíció. E = int = { (, y) R 2 2 + y 2 < 1 }. Egyenes alatt egy -t merőlegesen metsző E-kör és int metszetét értjük. O O 1. ábra. Egyenesek a Poincaré-féle körmodellben. 1. Tétel. A (E, L) struktúrára teljesülnek az illeszkedési aiómák. Bizonyítás: I1: Bármely egyenesnek van legalább két pontja. Nyilvánvaló. I2: Bármely két különböző pontra egyértelműen illeszkedik egyenes. Legyen a két pont P és Q. A P pont -ra vonatkozó inverzét jelölje P. A {P, Q, P } ponthármasra egyértelműen illeszkedik egy -t merőlegesen metsző kör. Ennek int -val való metszete a kívánt egyenes. I3: Létezik három nem kollineáris pont. Nyilvánvaló. 2. Tétel. A (E, L) struktúrában HPP teljesül. 1
P P Q O 2. ábra. Két pontra illeszkedő egyenes. Bizonyítás: Legyen R E, R / P Q. Az R -ra vonatkozó inverzét jelölje R. Az R-re és R -re illeszkedő körök -t merőlegesen metszik. Ezek közül végtelen sok lesz olyan, mely int -ba eső része P Q -val párhuzamos egyenest határoz meg. 2. Definíció. Hiperbolikus tükrözésnek nevezzük az alábbi transzformációkat: Az -t merőlegesen metsző E-körre vonatkozó inverziót (ha a kör nem tartalmazza O-t), vagy tengelyes tükrözést (ha a kör tartalmazza O-t). Az -t merőlegesen metsző kört a rá vonatkozó hiperbolikus tükrözés tengelyének nevezzük. 3. Tétel. A hiperbolikus tükrözések E bijektív leképezései. Bizonyítás: A tengelyes tükrözésre az állítás nyilvánvaló, inverzióra pedig következik az inverzió tulajdonságaiból: a szóban forgó inverziónak mind, mind int invariáns alakzata. A következő lépésben a távolságfüggvény interpretációjára kerül sor. 3. Definíció. Legyenek P, Q E pontok. A P -re és Q-ra illeszkedő, -t merőlegesen metsző kör és metszéspontjai legyenek U és V. Legyen ( d(p, Q) = ln P V : UQ ). QV d(p, Q) jól definiált, azaz nem függ attól, hogy melyik metszéspontot jelöltük U-val illetve V -vel: ( V P ln P U : V Q ) ( = V P QU ln P U QU ) ( ) = V Q ln 1 ( QV = ln P V QV ) = UQ P V UQ ( = ln P V QV ). UQ 2
R R P Q 3. ábra. HPP 4. Tétel. A hiperbolikus tükrözés távolságtartó. Bizonyítás: Ha a tengely O-t tartalmazza, akkor az állítás nyilvánvaló, mert ekkor az euklidészi távolságok is megőrződnek, tehát a belőlük képezett hányadosok, s ezek logaritmusa is. Ha a tengely nem tartalmazza O-t, akkor jelöljük a tükrözést (mely most inverzió) ρ-val, hatványát α-val, pólusát K-val. Legyen ρ(x) jel. = X Az inverzióra teljesül, hogy X Y XY = α KX KY. Legyen k a P és Q pontokra illeszkedő, -t merőlegesen metsző kör. k = {U, V }. ρ(k) = k a P -re és Q -re illeszkedő, -t merőlegesen metsző kör, tehát k = {U, V }. Ekkor: ( d(p, Q ) = U ln P : U ) ( Q α = P V Q V ln KU KP α ) QV KQ KV P V UQ α KP KV α = KU KQ ( = ln P V : UQ ) = d(p, Q). QV 5. Tétel. A d függvényre teljesül a vonalzó aióma. Bizonyítás: RP1 teljesülése nyilvánvaló. RP2-t először arra az esetre ellenőrizzük, amikor O P Q = l. Legyen f : l R, f(p ) = ln V P P U. 3
Belátjuk, hogy f bijektív. Legyen =! Ekkor f(p ) = ln 2 (0 < < 2). Az ln 2 függvényről belátható, hogy szigorúan monoton fogyó, továbbá: lim ln 2 +0 =, lim 2,<2 ln 2 =. y 1 4. ábra. Az ln 2 függvény grafikonja. RP2 valóban teljesül: ( d(p, Q) = V P ln P U : V Q ) ( ) ( ) = V P V Q QU ln ln = f(p ) f(q). P U QU Most bebizonyítjuk RP2-t arra az esetre, amikor O / P Q. Legyen ρ olyan hiperbolikus tükrözés, melyre Q = O. Ekkor a P Q = l egyenes nyilván tartalmazza O-t. l már bizonyítottan létező - koordinátaleképezését jelölje f. Legyen f : l R, f = f ρ. d(p, Q) = d(p, Q ) = f(p ) f(q ) = f(ρ(p )) f(ρ(q)) = f (P ) f (Q). Tehát teljesül RP. 4. Definíció. m egyezzen meg az euklidészi szögmértékkel, azaz az egyenesek hiperbolikus szöge egyezzen meg az egyeneseknek, mint E-köröknek a szögével. 4
A további aiómák ellenőrzésénél melytől eltekintünk fontos szerepet játszik az a tény, hogy a hiperbolikus tükrözések szögtartó transzformációk. 1. Megjegyzés. Az 5. tétel bizonyításában kihasználtuk, hogy E két tetszőleges pontját hiperbolikus tükrözéssel egymásba tudjuk vinni. Ennek bizonyítása a következő. Jelölje a két pontot P és Q. Vegyünk fel egy olyan k kört, mely mindkét pontra illeszkedik (s célszerű, ha metszi -t is.) Feltehető, hogy a P Q (euklidészi) egyenes és a két kör hatványvonala metszi egymást. Az M metszéspontból egybevágó érintőszakaszok vonhatók -hoz és k-hoz. Jelölje az egyik érintési pontot E. A keresett hiperbolikus tükrözés l tengelye az M középpontú E-re illeszkedő kör int -ba eső íve. Mivel l merőlegesen metszi -t, ezért valóban hiperbolikus tükrözést definiáltunk, mivel l merőlegesen metszi k-t, ezért P és Q egymás képei az l-re vonatkozó inverzióban. Azt is mondhatjuk, hogy az előző szerkesztéssel a P Q szakasz felezőmerőlegesét szerkesztettük meg (5. ábra). P Q E M 5. ábra. Szakasz felezőmerőlegese. 2. Megjegyzés. Vizsgáljuk meg, hogy milyen alakzatok lesznek a hiperbolikus távolság szerinti körök a modellben. Egyszerű számítás mutatja, hogy két pont akkor és csakis akkor van egyenlő távolságra O-tól a hiperbolikus távolság szerint, ha az euklidészi távolság szerint. Az O középpontú euklidészi körök tehát egyben hiperbolikus körök is mindaddig, amíg E-ben vannak, és megfordítva. (A körök sugara természetesen más a két metrika szerint.) Ha a kör középpontja nem O, akkor vigyük át a hiperbolikus távolság szerinti kört hiperbolikus tükrözéssel egy O középpontú körbe már tudjuk, hogy egy euklidészi kört kapunk. Mivel az inverzió körtartó, ezért az eredeti alakzat is egy euklidészi kör volt. A hiperbolikus távolság szerinti kör tehát ebben az esetben is euklidészi kör volt. Most a két körnek (mely ugyanaz a ponthalmaz) sem a sugara, sem a középpontja nem egyezik meg. 5
A következő ábrán láthatunk egy olyan háromszöget, melynek oldalfelező merőlegesei egy pontban metszik egymást, s így van körülírt köre, illetve egy olyan háromszöget, melynek oldalfelező merőlegesei nem metszik egymást: nincs körülírt köre. A három pontra illeszkedő euklidészi kör az első esetben benne van E-ben, (így ez a kör egyben a háromszög hiperbolikus körülírt köre is), míg a második esetben onnan kilóg. 6. ábra. Háromszögek oldalfelező merőlegesei és a körülírt kör létezése. Kovács Zoltán, 2006. november 8. 6
7. ábra. Ezen az ábrán (a hiperbolikus mérték szerint) egyenlő sugarú körök vannak 7