Mennyiségek, mértékegységek nemzetközi rendszere



Hasonló dokumentumok
Mérés szerepe a mérnöki tudományokban Mértékegységrendszerek. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem

A klasszikus mechanika alapjai

A NEMZETKÖZI MÉRTÉKEGYSÉG-RENDSZER (AZ SI)


Az SI mértékegységrendszer

Az SI mértékegység rendszer

Nemzetközi Mértékegységrendszer

1991. évi XLV. törvény. a mérésügyrıl, egységes szerkezetben a végrehajtásáról szóló 127/1991. (X. 9.) Korm. rendelettel. I.

Mértékrendszerek, az SI, a legfontosabb származtatott mennyiségek és egységeik

1. SI mértékegységrendszer

Amit tudnom kell ahhoz, hogy szakmai számításokat végezzek

MÉRÉSTECHNIKA. Mérés története I. Mérés története III. Mérés története II. A mérésügy jogi szabályozása Magyarországon. A mérés szerepe a mai világban

Tartalom Fogalmak Törvények Képletek Lexikon

Általános Géptan I. SI mértékegységek és jelölésük

Melyik több? Egy szekrény súlya vagy egy papírlap tömege?

Kémiai alapismeretek 1. hét

ALKÍMIA MA Az anyagról mai szemmel, a régiek megszállottságával.

10/10/2014 tema01_biolf_

A FIZIKA MÓDSZEREI. Fáról leesı alma zuhanás. Kísérletes természettudomány: a megfigyelt jelenségek leírása és értelmezése

Az Ohm törvény. Ellenállás karakterisztikája. A feszültség és az áramerősség egymással egyenesen arányos, tehát hányadosuk állandó.

Bevezetés a laboratóriumi gyakorlatba és biológiai számítások GY. Molnár Tamás Solti Ádám


Követelmények: f - részvétel az előadások 67 %-án - 3 db érvényes ZH (min. 50%) - 4 elfogadott laborjegyzőkönyv

Kérdések Fizika112. Mozgás leírása gyorsuló koordinátarendszerben, folyadékok mechanikája, hullámok, termodinamika, elektrosztatika

Alapfogalmak Metrológia Metrológia: Általános metrológia Mérés célja Mérési elvek, mérési módszerek Mér eszközök konstrukciós elemei, elvei

Felvételi, 2017 július -Alapképzés, fizika vizsga-

BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.

Javaslat: AZ EURÓPAI PARLAMENT ÉS A TANÁCS IRÁNYELVE. a mértékegységekre vonatkozó tagállami jogszabályok közelítéséről. (kodifikált szöveg)

MÉRTÉKEGYSÉGEK. Kausay 1

EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY

Általános kémia képletgyűjtemény. Atomszerkezet Tömegszám (A) A = Z + N Rendszám (Z) Neutronok száma (N) Mólok száma (n)

9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK

Elektromos ellenállás, az áram hatásai, teljesítmény

Testek mozgása. Készítette: Kós Réka

Zaj- és rezgés. Törvényszerűségek

Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens.

1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom:

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája

Osztályozó vizsga anyagok. Fizika

1. Mi a termodinamikai rendszer? Miben különbözik egymástól a nyitott és a zárt termodinamikai

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA

Műszaki hőtan I. ellenőrző kérdések

Fizika 1 Elektrodinamika beugró/kis kérdések

SI kiegészítő egységei. Az SI-alapegységek meghatározásai

A munkavégzés a rendszer és a környezete közötti energiacserének a D hőátadástól eltérő valamennyi más formája.

Légköri termodinamika

Elektromos áram. Vezetési jelenségek

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el.

Az Ampère-Maxwell-féle gerjesztési törvény

Az egységes mértékegységrendszer kialakítása és hazai bevezetésének akadémiai vonatkozásai

Feladatlap X. osztály

MFI mérés BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR POLIMERTECHNIKA TANSZÉK HŐRE LÁGYULÓ MŰANYAGOK FOLYÓKÉPESSÉGÉNEK VIZSGÁLATA

71. A lineáris és térfogati hőtágulási tényező közötti összefüggés:

Alapfogalmak folytatás

Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár,

Szenzorok bevezető és szükséges fogalmak áttekintése

Mérés alapelve, mértékegységek, számolási szabályok. Gyenes Róbert, Tarsoly Péter

FIZIKA ZÁRÓVIZSGA 2015

A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a

Öveges korcsoport Jedlik Ányos Fizikaverseny 2. (regionális) forduló 8. o március 01.

1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk:

Betűtípusok. Betűstílusok:

Felvételi, 2018 szeptember - Alapképzés, fizika vizsga -

Általános Kémia, BMEVESAA101

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

Mértékegység rendszerek és mértékegységek, különös tekintettel a klasszikus mechanikára

Villamosságtan. Dr. Radács László főiskolai docens A3 épület, II. emelet, 7. ajtó Telefon:

2. (d) Hővezetési problémák II. főtétel - termoelektromosság

A. mértékegységek (alap és származtatott mértékegységet, átváltások) neve: jele: neve: jele: hosszúság * l méter m. tömeg * m kilogramm kg

Elektromos áram, áramkör, kapcsolások

Fermi Dirac statisztika elemei

Galvanomágneses jelenségek

Elektromos áram, egyenáram

Elektromos áram, egyenáram

Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont)

Műszaki termodinamika I. 2. előadás 0. főtétel, 1. főtétel, termodinamikai potenciálok, folyamatok

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)

Elektromos ellenállás, az áram hatásai, teljesítmény

Általános Kémia GY tantermi gyakorlat 1.

Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont)

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések

TANÁCS III. (Előkészítő jogi aktusok)

1. Metrológiai alapfogalmak. 2. Egységrendszerek. 2.0 verzió

5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével

A nagyobb tömegű Peti 1,5 m-re ült a forgástengelytől. Összesen: 9p

Tipikus megvilágítás szintek a szabadban (délben egy napfényes napon) FISHER LED

Fizika-Biofizika I. DIFFÚZIÓ OZMÓZIS Október 22. Vig Andrea PTE ÁOK Biofizikai Intézet

TANMENET FIZIKA. 10. osztály. Hőtan, elektromosságtan. Heti 2 óra

Dr. Nagy Balázs Vince D428

ÖVEGES JÓZSEF ORSZÁGOS FIZIKAVERSENY II. fordulója feladatainak javítókulcsa április 5.

1991. évi XLV. törvény. a mérésügyről. I. fejezet. Általános rendelkezések. A törvény hatálya. Mérésügy, mérésügyi szervezet. Hatáskör és illetékesség

Elektrosztatikai alapismeretek

Tartalom I. Az SI egységrendszer. 1 Tájékoztató. 2 Ajánlott irodalom. 3 A méréselmélet szerepe. 4 Bevezetés. 5 A mérőberendezés felépítése

Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27

Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola

ELEKTROSZTATIKA. Ma igazán feltöltődhettek!

Víz. Az élő anyag szerkezeti egységei. A vízmolekula szerkezete. Olyan mindennapi, hogy fel sem tűnik, milyen különleges

Orvosi biofizika. 1 Az orvostudomány és a biofizika kapcsolata. Sugárzások a medicinában. gyakorlatok. 1. félév előadásai

Biológiai jelek mérése

Átírás:

Ismerd meg Mennyiségek, mértékegységek nemzetközi rendszere 1. Alapmennyiségek. Származtatott mennyiségek A tudományok rohamos fejlődése szükségessé tette a mértékegységek elnevezésének és a jelrendszer nemzetközi egységesítését, amelyet a legújabb fizikai és kémiai szakkönyvek következetesen alkalmaznak is. Sajnos, a mi tankönyveink erre nem fektetnek különösebb hangsúlyt, habár az 1978-ban megszavazott 27-es törvény kimondja, hogy 1981 január 1-től Romániában az egyetlen elfogadott mértékrendszer az SI, sőt, egyes mennyiségek mértékegységei a kémia tankönyvekben eltérnek a fizika tankönyvekben alkalmazottaktól. Ezenkívül a mindennapi életben számos más mértékegységet is használnak. Ennek a cikknek éppen az a célja, hogy a fenti hiányosságok kiküszöbölését elősegítse, és a definíció- és jelölésrendszert, valamint az SI következetes alkalmazását szorgalmazza az iskolai oktatásban. Az Általános Súly- és Mértékügyi Értekezlet (Conférernce Générale des Poids et Measures, CGPM) 1960-ban fogadta el első változatban a nemzetközi mértékegységrendszert (Systeme Internationale d'unités, SI). A nemzetközi tudományos világszervezetek és szabványosítási szervezet (ISO) mintegy 30 éve folyó munkájának a célja, hogy rendezze a fogalmak szabatos használatát, egységessé tegye a mennyiségek jelölését és a mértékegységek használatát, és ennek következménye nemcsak annak a különbségnek a megszűnése, amit már a fizikával és kémiával kapcsolatban említettem, hanem az is, hogy bizonyos megszokott mértékegységekről le kell mondanunk, ugyanakkor néhány új nagyságrendet is el kell fogadnunk.. Mennyiségek A fizikai és kémiai mennyiségek a jelenségek és fogalmak mérhető tulajdonságai és két független tényező, a számérték (mérőszám) és a mértékegység szorzatát jelentik. Pl. V = 10 m 3, illetve 5 mol esetén: a mennyiség és jele: térfogat: V, illetve anyagmennyiség: n; a számérték: 10 illetve 5 a mértékegység: m illetve mol. Megállapodás alapján a nemzetközi mértékegységrendszerben jelenleg hét fizikai, kémiai mennyiséget tekintenek egymástól dimenzionálisan független alapmennyiségnek. Ezekből származtatják az összes többi mennyiséget az ismert természeti törvények (képletek, amelyekben csak szorzás, osztás, deriválás és integrálás fordulhat elő) alapján és ezeket származtatott mennyiségeknek nevezzük.

A mértékegységek definíciója a legkorszerűbb méréstechnikához és a tudomány legújabb eredményeihez igyzolódik, ezért időről időre nemzetközi megállapodás szerint változhat. A hét alapmennyiséget a megfelelő hét Sí-alapegységgel és ezek jelölésével, valamint a jelenlegi érvényes definíciójuk elfogadásának évét a következő táblázat tünteti fel: Év Alapmennyiség Sl-alapegység neve jele neve jele 1901 tömeg m kilogramm kg 1948 elektromos áramerősség 1 amper A 1967 Idő t másodperc s 1967 termodinamikai hőmérséklet T kelvin K 1971 anyagmennyiség m mól mol 1979 fényerősség lv kandela cd 1983 hosszúság 1 méter m A mennyiség jele a mennyiség rövid leírására szolgál, és bizonyos általános szabálynak kell eleget tennie. Sem a mennyiség, sem annak jele nem utal arra, hogy milyen mértékegységet kell használni az értékek megadásánál. A mennyiségek jeleit nemzetközi megegyezés alapján állapítják meg és a jel általában a latin vagy görög ábécé nagy vagy kisbetűje. A betűket szabályosan, dőlten kell ími. Amennyiben szükséges a jeleket alsó vagy felső indexxel módosítani lehet és amennyiben az index maga is egy mennyiséget vagy számot jelöl, ezt is dőlt betűvel kell írni: pl. Cp - hőkapacitás állandó nyomáson; CB - a B anyag hőkapacitása. A számokat álló típusú karakterekkel kell írni. Az állandó értékeket jelölő betűket (pl. e, π, h) szintén álló típusú betűk jelölik, míg a nem állandó számok betűjele (pl. n, t) mindig dőlt típusú. Hasonlóan a matematikai függvények jele (pl. log, In, exp, sin, cos, A) szintén álló típusú betű, de maga a függvény általános jele f(x), dőlt betű. A dimenzió olyan kifejezés, amely megadja, hogy milyen kapcsolat van a fizikai, kémiai mennyiségek és az alapmennyiségek között és független a mértékegység megválasztásától. Ugyanannak a mennyiségnek csak egyféle dimenziója, de több mértékegysége lehet. Pl. a sebesség dimenziója hosszúság/idő, mértékegysége lehet m/s, m/h, km/h, stb. A dimenzió tehát egy szavakban elmondott képlet (sokszor összetévesztik a mértékegységgel). Vannak mennyiségek, amelynek dimenziója egy; ezek az ún. dimenzió nélküli mennyiségek. Ilyen pl. a móltört, disszociációfok, relatív sűrűség, stb.

Tényezőnek vagy faktornak azokat a dimenzió nélküli mennyiségeket nevezzük, amelyek két másik mennyiség (A és B) közötti arányosságot adják meg: A - kb. Ha az arányossági tényezőnek (k) van dimenziója, együtthatónak vagy koefficiensnek nevezzük. Két mennyiség dimenzió nélküli hányadosát törtnek nevezzük, ha ez az arány egynél kisebb (pl. móltört). Gyakran előfordul, hogy a dimenzió nélküli mennyiség nevében a szám kifejezés szerepel (pl. rendszám, tömegszám, oxidációs szám, sztöchiometriai szám). Helytelen a dimenziós mennyiséget számnak nevezni: tehát nem Avogadroszám, hanem Avogadro-állandó; nem Faraday-szám, hanem Fraday-állandó, stb. Az állandóknak több típusát ismerjük: univerzális állandó, olyan fizikai mennyiséget jelöl, amelynek értéke minden körülmények között állandó (pl Avogadro-állandó, Faraday-állandó, Boltzmann-állandó) és anyagi állandók, amelyek egy adott anyag esetében minden körülményen állandóak (pl. radioaktív bomlási állandó) és amelyek adott körülmények között állandóak (pl. egyensúlyi állandó, sebességi állandó). Extenzív mennyiségeknek nevezzük az olyan mennyiségeket, amelyeknek az értéke összegeződik a részek értékeiből, ha a rendszert gondolatban vagy ténylegesen a részekből állítjuk össze (pl. térfogat, tömeg, energia, stb.). Intenzív mennyiségek azok, amelyeknek értéke a rendszer egészére nem kaphatók meg a helyi értékek összegezésével. Ezeket kiegyenlítődő mennyiségeknek is szokták nevezni, mert a folyamtok során gyakran kiegyenlítődnek (pl. a hőmérséklet, nyomás). A fajlagos jelzőt olyan esetben használjuk, amikor az adott extenzív mennyiség egységnyi tömegre vonatkozik. Ha az extenzív mennyiséget nagybetű jelöli, akkor ennek fajlagos mennyiségét a megfelelő kisbetűvel (betűkkel) jelöljük. Pl. a fajlagos térfogatot (v) úgy kapjuk meg, hogy a térfogatot (V) elosztjuk a tömeggel (m). Néhány esetben a "fajlagos" szó használata nem felel meg ennek a definíciónak (fajlagos forgatóképesség, fajlagos ellenállás), ezért ilyenkor mindig meg kell határozni, hogy mire vonatkozik az adat. A "moláris" szókapcsolat, amely a kémiában nagyon gyakran szerepel, azt jelenti, hogy a megfelelő extenzív mennyiséget elosztjuk az anyagmennyiséggel, vagyis egységnyi anyagmennyiségre vonatkoztatjuk. A moláris mennyiséget a megfelelő fizikai mennyiség jelének "m" alsó indexe jelöl. Pl. moláris térfogat: V m = V/n; moláris entrópia: Sm = S/n stb. Mind a "fajlagos" mind a "moláris" kifejezések helyett szokás a "faj" illetve a "mól" rövidítést használni, azonban ezt kerülni kell. Tehát: fajlagos hőkapacitás (c p ) és nem fajhő; moláris térfogat (V m ) és nem móltérfogat. A sűrűség (amelyet főleg az általános iskolában a diákok gyakran összetévesztenek a sűrűség hétköznapi használatával, a viszkozitással), a menynyiség és a neki megfelelő térfogat hányadosát jelenti (pl. töltéssűrűség ρ = Q/V). Fontos megjegyezni, hogy: 1. Összeadni és kivonni csak az egynemű mennyiségeket lehet és az eredmény dimenziója megegyezik a tagok dimenziójával; 2. A szorzást, osztást, hatványozást és gyökvonást a számértékkel és a mértékegységekkel egyaránt el kell végezni.

Az alapegységek Sí-definíciója A mértékegység a mennyiség megállapodás szerint rögzített értéke. A mennyiség ehhez viszonyított nagyságát a mérőszám fejezi ki. A kilogramm az 1889-ben Párizsban megtartott első Általános Súly- és Mértékügyi Értekezlet által a tömeg etalonjául, a Nemzetközi Súly- és Mértékügyi Hivatalban, Sévresben őrzött platina-iridium henger tömege. Az amper olyan állandó elektromos áram erőssége, amely két párhuzamos, egyenes, végtelen hosszúságú, elhanyagolhatóan kicsi kör keresztmetszetű és egymástól 1 m távolságban levő vezetőben áramolva a két vezető között méterenként 2.1CT 7 newton erőt hoz létre. A másodperc az alapállapotú 133 Cs-atom két hiperfinom energiaszintje közötti átmenetnek megfelelő sugárzás periódusidejének 9192631770-szerese. A kelvin a víz hármaspontja termodinamikai hőmérsékletének 1/273,l6-od része. A mól annak az anyagi rendszernek az alapmennyisége, amely annyi elemi egységet tartalmaz, mint ahány atom van 0,012 kg 12 C-ben. Az elemi egységfajtákat mindig meg kell adni (atom, molekula, ion, elektron, stb.), tehát egy szabatos kifejezésben a mértékegység, a mérőszám és az elemi egység neve együtt kell hogy szerepeljen. ^ A kandela az olyan fényforrás fényerőssége adott irányban, amely 540.10 hertz (Hz) frekvenciájú monokromatikus fényt bocsát ki és sugárzási erőssége ebben az irányban 1/683 watt/sr (sr-steradián). (1979-ig a kandela: a fekete sugárzó 1/600000 m 2 -nyi felületének fényerőssége a felületre merőleges irányban a platina fagyáspontjának hőmérsékletén, 101325 newton/m 2 nyomáson.) A méter annak az útnak a hosszúsága, amelyet a fény vákuumban 1/299792458-ad másodperc alatt megtesz. (1983-ig a méter* a 8 Kr-atom 2pio és 5d5 energiaszintje közötti átmenetnek megfelelő vákkumban terjedő sugárzás hullámhosszúságának 1650763,73-szorosa.) Származtatott SI és Si n kívüli mennyiségek és egységek Az alapmennyiségekből származtatott mennyiségek és származtatott egységek képezhetők. A származtatott SI egységek egy részének jelentőségük és gyakoriságuk miatt külön neve és jele van. Ezek közül a kémia szempontjából a legfontosabbakat a lenti táblázat tartalmazza. Származtatott mennyiség SI egysége neve jele neve jele kifejezése SI egységben sebesség V - - ms"' gyorsulás a - - -2 ms erő F newton N m kg s~ 2 energia A joule J m 2 kg s~ 2 munka A joule J m 2 kg s~ 2 hő A joule J m 2 kg s~ 2 teljesítmény P watt W m 2 kg s" 3

Sl egysége neve jele neve jele kifejezése Sl egységben nyomás p pascal Pa elektromos töltés Q coulomb C elektromos feszültség U volt V elektromos potenciál V volt V elektromos ellenállás R ohm Ω elektromos kapacitás C farad F elektromos vezetés G siemens S fényáram Φ lumen lm frekvencia f hertz Hz Meg kell jegyeznünk, hogy külön neve csak az alapegységekből származtatott újabb egységeknek lehet. A tört és többszörös egységekből származtathatók mértékegységek, de nem lehet külön nevük. Pl. s.a egység neve coulomb, jele: C. A nemzetközi mértékegység rendszeren kívül, de korlátozás nélkül használhatók az alábbi mértékegységek: Mennyiség neve Celsius hőmérséklet Celsius fok C térfogat liter l,l tömeg tonna t Idő perc min Idő óra h idő nap d energia (munka) wattóra Wh Mértékegység neve jele kifejezése Sl egységekkel Szintén nemzetközi mértékegységrendszeien kívüli, kizárólag meghatározott területen használható, törvényes mértékegység pl. a folyadékok és gázok nyomásának a jellemzésére a bar; 1 bar = 10 5 Pa; az energia jellemzésére az atomfizikában az elektronvolt; jele: ev, 1 ev = 1,6.10-19 J, vagy a tömeg jellemzésére ugyancsak az atomfizikában használt atomi tömeg egység; jele: u, 1 u = 1,6605.10-27 kg. Már nem használható, nem törvényes mértékegységek (korábbi szakkönyvekben és példatárakban még szerepelnek) pl. az angström: 1Á= 10-10 m; az atmoszféra: 1 atm = 101325 Pa; 1cai =4,186 kj.

Ha olyan mennyiséget akarunk kifejezni, amelynek nagysága nagyságrendekkel kisebb vagy nagyobb mint az SI egység, akkor az egység neve elé illesztett prefixumok segítségével képezzük a megfelelő mértékegységet és ezeket egybeírjuk, a két jelt pedig egymás mellé írjuk. Pl. kilojoule: kj; megapascal: MPa; nanométer: nm; milligramm: mg. Általában a 10 prefixumokat részesítjük előnyben. Összetett prefixumokat nem használhatunk. A használható prefixumok neve, jele és számértéke a következő táblázatban van feltüntetve: Prefixum Jele Szorzó, amellyel a mértékegységet meg kell szorozni exa E 1 000 000 000 000 000 000 = 10 18 peta P 1 000 000 000 000 000 = 1 o 15 tera T 1 000 000 000 000= 10 12 giga G 1 000 000 000= 10 9 mega M 1 000 000= 10 5 kilo k 1 000= 10 3 hektó h 100= 10 2 deka da 10= 10 1 deci d 0,1 = 10-1 centi c 0,01 = 10-2 milll m 0,001 = 10-3 mikro H 0,000 001 = 10-6 nano n 0,000 000 001 = 10-9 pikó P 0,000 000 000 001 = 10-12 femto f 0,000 000 000 000 001 =10-15 atto a 0,000 000 000 000 000 001 = 10-18 Horváth Gabriella Marosvásárhely