A TERMOKAMERA, AVAGY A CSÖRGŐKÍGYÓ STRATÉGIÁJA



Hasonló dokumentumok
Sugárzáson, és infravörös sugárzáson alapuló hőmérséklet mérés.

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István

Távérzékelés, a jöv ígéretes eszköze

A kézi hőkamera használata összeállította: Giliczéné László Kókai Mária lektorálta: Dr. Laczkó Gábor

Sugárzáson, alapuló hőmérséklet mérés.

A fény keletkezése. Hőmérsékleti sugárzás. Hőmérsékleti sugárzás. Lumineszcencia. Lézer. Tapasztalat: a forró testek Hőmérsékleti sugárzás

A távérzékelés és fizikai alapjai 4. Technikai alapok

A hiperspektrális képalkotás elve

A légköri sugárzás. Sugárzási törvények, légköri veszteségek, energiaháztartás

A távérzékelés és fizikai alapjai 3. Fizikai alapok

LÁTÁS FIZIOLÓGIA I.RÉSZ

TERMOVÍZIÓ Alapfogalmak: Az infravörös sugárzás

DRÓNOK HASZNÁLATA A MEZŐGAZDASÁGBAN

Sugárzásos hőtranszport

HULLADÉKCSÖKKENTÉS. EEA Grants Norway Grants. Élelmiszeripari zöld innovációs program megvalósítása. Dr. Nagy Attila, Debreceni Egyetem

Térinformatika és Geoinformatika

LÉGI HIPERSPEKTRÁLIS TÁVÉRZÉKELÉSI TECHNOLÓGIA FEJLESZTÉSE PARLAGFŰVEL FERTŐZÖTT TERÜLETEK MEGHATÁROZÁSÁHOZ

IMPAC pirométerek hordozható

INFORMATIKA ÁGAZATI ALKALMAZÁSAI. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP /1/A

A Planck-eloszlásokról és a fényforrások ekvivalens színhőmérséklet -eiről Erbeszkorn Lajos

Bevezetés a színek elméletébe és a fényképezéssel kapcsolatos fogalmak

1.1 Emisszió, reflexió, transzmisszió

Műszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása

A TERMOKAMERA, AVAGY A CSÖRGŐKÍGYÓ STRATÉGIÁJA 2. RÉSZ

Alapfogalmak folytatás

Atomfizika. Fizika kurzus Dr. Seres István

Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez

Mérés és adatgyűjtés

A színérzetünk három összetevőre bontható:

TÉRINFORMATIKA II. Dr. Kulcsár Balázs egyetemi docens. Debreceni Egyetem Műszaki Kar Műszaki Alaptárgyi Tanszék

A mérési feladat (1) A fotoellenállás R ellenállása függ a megvilágítás erősségétől (E), amely viszont arányos az izzószál teljesítmény-sűrűségével:

Szilárd testek sugárzása

Színek

Milyen színűek a csillagok?

Hősugárzás Hővédő fóliák

Atomfizika. Fizika kurzus Dr. Seres István

Számítógépes grafika. Készítette: Farkas Ildikó 2006.Január 12.

Bevezetés a színek elméletébe és a fényképezéssel kapcsolatos fogalmak

HŐKAMERA ALAPOK ÉS GYAKORLATI ALKALMAZÁSOK november 3.

Fotointerpretáció és távérzékelés 1.

A gravitáció hatása a hőmérsékleti sugárzásra

II. Szakmai alap- és szakismeretek, gyakorlati alkalmazásuk 11. Világítástechnika Hunyadi Sándor

Fényerő mérés. Készítette: Lenkei Zoltán

Tippek és trükkök az éjszakai fotózáshoz.

Távérzékelés. Modern Technológiai eszközök a vadgazdálkodásban

Budapesti Műszaki és Gazdaságtudományi Egyetem (BME) Építészmérnöki Kar. Világítástechnika. Mesterséges világítás. Szabó Gergely

Modern Fizika Labor. A mérés száma és címe: A mérés dátuma: Értékelés: Infravörös spektroszkópia. A beadás dátuma: A mérést végezte:

Az optika tudományterületei

Anyagvizsgálati módszerek Elemanalitika. Anyagvizsgálati módszerek

Ezeket az előírásokat az alábbiakban mutatjuk be részletesebben:

A hőmérsékleti sugárzás

Spektrográf elvi felépítése. B: maszk. A: távcső. Ø maszk. Rés Itt lencse, de általában komplex tükörrendszer

Növények spektrális tulajdonságának vizsgálata Kovács László, Dr. Borsa Béla, Dr. Földesi István FVM Mezőgazdasági Gépesítési Intézet

A fény tulajdonságai

Áttekintés. Optikai veszélyek. UV veszélyek. LED fotobiológia. Az UV sugárz szembe. Bevezetés Optikai sugárz. Összefoglalás.

Infravörös melegítők. Az infravörös sugárzás jótékony hatása az egészségre

Képrestauráció Képhelyreállítás

Világító diódák emissziójának szimulációja Monte Carlo sugárkövetés módszerével

Harmadik generációs infra fűtőfilm. forradalmian új fűtési rendszer

Az elektromágneses hullámok

A digitális képfeldolgozás alapjai

A hiperspektrális távérzékelés lehetőségei a precíziós mezőgazdaságban. Keller Boglárka Tudományos segédmunkatárs NAIK MGI

Műszeres analitika II. (TKBE0532)

Az [OIII] vonal hullámhossza = 3047,50 Ångström Maximális normált fluxus = 7,91E-12 Szigma = 0,18 Normálási tényező = 3,5E-12 A Gauss-görbe magassága

Benapozásvédelmi eszközök komplex jellemzése

Fénytechnika. A szem, a látás és a színes látás. Dr. Wenzel Klára. egyetemi magántanár Budapesti Műszaki és Gazdaságtudományi Egyetem

E3S-CT11 E3S-CT61 E3S-CR11 E3S-CR61 E3S-CD11 E3S-CD61 E3S-CD12 E3S-CD62

Modern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés:

Bosch AEGIS reflektorok Biztonsági és védelmi világítás

A évi fizikai Nobel díj

Lelovics Enikő, Környezettan BSc Témavezetők: Pongrácz Rita, Bartholy Judit Meteorológiai Tanszék;

ÉRDEKESSÉGEK AZ INFRAVÖRÖS SUGÁRZÁSRÓL

G04 előadás Napelem technológiák és jellemzőik. Szent István Egyetem Gödöllő

u,v chromaticity diagram

9. Gyakorlat - Optoelektronikai áramköri elemek

Mi van a Lajtner Machine hátterében?

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia május 6.

RÉSZLETEZŐ OKIRAT a NAH /2017 nyilvántartási számú akkreditált státuszhoz

A napenergia alapjai

11.3. Az Achilles- ín egy olyan rugónak tekinthető, amelynek rugóállandója N/m. Mekkora erő szükséges az ín 2 mm- rel történő megnyújtásához?

eloszlása Lángérzékelés

KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II.

Agrár-környezetvédelmi Modul Vízgazdálkodási ismeretek. KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc

A SZÍNEKRŐL III. RÉSZ A CIE színrendszer

Dr. Nagy Balázs Vince D428

LED-es világítástechnika 2011 januári állapot

Modern Fizika Labor. 11. Spektroszkópia. Fizika BSc. A mérés dátuma: dec. 16. A mérés száma és címe: Értékelés: A beadás dátuma: dec. 21.

Alkalmazás a makrókanónikus sokaságra: A fotongáz

Modern fizika laboratórium

Fényvezető szálak és optikai kábelek

HŐKAMERÁK ÉS IR KÖZELI KAMERÁK A TÁVOLI VESZÉLY ÉRZÉKELÉSÉRE ÉS KIÉRTÉKELÉSÉRE

Fajspecifikus gyomtérképezés távlati lehetőségei távérzékelési módszerekkel

A NAPSUGÁRZÁS MÉRÉSE

OPTIKA. Fotometria. Dr. Seres István

Infravörös melegítők. Az infravörös sugárzás jótékony hatása az egészségre

Termográfiai vizsgálatok

Némethné Vidovszky Ágens 1 és Schanda János 2

Előszó. International Young Physicists' Tournament (IYPT) Karcolt hologram #5 IYPT felirat karcolása D'Intino Eugenio

A bűnügyi helyszínelés teljesen új megközelítésben

Épület termográfia jegyzőkönyv

Átírás:

A TERMOKAMERA, AVAGY A CSÖRGŐKÍGYÓ STRATÉGIÁJA Sokszor használjuk a fényképezés infravörös tartományban kifejezést, ami után rögtön magyarázkodni kényszerülünk, hogy melyik tartományra is gondoltunk. Az ún. közeli IR vagy a távoli IR tartományra? Ez alkalommal egy igazi kuriózumot, egy távoli IR tartományban működő hőkamerát vizsgálhattunk meg. Ráadásul ez az első hazai fejlesztésű hőkamera. Mi is ez a távoli IR? Szemünk a 380nm és 780nm közötti elektromágneses sugárzásra érzékeny. Ezt a tartományt nevezzük fény -nek. 1. ábra A látható spektrum színei Ez a nekünk olyan kedves szivárványcsík (1. ábra) látszólag az elektromágneses spektrum elenyésző kis intervallumát jelenti (2. ábra). Nekünk, az emberiségnek és az élővilágnak az életet. 2. ábra Az elektromágneses spektrum Figyelmünket fordítsuk a Sir William Herschel által 1800-ban felfedezett infravörös (IR) tartományra. A 3. ábrán bemutatjuk az elektromágneses hullámok Nemzetközi Világítástechnikai Bizottság által ajánlott felosztását. Természetesen, ez a felosztás is, mint minden kategorizálás önkényes. (Mások máshogy definiálják az alábbi tartományokat, de ezzel most ne törődjünk.)

TARTOMÁNY KEZDETE VÉGE Látható tartomány 380nm 780 nm Közeli infravörös tartomány 780nm 1400nm Közepes infravörös tartomány 1400nm 3000nm Távoli infravörös tartomány 3µm 1000µm 3. ábra A látható és az infravörös hullámhossz-tartományok Jogosan kérdezhetjük, szemünk miért ilyen kis intervallumban és miért pont itt érzékel? A megoldás kulcsa a Nap Az egyedfejlődés során, a földfelszíni nappali élet versenyszámban az a látási stratégia győzött, amely jól alkalmazkodott a Nap sugárzási spektrumához. A Nap sugárzási spektrumának maximuma kb. 500nm körül van és a 380nm-780nm tartományban bocsátja ki sugárzásának kb. 50%-át (az ultraibolya tartományban kb. 1/6-od részét, a közeli- és távoli IR tartományban kb. 1/3-ad részét). Elégedetten állapíthatjuk meg, szemünkre nem lehet különösebb panasz, ráadásul érzékenységi görbéjének maximuma még közel is esik a Nap sugárzási maximumához, a zöld színhez. Ezért fontos nekünk embereknek és az állatok jelentős részének az a fenti szivárványcsík. Természetesen, ez a tény még nem zárná ki, hogy más hullámhosszokon, akár az IR tartományban is érzékeljünk. Ne legyünk telhetetlenek, amit az egyedfejlődés elspórolt, majd pótolja maga az ember. Más stratégiák Ne legyünk igazságtalanok és ne felejtsük el, a látható tartományon túl is van élet, a szó legszorosabb értelmében. Az ember táplálékszerzés a nappali és földfelszíni életre összpontosult, de vannak más stratégiát (és tegyük hozzá: sikeres stratégiát!) követő állatok, amelyek éjszaka vadásznak. Ilyen például a csörgőkígyó. A csörgőkígyónak a zsákmányállatot úgy kell kiválasztani a környezetből, hogy az ne láthassa a támadót. Az egerek, pockok nem látnak a sötétben, de hogy lehet őket meglátni? Hogy is lát a csörgőkígyó? A hőmérsékleti sugárzás A hőmérsékleti sugárzás rejtélyét Max Planck oldotta meg 1900 decemberében. (A kedves Olvasó engedje meg, hogy utaljunk arra az érdekes tényre is, hogy a hőmérsékleti sugárzás problematikája volt az egyik jelentéktelen probléma, amely megoldása megváltoztatta a XX. század fizikáját. A hőmérsékleti sugárzás rejtélyének kulcsa egy nagyon nagy kaput nyitott ki, a kvantumfizika kapuját. Ezért lehet ma tranzisztor, mikroprocesszor, számítógép, mobiltelefon, GPS, digitális fényképezőgép és bizony-bizony ez az újság is ) A Planck-féle hőmérsékleti sugárzási törvény értelmében minden test, hőmérsékletétől függően, elektromágneses sugárzást bocsát ki. A 4. ábrán egy 37 C (310K) hőmérsékletű ember által kibocsátott elektromágneses sugárzás spektrumát ábrázoltuk. Bejelöltük a látható tartomány intervallumát is. Jól látható, hogy ebben az esetben több mint 1 nagyságrenddel nagyobb hullámhosszakról van szó.

4. ábra 37 C (310K) hőmérsékletű ember által kibocsátott elektromágneses sugárzás (a szivárványcsík a látható tartományt jelöli) A csörgőkígyó technológiája A csörgőkígyó olyan különleges szemmel rendelkezik, amely a távoli IR sugárzást képes érzékelni. Így éjszaka pontosan azokat a környezeténél melegebb hőmérsékletű rágcsálókat látja kitűnően, amelyekkel táplálkozik. 5. ábra Patkányok képe, ahogy a csörgőkígyó láthatja Mi a különbség? Ha hagyományos fényképezőgéppel infravörös tartományban fényképezünk, akkor mindig a közeli infravörös tartományról, illetve még ennél is szűkebb tartományról van szó. A 6. ábrán egy modern CCD szenzor érzékenységi görbéjét mutatjuk be. Jól látható, hogy kb. 1000nm-nél (1µm-nál) a Si alapú CCD érzékenysége annyira lecsökken, hogy az IR tartomány hosszabb hullámhosszain már nincs sok értelme a képkészítésnek.

6. ábra FCB-EX480BP Sony gyártmányú kamera CCD érzékelőjének spektrális görbéje Itt ténylegesen arról van szó, hogy a digitális fényképezőgép vagy videokamera spektrális érzékenységi karakterisztikáját teljesen kihasználjuk, ugyanis a Si félvezető eszközök eredendően érzékenyek a közeli IR tartományban is. A színhelyes képalkotáshoz az IR sugárzást át nem engedő szűrőt kell eléjük szerelni, hogy az emberi szem karakterisztikájának megfelelő korrekt képet kaphassunk. A professzionális kamerákban ezt a szűrőt el is lehet távolítani. Általában erre éjszakai felvételek esetén van szükségünk, abból a praktikus célból, hogy a lehető legtöbb fényt begyűjthessük. Esetleg az is elképzelhető, hogy szereztünk valahonnan egy láthatatlan fényű IR fényforrást (valahol 800nm-900nm között) és ezt akarjuk kamatoztatni éjszakai állatok megfigyelésénél vagy máshol Ugyanakkor speciális hatások elérése érdekében nappali felvételek esetén is szükségünk lehet -megfelelő szűrő alkalmazásával- a közeli IR tartományú fényképezésre. A távoli IR sugárzás A távoli IR tartomány az egészen más. Itt elsősorban két tartományban (3µm-5µm és 8µm-14µm) szoktunk fényképezni. Egyik sem véletlen, ugyanis a levegőben ezekben az intervallumokban kiváló áteresztési hajlandóság, ún. atmoszférikus ablak mutatkozik. (A többi helyen a CO, CO 2, H 2 O, O 3 elnyelik a sugárzást.) Fontos megértenünk, hogy ebben az esetben nem arról van szó csupán, hogy egy kicsit hosszabb hullámhossz tartományban fényképezünk! A hagyományos fényképezésnél általában az a megszokott, hogy egy önmagában nem világító tárgyat, természetes vagy mesterséges fényben lefényképezünk. Ekkor a fényképen a kapott képet a tárgyak spektrális fényvisszaverő képessége határozza meg. Ha termokamerát használunk, akkor a helyzet bonyolultabb. Ebben a tartományban a testeknek saját fényük is van (5. és 6. ábra). Ez a saját fény, a hőmérsékleti sugárzásból ered. Ez függ a lefényképezendő test hőmérsékletétől, anyagi- és felszíni minőségétől.

Ez utóbbi értékétől függ, hogy egy adott objektum esetén, mennyire a saját hőmérsékletének sugárzása vagy a körülötte lévő többi tárgy által rásugárzott sugárzás visszaverődése a domináns. (Sajnos, itt már be kell vallanunk, hogy maga a termokamera, termovízió megnevezés nem korrekt, hiszen nem csak a vizsgált test hőmérsékletétől függ annak termovíziós képe. A helyes megnevezésnek távoli tartományú IR kamerá -nak vagy infravízió -nak kellene lennie!) Ezzel a technológiával teljesen más világba léphetünk. Ráadásul, az általános termovíziós rendszerek legtöbbje a mérési tartomány (pl. 8µm-12µm) összesített jelét méri, így a kapott kép monochrom. Ez lehetőséget teremt denzitástól függő hamis színek alkalmazására is. Ez művészi kifejezése is lehet érzéseinknek, de akár műszakilag is nagyon fontos lehet, mivel az adott színekhez hőmérsékleti értékeket rendelve megkaphatjuk egy tárgy hőmérsékleti térképét. (folytatjuk ) dr. Nagy Tamás Rajz: Nagy Ákos