a klasszikus statisztikus fizika megalapozása Boltzmann a második főtétel statisztikai jellege, H-tétel az irreverzibilis folyamatok felé (1872-) a sugárzások termodinamikája a hőmérsékleti sugárzás törvénye (1884) Gibbs sokaságok termodinamikai potenciálok, fluktuációk, ergodikus hipotézis (1873-1902)
Ludwig Boltzmann (1844-1906) Bécsben tanul és diplomázik (1866) a gázmolekulák sebességeloszlása egyensúlyban (1868-1871) az ideális gázok kinetikus egyenletei (1872) 1876-1890: Grazi Egyetem Kísérleti és Elméleti Fizika Tanszék A mechanikai hőelmélet második főtétele és a valószínűségelmélet közötti kapcsolatról (1877) személy
Über die Beziehung zwischen dem zweiten Hauptsatze des mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung entrópianövekedés: a rendszer kevésbé valószínű állapotból valószínűbb állapotba kerül molekulák energiaeloszlásának közelítése 1.: a sebesség egy adott érték egész számú többszöröse (elemi valószínűségszámítás) mű
2.: az energiaadagok végtelenül kicsinyek (áttérés összegzésről integrálásra) 3.: nem pontszerű molekulák, külső erők a termodinamika II. főtétele az entrópia és a valószínűség kapcsolata S = klnw általános természeti törvény mű
a sugárzások termodinamikája (1884) München, Bécs, Lipcse, Bécs szakmai elismerés hiánya depresszió öngyilkosság személy
Josiah Willard Gibbs (1839-1903) a Yale Egyetemen (New Haven, Connecticut) tanul és tanít az első műszaki doktor az USA-ban (1863) 1866-tól 3 évet hallgat Európában 1871-től a matematikai fizika professzora termodinamikai állapotok, folyamatok, grafikus, geometriai ábrázolásai európai vegyészek fordítják németre, franciára (heterogén rendszerek stb.) személy
Elementary Principles in Statistical Mechanics Developed with Especial Reference to the Rational Foundation of Thermodynamics (1902) mozgásegyenlet helyett a jellemző tulajdonságok eloszlása a rendszerek sokaságában az alapegyenlet az adott tulajdonságokkal rendelkező rendszerek számának változását mű adja meg
a statisztikus mechanika alapegyenletei az állapotsűrűségre, állapottérfogatra és a valószínűségre vonatkozó megmaradási törvények (Liouville-tétel) a Hamiltonegyenletek általánosított koordinátáinak és impulzusainak fázisterében a valószínűség megmaradásának elve az állapotok szórására az állapottérfogat megmaradásának elve mozgásegyenletek mű
a kanonikus sokaságok (a valószínűség logaritmusa ~ energia) statisztikus egyensúlyok, eloszlások, átlagok termodinamikai következmények mikrokanonikus sokaság (ua. az energia minden rendszerben) a termodinamikai átmenet részletes vizsgálata hőmérséklet entrópia sok hasonló részecskéből (molekulából) álló rendszerek mű
gyakorlatibb eredmények Johann Joseph Loschmidt (1821-1895) 1 cm 3 normál gázban lévő molekulák száma, átmérője (1865-1866) Johannes Diederik van der Waals (1837-1923) reális gáz állapotegyenlete (1873-1881) (p + a/v 2 )(V - b) = RT Nobel-díj a gázok és folyadékok kutatásárért (1910)
Az anyag diszkrét szerkezete kételektródos cső + higanyos vákuumszivattyú Johann Heinrich Wilhelm Geissler (1814/5-1879) Geissler-csövek
Julius Plücker (1801-1868) színképvizsgálatokhoz (1855) a H első három vonala + a katódsugarak felfedezése, mágneses térben elhajlanak (1858)
kémiai elemek periódusos rendszere, atomsúlyok (1869) Dmitrij Ivanovics Mengyelejev (1834-1907)
ismeretlen elemek jóslása (1871)
az elektromos töltés diszkrét mennyiségekből áll (1874) George Johnstone Stoney (1826-1911) a katódsugarak az áramból származó negatívan töltött részecskék (1879) Sir Willam Crookes (1832-1919)
az elektromos töltésnek van egy hordozó atomja (1881) Stoney a katódsugarak hullámok? Eugen Goldstein (1850-1930) elhajlásuk elektromos térben a csősugarak (1886) a szikraközre eső ultraibolya sugárzás segíti az átütést (1887) H. R. Hertz
az elektromos töltés hordozója az elektron Stoney (1891) a katódsugarak képesek áthatolni vékony fémfólián (1892), tehát hullámok? H. R. Hertz a katódsugárzás negatívan töltött részecskék árama (1895) Jean Baptiste Perrin (1870-1942)
a rádiumsók természetes radioaktivitása (1896) Antoine Henri Becquerel (1852-1908) lumineszcenciakutatások közben fedezi fel szisztematikus kutatás és véletlen felfedezés
a radioaktív sugárzás atomi tulajdonság? (1896) Maria Sklodowska-Curie (1867-1934) fizikai-kémiai szeparáció: tórium, polónium, rádium (1897-1898) leukémia
a katódsugarak részecskéinek tömege 1/1837-ed része a H atoménak, töltésük stb. (1897) Joseph John Thomson (1856-1940) Nobel-díj (1906)
a csősugárzás részecskéi atomméretűek (1898) Wien az α és β sugarak, valamint a radon felfedezése (1899) Ernst Rutherford (1871-1937) iskolaalapító: Bohr, Geiger, Haan, Cockroft, Moseley, Oliphant, Chadwick, Kapica, Hariton
a γ sugárzás felfedezése (1900) Paul Ulrich Villard (1860-1934) a β negatív töltésű, az α is részecskékből áll (1900) M. Curie a β hasonlít a katódsugárzáshoz (e/m arány, 1900) Becquerel a radioaktivitás ionizációs, fiziológiai stb. hatásai (1901) Nobel-díj (1903)