építőanyagok és épületszerkezetek 1
A fenntarthatatlan építés Az ENSZ Emberi Települések Központja, HABITAT II. Isztambuli konferencia (1996): A települések fenntartható fejlődését segítő cselekvési program (HABITAT agenda) kérdéskörei: a növekvő energiafogyasztás a szilárd hulladék és a szennyvíz mennyiségének növekedése a történelmi kulturális örökség pusztulása a rohamos urbanizálódás, beteg épületek 2
A fenntartható építés A Nemzetközi Építéskutatási Tanács (CIB) Fenntartható építés első nemzetközi konferenciája,(1994) Florida, Tampa / C. Kibert: Egészséges épített környezet létrehozása és felelős fenntartása az erőforrások hatékony kihasználásával, ökológiai elvek alapján Azaz a fenntartható fejlődés/visszavonulás elvrendszerének érvényesítése az építésben az ökológia- tudomány fogalomkészletének és kutatási eredményeinek felhasználásával. 3
Lineáris és fenntartható, illeszkedő épületmodell 4
A modellek összehasonlítása Lineáris modell Pazarló bevitel; (anyagok-ivóvíz, fosszilis energia) Rossz hatásfokú elhasználás; Szennyező kibocsátások; (hulladékhő, romlott levegő, zaj, szennyvíz, szilárd hulladék, füst) Illeszkedő ház Minimális bevitel; (megújuló energia, nem ivóvíz min. öko.anyag) Jó hatásfokú hasznosítás; Korlátozott kibocsátás; (nem mérgező, visszaforgatható) 5
Öko-házak eddig is voltak A sokszínű kultúra hagyományaira és tapasztalataira épülő, mesterségbeli tudás felhasználásával épültek Régóta ismert, természetes és/vagy tartós anyagokat használtak Figyelembe vették a helyi környezeti (nap, szél, csapadék, légáramlatok, növényzet, égtájak, vízfelületek, stb,) hatásokat, az erőforrásokat integrálták az épületekbe 6
A szerkezetekkel szemben támasztott elvárások A szakmai követelmények: Állékonysági Épületszerkezetei Épületfizikai Megvalósítási Finanszírozhatósági Környezetvédelmi Egészségügyi követelmények A természet védelmének követelményei: A fenntarthatóság (R.C.R.), A természet (építésökológia) és Az egészség védelme (építésbiológia) elveinek érvényesítése A környezeti erőforrások hasznosítása 7
Környezettudatos épületszerkezetek A fenntarthatóság elvei szerint, az ökológia szabályrendszerét követve készülnek el, épülnek be és segítik elő az épület egészséges és energiatakarékos használatát annak teljes élettartama alatt. 8
Anyaghasználat-szerkezetek A felsorolt elvek alapján újra értelmezett, kiegészített szakmai szabályok továbbra is érvényesek Térelhatároló szerkezetek; harmadik bőr funkciói; (mechanikai-, biológiai védelem, hő-és hang szigetelés, párologtatás, elnyelés, megkötés, kapcsolatteremtés) Az épületfunkciónak, a szakmai és ökológiai elveknek megfelelő anyagjellemzők 9
Általános anyagjellemzők -1 Fizikai jellemzők; Tömegeloszlás (sűrűség, tömörség, porozitás) Hidrotechnikai tulajdonságok (víztartalom, víz- és nedvesség felvétel, páradiffúzió, fagyállóság) Hőtechnikai tulajdonságok (fajhő, hővezetés, hőmozgás, tűzállóság) 10
Általános anyagjellemzők -2 Mechanikai jellemzők; Nyomószilárdság Szakító-húzószilárdság Kopásállóság Felületi keménység 11
Általános anyagjellemzők -3 Alakváltozási jellemzők; Rugalmas Képlékeny Rugalmas-képlékeny Rugalmas viszkózus anyagok Az építőanyagok alkalmazási területe fenti tulajdonságaik függvényében válaszható meg, melyek a megmunkálásra és a tönkremenetel módjára is szolgáltatnak adatokat 12
Környezet és egészség kímélő építőanyagok jellemzői Kis beépített energia tartalom (PEI); kitermelés, gyártás, szállítás, beépítés energia tartalma, primer energiában (fosszilis energia hordozókra vetítve). Határértéken belüli káros anyag tartalom; teljes életciklus alatti káros anyag (pl. CO 2 SO 2 stb.) kibocsátás. Recicling; Újra használhatóság, újra hasznosíthatóság, visszaforgathatóság Decentralizált előállítás, szelíd technikákkal; kis szállítási távolságok, helyi munkaerő A harmadik bőr kritériumai szerinti viselkedés a szerkezetben. 13
Építőanyag fajták és feldolgozásuk Szerves anyagok; organikus - és műanyagok Szervetlen anyagok; természetes és mesterséges A napi gyakorlatban általában természetes alapú, de átalakított, társított, (túl)feldolgozott, félkész és késztermékekből építünk 14
Természetes és mesterséges építőanyagok Természetes anyagok; Kő, fa, föld (fal, födém) Nád, sás, fű, gabonahulladék (tetőfedés, adalék) Gyapjú, szőr, bőr, tej, túrú, enyv (hőszigetelés, ragasztás, festés) Meddig tekinthető természetesnek? A feldolgozás, beavatkozás mértéke, Energiatartalom Mesterséges anyagok; Kerámiák (fal, fedés, burkolás) Kötőanyagok, oldószerek (beton, habarcs, festék) Fémek (épületváz, nyílászáró, burkolat) Üveg (nyílászáró, fal, födém, padló) Bitumen (vízszigetelés, kötőanyag) Fa, faszármazékok Vegyi anyagok (8 mill. új) 15
Káros anyagok A környezetet / emberi egészséget károsítják Teljes életciklus vizsgálat; (kitermelés, gyártás, szállítás, beépítés, használat, bontás, hulladékba kerülés) Környezetbe kerülés, mérhetőség; (emisszió, imisszió, migráció) Határértékek MAK, MMK; (egységnyi anyagmennyiségre vonatkozó maximális, megengedhető koncentráció pl. gr/lm 3 Összetett, halmozódó, hosszú távú hatásokra nincsenek megbízható mérési módszerek 16
Káros anyagok hatásai Egészség károsító anyagok; Bőrön keresztül, Légzéssel, Élelmiszerrel Ismert hatások; légúti, nyálkahártya, bélrendszer, máj, vese, központi ideg- és immunrendszeri károsodások, allergia, daganatos betegségek Környezetszennyező anyagok; Légszennyezés (kibocsátások) Vízszennyezés (gyártás) Talajszennyezés (Építési hulladék) A táplálék láncon keresztül innen is a szervezetbe kerülhetnek 17
Néhány veszélyes anyag hatása, előfordulása Formaldehid (HCHO), allergia, szív, tumor Fluór-klór-szénhidrogének (FKSZ); allergia, immunrendszer, szívpanaszok, ózonréteg Klórozott szénhidrogének (PCB, PCP, PVC, TCDD); idegrendszer, tűdő, máj, lép, vese Szálas anyagok; tűdő károsodás, tumor Nehézfémek, radioaktív anyagok; vese, emésztőrendszer, tumor Ragasztók, festékek, tisztító szerek, textil Műanyaghabok, desodorok hajtógázai, tűoltó, hűtő készülékek Vízszigetelések, padlóburkolatok, konyhai fóliák, nyílászárók Kőzet és üveggyapot, azbeszt Gyártási segédanyagok, melléktermékek, kohósalak, ipari gipsz, mélységi kőzetek 18
Általános mérés - minősítés Mérés; anyagtulajdonságok egzakt meghatározása, szabványosított vizsgálatokkal és mértékegység rendszerrel (1980-tól; SI ) Minősítés; a minőség az alkalmasság mértéke, célja a szabályozásra, egységesítésre törekvés Minőség ellenőrzés; vizsgálata annak, hogy a termék megfelel-e a gyártó tanúsította minőségnek Szabványok; törvénnyel, rendeletekkel kötelezővé tett előírások. Általában az állékonyság, az energiaforgalom, a tűzvédelem, a zajvédelem, a környezet- és egészségvédelem területén vizsgálatokra, alkalmazhatóságra, stb. vonatkoznak. 19
Az ökológiai viselkedés mérhetősége Környezeti teljesítmény értékelése szabványokban (MSZ EN ISO 14040-44) rögzített, hatás orientált módszerrel. Életciklus elemzések, (Life Cycle Assesment- LCA): Minden lehetséges hatást (pl. energia felhasználás, emissziók) számszerűsít a vizsgált objektum egységnyi mennyiségére vonatkoztatva. Nemzetközi kutatócsoportok kidolgozta adatbázisok (pl. BauBioDataBank, Ecoinvent Daten) és a kezelést segítő szoftverek (pl. LEGEP) 20
Az adatbázisokban szereplő értékelési tényezők Nem megújuló kumulatív energiaigény (MJ) Klímaváltozás (kg CO 2eq ) Savasodás (mg SO 2eq ) Sztratoszferikus ózonréteg károsodás (mg CFC- 11- eq ) Fotokémiai oxidáció, nyári szmog, magas NO x (g etilén- eq ) Eutrofizáció (g PO4- eq ) Humán toxicitás (kg 1,4DCB- eq ) Ökotoxicitás (kg 1,4DCB- eq ) 21
Szabályozás itthon Magyarországon; az építési termékek és anyagok műszaki követelményeknek való megfelelőségét igazolni kell. (3/2003. (I. 25.) BM-GKM-KvVM együttes rendelet). Az új termékek forgalomba hozásához építőipari műszaki engedély (ÉME) szükséges. Az engedélyezett termékek kereskedelmi forgalomba kerülésének feltétele; hogy a gyártó vagy szállító igazolja a termék megfelelőségét, (Megfelelőségi Igazolás). Nem segítik a fenntartható szemlélet terjedését, pl. kizárja a bontott anyagok újra-használatát és megnehezíti a megújuló anyagok beépítését. Az ökológiai/biológiai (fenntarthatósági) szempontok az itthoni, építőanyagokra/termékekre vonatkozó szabályozásban nincsenek jelen. 22
Építőanyagok összehasonlítása ökológiai szempontok szerint-1 Anyagok Falazatok: 1 kwh/m 3 2 3 4 5 6 7 Fa 60 + + + + + + Hőszig.blokk 150 o - o + + + Gázbeton 225 - - o o - o Tégla 130 o - o + + + Vasbeton elgy. 105 - - o - - - 1: primer energiaigény az előállításnál; 2: káros anyag kibocsátás az előállításnál; 3: regenerálhatóság; 4: újrafelhasználhatóság; 5: belföldi forrás; 6: decentralizált előállíthatóság és felhasználhatóság lehetősége; 7: egészségi, jó közérzet kihatás 23
Építőanyagok összehasonlítása ökológiai szempontok szerint-2 Anyagok Tartószerkezet: 1 kwh/m 3 2 3 4 5 6 7 Fa (12/20) 8 + + + + + + Acél (I PB 220) 550 - - o - - o Vasbeton 150-200 - - o - - o 1: primer energiaigény az előállításnál; 2: káros anyag kibocsátás az előállításnál; 3: regenerálhatóság; 4: újrafelhasználhatóság; 5: belföldi forrás; 6: decentralizált előállíthatóság és felhasználhatóság lehetősége; 7: egészségi, jó közérzet kihatás 24
Építőanyagok összehasonlítása ökológiai szempontok szerint-3 Anyagok Tető-héjalás: 1 kwh/m 3 2 3 4 5 6 7 Fazsindely 5 + + + + + + Azbesztcement 15 - - o - - - Réz 100 - - o - - o Alumínium 350 - - o - - o 1: primer energiaigény az előállításnál; 2: káros anyag kibocsátás az előállításnál; 3: regenerálhatóság; 4: újrafelhasználhatóság; 5: belföldi forrás; 6: decentralizált előállíthatóság és felhasználhatóság lehetősége; 7: egészségi, jó közérzet kihatás 25
Építőanyagok összehasonlítása ökológiai szempontok szerint - 4 Anyagok Nyílászárók: 1 kwh/m 3 2 3 4 5 6 7 Fa 8 + + + + + -- Műanyag 250 - - - - - -- Alumínium 800 - - + - - -- 1: primer energiaigény az előállításnál; 2: káros anyag kibocsátás az előállításnál; 3: regenerálhatóság; 4: újrafelhasználhatóság; 5: belföldi forrás; 6: decentralizált előállíthatóság és felhasználhatóság lehetősége; 7: egészségi, jó közérzet kihatás 26
Építőanyagok összehasonlítása ökológiai szempontok szerint-6 Anyagok Padlóburkolatok: 1 kwh/m 3 2 3 4 5 6 7 Fa 3-10 + + + + + + Linóleum 3-5 + + + + + + Műanyag 20-35 - - o - - - 1: primer energiaigény az előállításnál; 2: káros anyag kibocsátás az előállításnál; 3: regenerálhatóság; 4: újrafelhasználhatóság; 5: belföldi forrás; 6: decentralizált előállíthatóság és felhasználhatóság lehetősége; 7: egészségi, jó közérzet kihatás 27
Építőanyagok összehasonlítása ökológiai szempontok szerint-7 Anyagok Festékek: Természetes mázak Műanyag bázisúak 1 kwh/m 3 2 3 4 5 6 7 0,5-2 + o + + + - 20 - - - - - - 1: primer energiaigény az előállításnál; 2: káros anyag kibocsátás az előállításnál; 3: regenerálhatóság; 4: újrafelhasználhatóság; 5: belföldi forrás; 6: decentralizált előállíthatóság és felhasználhatóság lehetősége; 7: egészségi, jó közérzet kihatás 28
Építőanyagok/szerkezetek összehasonlítása Környezetkímélő anyagok és szerkezetek Életciklusuk alatt kevés az energiafelhasználás Nem mérgezik sem a természetet, sem az embert Nem lesz belőlük használhatatlan hulladék A felhasználásukkal készült házakban jól érezzük magunkat Nem környezetkímélők; Életciklusuk alatt sok energiát igényelnek Magas a káros anyag tartalmuk, segédanyagigényük Bontás után csak hulladékba kerülhetnek A belőlük épített házakban megbetegszünk 29
Az építés témaköreinek összefoglalása CIB W82 Jövőkutatási Bizottsága: A fenntartható fejlődés és az építés jövője c. projekt kidolgozása CIB, Építés és környezet c. Gävle-i világkonferencia (1998) és a további kutatások eredményeiként: Energiaháztartás: ( takarékosság, megújuló, illetve környezeti energiák/erőforrások és hasznosításuk) Levegőháztartás: (belső térklíma és levegőminőség, SBS, BRI) Vízháztartás: (takarékosság, esővíz, szürkevíz) Anyagháztartás: (újrahasznosítás, visszaforgatás) Város-vidék kapcsolat: (lokalitás, autonómia, szubszidiaritás, önellátáskooperáció, partnerség) 30
Belső terek és épületszerkezetek levegőháztartás Épület a természeti környezettől különböző helyzetű felületekkel elválasztott térrendszer A belső terekben a külsőtől eltérő, a funkciónak megfelelő (lég)állapotokat kell létrehozni és fenntartani A határoló síkok a különböző rendeltetésű épületszerkezetek, teherhordó és öltöztető elemekből, építőanyagokból és gyártott termékekből állnak, a terek jellegzetességeihez igazodnak 31
A belső légállapotokat létrehozó és fenntartó rendszerek Épületgépészet; energia és anyagáramokkal (központi ellátó rendszerek, vezetékhálózatok, berendezések) Épületszerkezetek; (épület)fizikai törvényszerűségek szerint működnek, harmadik bőrként ; hőelnyelés, - tárolás, -átadás, -sugárzás,elnyelés, védelem, kapcsolattartás, páragazdálkodás, stb. 32
Környezetbarát épületszerkezetek A fenntarthatóság elvei szerint, az ökológia szabályrendszerét követve készülnek el, épülnek be és segítik elő az épület egészséges és energiatakarékos használatát annak teljes élettartama alatt. Helyben hozzáférhető, tartós, felújítható,újrahasználható, komposztálható, nem mérgező anyagokból készülnek Zárt gyártási technológiákat és szelíd kivitelezési technikákat igényelnek Gazdálkodnak az energiával és a levegő nedvességtartalmával A szerkezeti rendszer felerősíti és hasznosítja a környezeti erőforrásokat 33
Épületszerkezetek csoportosítása Többfunkciós szerkezetek, meghatározott hierarchia szerint kapcsolódnak egymáshoz és az épület egészéhez; Teherhordó (falas, vázas, vegyes) Külső térelhatároló (fal, tető, talajon fekvő padló) Belső térosztó,- elválasztó (közbenső födém, válaszfal) Térkapcsoló (lépcső, függőfolyosó, nyílászárók) Védő-szabályozó (hő-, hang- és víz és nedvesség szigetelések) Használatot biztosító, (külső, belső felületképzések) Klímaszabályozó ( épületgépészet ) szerkezetek 34
A szerkezetekkel szemben támasztott elvárások A szakmai követelmények: Állékonysági Épületszerkezetei Épületfizikai Megvalósítási Finanszírozhatósági Környezetvédelmi Egészségügyi követelmények A természet védelmének követelményei: A fenntarthatóság (R.C.R.), A természet (építésökológia) és az egészség védelme (építésbiológia) elveinek érvényesítése A környezeti erőforrások hasznosítása 35
Épületszerkezetek elemzése Hatás - követelmény - teljesítmény elv (a tényezők számszerűsíthetők és dimenzionálhatók) Értékelési tényezők, indikátorok (építésökológiai és egészségvédelemi jellemzők) Az értékelés algoritmusa (definiálás, teljesítményjellemzők meghatározása, követelmények számszerűsítése, osztályba sorolás a teljesítmény alapján, szerkezetválasztás) Értékelési kategóriák (pl. kiemelten jó-, jó-, átlagos-, gyenge teljesítményű, nem ajánlott, nem minősíthető) 36
Számszerűsítéshez szükséges fontosabb anyagjellemzők Szerkezeti rétegvastagság (mm) Felülettömeg (kg/m 2 ) Hőátbocsátási tényező (U/k W/m 2 K) Fajhő (J/kgK) Fáziseltolódás (h), hőfokvezetési tényező(cm 2 /h) Hőcsillapítás, Szorpciós nedvességfelvétel (%) Páradiffúziós ellenállás (m 2 spa/g) Károsanyag emisszió (μg/légm 3 ) 37
Kiemelten javasolható szerkezetek jellemzői Hőátbocsátási tényezője 0,2-0,45 W/m 2 K Átlagos tömege 150-700 kg/m 2 Páradiffúziós ellenállása 5-50 m 2 spa/gr Fáziseltolódás mértéke kb. 12h Hőcsillapítás mértéke 10-15 Hőfokvezetési tényezője 3-15 cm/h (kis hővezetési tényező, nagy sűrűség, magas hőtároló képesség) Primer energiatartalma 3-10 kwh/m 2 Használati energiatartalma 800-1500 kwh/m 2 Gyártási CO2eq 1000-1500 g/m 2 a Gyártási SO2 g/m 2 a Ökológiai lábnyoma 30-50 m 2 /m 2 a 38
Recycling A szilárd hulladék 35-50%-a építési törmelék, válogatás nélkül kerül lerakásra Újra-használat; változatlan formában építik be újra (tömör tégla, fa, acél, vb födém elemek,nyílászárók) Újra hasznosítás; őrlési (beton, kerámia, papír), olvasztásos (acél, alumínium, üveg), pirolízis (műanyagok) technikák. Ötvözött, társított termékek esetében nehézkes, energiaigényes, minősítés Visszaforgatás; természetes, megújuló forrásból származó anyagok visszaforgathatók (agyag, kő) vagy komposztálhatók (fa, nád, méhviasz, lenolaj,enyv, fenyőgyanta, természetes hőszigetelések) 39
Környezeti erőforrások felhasználási lehetőségei szerkezetkialakítási koncepciók Passzív rendszerek: Az üvegházhatás elvén alapuló, a nap sugárzási energiájára épített rendszer, melyben az épületszerkezetek látják el az épületgépészet feladatát Az aktív és hibrid környezeti energiahasznosító rendszerek részben vagy egészen gépészeti eszközökkel gyűjtik be, tárolják és hasznosítják a nap, föld, levegő, talajvíz (hő)energiáját Klímahomlokzatok, intelligens házak 40
Passzív hasznosítás energia Környezeti, megújuló erőforrások nyereségelvű hasznosítása, (pufferzónás tervezés, transzparens felületek, tájolás, sugárzási nyereségek, napterek) Hővisszatartás, hőtárolás, hőszigetelés Nyári hő elleni védelem, árnyékolás Passzív hűtés, párologtatás-szellőzés 41
Napsugárzási adatok (W/m2) Magyarországon 42
Napterek működése napházak 43
Passzív hasznosítás szellőzés, klímatizálás, világítás Kis osztású nyílászárók (célzott természetes szellőzés) rés szellőzés Telepítéssel, növényzettel szélvédelem Üvegezett, növényesített átriumok Légcsatornák padlóban és falban Páragazdálkodó anyagok, zöld szerkezetek Vízfelületek (reflexió, párologtatás) Világosra színezett felületek Fénypárkányok, fény-kutak 44
Aktív szoláris és geotermális rendszerek Megújuló energiafajták Gyűjtése Tárolása Felhasználása (fűtés, melegvíz készítés, elektromos energia előállítás) Gépészeti berendezések (nap és légkollektorok, tároló és szabályozó rendszerek) 45
Hibrid rendszerek 46
Hibrid és integrált rendszerek Tetőfedések, homlokzatburkolatok, árnyékolók napkollektorokkal és napcellákkal kombinálva Transzparens hőszigetelések (üvegházhatás elvén, védő és árnyékoló kiegésztőkkel) Transzparens vakolatok (nyári hővédelem) Alacsony hőmérsékletű padló, fal és mennyezet fűtések 47
Zárt és nyitott technológiai folyamatok Növényi kémia Zárt körfolyamat Petrolkémia Nyílt körfolyamat Növényi termék Részleges lebomlás Nem lebomló kémiai anyagok Felhasználás -Mikro -organiz musok Biológiai lebontás,szén-dioxid víz Oxigén Napenergia Ásványok Félkész termék Nyersanyag Fotoszintézis Növényi levél Felhasználás Kész termék Félkész termék Számtalan -mellék termék és hulladék Olajszennyezés Emisszió Mérgező anyagok Hulladék Alap vegyianyagok Lebontott anyagok Nagy -energia bevitel,szén),benzin -atom (energia Közbenső anyagok Kőolajfinomító Élő növény Kőolaj Tartály?Anyagkörforgás, vagy visszafordíthatatlan folyamatok 48
A szerkezetekkel szemben támasztott elvárások A szakmai követelmények: Állékonysági Épületszerkezetei Épületfizikai Megvalósítási Finanszírozhatósági Környezetvédelmi Egészségügyi követelmények A természet védelmének követelményei: A fenntarthatóság (R.C.R.), A természet (építésökológia) és Az egészség védelme (építésbiológia) elveinek érvényesítése A környezeti erőforrások hasznosítása 49
Alternatív építési módok A vernakuláris építés; (példa és indikátor) Vályog építés Szalmabála építés Fa építés Építés bontott anyagból 50
Irodalom Dr Balázs György; építőanyagok és kémia, Tankönyvkiadó, Budapest, 1984 P. und M. Krusche, D. Althaus, I. Gabriel; Ökologische Bau, Bauverlag, 1982 Egészségügyi Világszervezet, WHO/PCS/00.1; Nemzetközi kémiai biztonsági program, Az emberi egészségre és a környezetre ható veszélyes vegyi anyagok. ÁNTSZ Országos Tisztiorvosi Hivatala, Budapest, 2003 Fodor József Országos Közegészségügyi Központ (2000); Nemzetközi Kémiai biztonsági kártyák http://www.fjokk.hu/magaricsc/ D. Heinrich, M. Hergt; SH atlasz, Ökológia, Springerverlag, 1995 Nagy Györgyi, Novák Ágnes, Osztroluczky Miklós; Zöld szerkezetek, Ybl Miklós Műszaki Főiskola, 1998. Dr Rudnai Péter; építőanyagok emissziója, előadás jegyzetek, 1998 www.fenntarthato.hu Építészetbiológiai Egyesület; Tisztább építési anyagokat Magyaroszágon c. KÖM Kutatási jelentés, 2001 (Medgyasszay Péter, Cserveny Ferenc, Dr Józsa Zsuzsa, Dr Lányi Erzsébet, Novák Ágnes, Tiderencl Gábor) Független Öoklógiai Központ Alapítvány; Medgyasszay Péter, Szalay Zsuzsa, Dr Tiderencl Gábor, Zorkóczy Zoltán; Épületszerkezetek építésökológiai és biológiai értékelő rendszerének összeállítása az építési anyagok hazai gyártási/előállítási adatai alapján KÖM Kutatási jelentés, 2006 Dr Habil Kistelegdy István DLA ; A magastető, mint energiaburok, konferencia előadás, 2009. Dr Széll Mária; Transzaprens épületszerkezetek, Pécs, 2001 51