Szerkesztette: Vizkievicz András



Hasonló dokumentumok
A sejtek élete. 5. Robotoló törpék és óriások Az aminosavak és fehérjék R C NH 2. C COOH 5.1. A fehérjeépítőaminosavak általános

Szerkesztette: Vizkievicz András

AMINOSAVAK, FEHÉRJÉK

TestLine - Biogén elemek, molekulák Minta feladatsor

A fehérjék szerkezete és az azt meghatározó kölcsönhatások

Vizsgakövetelmények Ismerje a fehérjék biológiai szerepét (enzimek, összehúzékony fehérje-rendszerek aktin és miozin -, vázanyagok, receptorok,


Fehérjeszerkezet, fehérjetekeredés

A fehérjék hierarchikus szerkezete

Aminosavak, peptidek, fehérjék

Több oxigéntartalmú funkciós csoportot tartalmazó vegyületek

A tananyag felépítése: A BIOLÓGIA ALAPJAI. I. Prokarióták és eukarióták. Az eukarióta sejt. Pécs Miklós: A biológia alapjai

3. Sejtalkotó molekulák III.

Eszközszükséglet: Szükséges anyagok: tojás, NaCl, ammónium-szulfát, réz-szulfát, ólom-acetát, ecetsav, sósav, nátrium-hidroxid, desztillált víz

Fehérjeszerkezet, és tekeredés. Futó Kinga

Az élő anyag szerkezeti egységei: víz, nukleinsavak, fehérjék. elrendeződés, rend, rendszer, periodikus ismétlődés

DNS, RNS, Fehérjék. makromolekulák biofizikája. Biológiai makromolekulák. A makromolekulák TÖMEG szerinti mennyisége a sejtben NAGY

MEDICINÁLIS ALAPISMERETEK AZ ÉLŐ SZERVEZETEK KÉMIAI ÉPÍTŐKÖVEI AZ AMINOSAVAK ÉS FEHÉRJÉK 1. kulcsszó cím: Aminosavak

ANATÓMIA FITNESS AKADÉMIA

A szénhidrátok az élet szempontjából rendkívül fontos, nélkülözhetetlen vegyületek. A bioszféra szerves anyagainak fő tömegét adó vegyületek.

4. FEHÉRJÉK. 2. Vázanyagok. Az izmok alkotórésze (pl.: a miozin). Inak, izületek, csontok szerves komponensei, az ún. vázfehérjék (szkleroproteinek).

Aminosavak, peptidek, fehérjék. Béres Csilla

A borok tisztulása (kolloid tulajdonságok)

1. előadás Membránok felépítése, mebrán raftok, caveolák jellemzője, funkciói

A nukleinsavak polimer vegyületek. Mint polimerek, monomerekből épülnek fel, melyeket nukleotidoknak nevezünk.

A szénhidrátok lebomlása

6. Zárványtestek feldolgozása

Biológia 3. zh. A gyenge sav típusú molekulák mozgása a szervezetben. Gyengesav transzport. A glükuronsavval konjugált molekulákat a vese kiválasztja.

Az élő szervezetek menedzserei, a hormonok

3. változat. 2. Melyik megállapítás helyes: Az egyik gáz másikhoz viszonyított sűrűsége nem más,

A szénhidrátok lebomlása

I. Atomszerkezeti ismeretek (9. Mozaik Tankönyv: oldal) 1. Részletezze az atom felépítését!

Kollokviumi vizsgakérdések biokémiából humánkineziológia levelező (BSc) 2015

A felvétel és a leadás közötti átalakító folyamatok összességét intermedier - köztes anyagcserének nevezzük.

Peptid- és fehérjék másodlagos-, harmadlagos- és negyedleges szerkezete

Kevéssé fejlett, sejthártya betüremkedésekből. Citoplazmában, cirkuláris DNS, hisztonok nincsenek

Róka András


Bioaktív peptidek technológiáinak fejlesztése

MIÉRT KELL TÁPLÁLKOZNI?

1. jelentésük. Nevüket az alkotó szén, hidrogén, oxigén 1 : 2 : 1 arányából hajdan elképzelt képletről [C n (H 2 O) m ] kapták.

Fehérjék. Készítette: Friedrichné Irmai Tünde

A másodlagos biogén elemek a szerves vegyületekben kb. 1-2 %-ban jelen lévő elemek. Mint pl.: P, S, Fe, Mg, Na, K, Ca, Cl.

TRANSZPORTFOLYAMATOK 1b. Fehérjék. 1b. FEHÉRJÉK TRANSZPORTJA A MEMBRÁNONOKBA ÉS A SEJTSZERVECSKÉK BELSEJÉBE ÁLTALÁNOS

Makromolekulák. Fehérjetekeredé. rjetekeredés. Biopolimer. Polimerek

A másodlagos biogén elemek a szerves vegyületekben kb. 1-2 %-ban jelen lévő elemek. Mint pl.: P, S, Fe, Mg, Na, K, Ca, Cl.

DER (Felületén riboszómák találhatók) Feladata a biológiai fehérjeszintézis Riboszómák. Az endoplazmatikus membránrendszer. A kódszótár.

Élettan. előadás tárgykód: bf1c1b10 ELTE TTK, fizika BSc félév: 2015/2016., I. időpont: csütörtök, 8:15 9:45

2. változat. 6. Jelöld meg, hány párosítatlan elektronja van alapállapotban a 17-es rendszámú elemnek! A 1; Б 3; В 5; Г 7.

3.2 A vese mőködése Szőrımőködés Visszaszívó mőködés Glükóz visszaszívódása A víz és a sók visszaszívódása

I. FARMAKOKINETIKA. F + R hatás (farmakon, (receptor) gyógyszer) F + R FR

Hol a hidrogén helye? Hány protonja, neutronja, elektronja van az atomjainak? Hány elektronhéja van? Milyen kémiai részecskéből áll a hidrogén gáz?

ПРОГРАМА ВСТУПНОГО ВИПРОБУВАННЯ З ХІМІЇ Для вступників на ІІ курс навчання за освітньо-кваліфікаційним рівнем «бакалавр»


BIOLÓGIA VERSENY 10. osztály február 20.

Fejlesztő neve: VADICSKÓ JUDIT. Tanóra címe: A SEJTET FELÉPÍTŐ KÉMIAI ANYAGOK ÉS JELLEMZŐ REAKCIÓIK

KÉMIA 10. Osztály I. FORDULÓ

Elektrokémia. A nemesfém elemek és egymással képzett vegyületeik

1. SEJT-, ÉS SZÖVETTAN. I. A sejt

Polimerek fizikai és kémiai alapjai Nagy, Roland, Pannon Egyetem

Kémiai reakciók Műszaki kémia, Anyagtan I. 11. előadás

A fehérjék hierarchikus szerkezete

Szakközépiskola évfolyam Kémia évfolyam

Egy idegsejt működése

IX. Szénhidrátok - (Polihidroxi-aldehidek és ketonok)

Mert az Élet él és élni akar (15. rész)

Horgászvízkezelő-Tógazda Tanfolyam (Elméleti képzés) 4. óra A halastavak legfőbb problémái és annak kezelési lehetőségei (EM technológia lehetősége).

FÖLDMŰVELÉSTAN. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP /1/A

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Az elemeket 3 csoportba osztjuk: Félfémek vagy átmeneti fémek nemfémek. fémek

Bioinformatika előad

A 27/2012 (VIII. 27.) NGM rendelet (25/2014 (VIII.26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

A vér élettana 1./12 Somogyi Magdolna. A vér élettana

A gázkészülékek csoportosítása

1. Bevezetés. Mi az élet, evolúció, információ és energiaáramlás, a szerveződés szintjei

Aminosavak, peptidek, fehérjék. Szerkezet, előállítás, kémiai tulajdonság

NÁTRIUM-POLIAKRILÁT ALAPÚ SZUPERABSZORBENS POLIMEREK (SAP) ELŐÁLLÍTÁSA ÉS VIZSGÁLATA

A replikáció mechanizmusa

KONDUKTOMETRIÁS MÉRÉSEK

A fehérje triptofán enantiomereinek meghatározása

A gázkészülékek csoportosítása

SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI

Tevékenység: Olvassa el a fejezetet! Gyűjtse ki és jegyezze meg a ragasztás előnyeit és a hátrányait! VIDEO (A ragasztás ereje)

EMELT SZINTŰ ÍRÁSBELI VIZSGA

Sporttáplálkozás. Étrend-kiegészítők. Készítette: Honti Péter dietetikus július

Osztály: 9 L. Tantárgy: Biológia Tanár: Filipszki Zsuzsa Időszak: III. negyedév Tananyag:

A negyedleges szerkezet szerepe a kis hő-sokk fehérjék

O k t a t á si Hivatal

A vér folyékony sejtközötti állományú kötőszövet. Egy átlagos embernek 5-5,5 liter vére van, amely két nagyobb részre osztható, a vérplazmára

Kémia. Tantárgyi programjai és követelményei A/2. változat

A HETI ÉS ÉVES ÓRASZÁMOK

Az aktív tanulási módszerek alkalmazása felerősíti a fejlesztő értékelés jelentőségét, és új értékelési szempontok bevezetését veti fel a tudás

KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1996

Aminosavak általános képlete NH 2. Csoportosítás: R oldallánc szerkezete alapján: Semleges. Esszenciális aminosavak

3. Sejtalkotó molekulák III. Fehérjék, enzimműködés, fehérjeszintézis (transzkripció, transzláció, poszt szintetikus módosítások)

Fehérjeszerkezet, és tekeredés

Az ember fogképlete. Az emésztõrendszer felépítése. zománc. dentin. korona. szájüreg. garat nyelv nyelõcsõ. fogüreg erekkel, idegekkel.

,:/ " \ OH OH OH / \ O / H / H HO-CH, O, CH CH - OH ,\ / "CH - ~(H CH,-OH \OH. ,-\ ce/luló z 5zer.~ezere

GYOMOR. EGYES SZERVEK ÉS SZERVREND- SZEREK BIOKÉMIAI MŰKÖDÉSEI 1. Az emésztés és felszívódás PEPSZIN GYOMOR 2. PATKÓBÉL, DUODENUM

AZ EMBERI TEST FELÉPÍTÉSE

Átírás:

Fehérjék A fehérjék - proteinek - az élő szervezetek számára a legfontosabb vegyületek. Az élet bármilyen megnyilvánulási formája fehérjékkel kapcsolatos. A sejtek szárazanyagának minimum 50 %-át adják. Szerkesztette: Vizkievicz András Csoportosításuk biológiai feladataik alapján történik, lehetnek: szerkezeti fehérjék: tartó, szilárdító feladatokat látnak el, pl. a kollagén szinte mindenütt, keratin a hajban, összehúzékony fehérjék: ilyen az aktin, miozin, pl. az izmokban, transzportfehérjék: szállító feladatokat látnak el, pl. a hemoglobin oxigént szállít, védőfehérjék: fertőzésekkel szembeni védekezésben közreműködnek, pl. immunoglobulinok, hormonok: kémiai jelek, szervek, szövetek működését befolyásolják, pl. inzulin, enzimek: biokatalizátorok, a sejtekben zajló kémiai folyamatok aktiválási energiáját csökkentik, aminek következtében az átalakulások reakciósebessége megnő. Az emberi szervezet működési körülményei között, katalizátorok nélkül az életfolyamatok végtelen lassú sebességgel zajlanának. A szerves anyagok zöme 37 fokon gyakorlatilag nem bomlik le katalizátorok nélkül. Az aminosavak A fehérjék makromolekulák, monomerjeiket aminosavaknak nevezzük. A fehérjeeredetű aminosavak szabad állapotban csak kis mennyiségben találhatók meg a sejtekben, főleg fehérjék felépítésében vesznek részt. Kémiailag amino-karbonsavak, azaz a molekulában két eltérő jellegű funkciós csoport is megtalálható: bázisos aminocsoport, savas karboxilcsoport. Minden aminosav egy azonos, és egy eltérő molekula részletből áll: az azonos rész tartalmazza az amino-, és a karboxilcsoportokat, az eltérő rész az ún. oldallánc, amely szerkezetileg 20 féle lehet. Biológiai szempontból legfontosabb reakciójuk a kondenzáció, melynek során az egyik aminosav aminocsoportja, és a másik aminosav karboxilcsoportja között víz kilépéssel, ún. peptidkötés jön létre. 2,3,4 aminosav összekapcsolódásakor di-, tri-, tetrapeptidek jönnek létre, néhány 10 aminosav összekapcsolódásakor oligopeptidek jönnek létre, néhány 100 aminosav összekapcsolódásakor polipeptidek jönnek létre. 1

Az aminosavak összekapcsolódásából kialakuló polipeptidlánc: mindig elágazásmentes, a lánc -NH 2 csoportot viselő része az N-terminális, a - COOH csoportot hordozó része a C-terminális, a lánc aminosavsorrendjének felírásánál a felsorolást mindig az N-terminálisnál kezdjük a jobb oldalon, az aminosavsorrend felírásánál az aminosavak nemzetközi rövidítését használjuk: Gly- Ala-Ser-Cys-..., a polipeptidlánc aminosavsorrendjét szekvenciának nevezzük. Szekvencia 2 aminosav kétféleképpen kapcsolódhat egymáshoz, attól függően, hogy melyik helyezkedik el az N-terminálison. 3 aminosavat már 6 féle sorrendben kapcsolhatunk össze. 100 db- 20 féle- aminosavból már 20 100 féle polipeptid alkotható. A szekvencia döntően meghatározza a fehérjék tulajdonságait, ezért az aminosavsorrendet a fehérjék elsődleges szerkezetének nevezzük. Akár egyetlen aminosav helyének megváltoztatása az egész fehérje működésére hatással lehet. Sarlósejtes vérszegénység A rendellenesség nevét onnan kapta, hogy a betegek vérében - az egyébként korong alakú - vörösvértestek sarló formájúak. A hibás vörösvértesteket az immunrendszer folyamatosan eltávolítja, aminek következtében csökken a vörösvértest szám (vérszegénység). A betegség oka az, hogy a vörösvértesteket kitöltő hemoglobin egyik polipeptidláncában az egyik aminosav kicserélődik egy másikra (az egyik béta-láncban a 6. helyen levő Glu helyet Val található). Ennek következtében a hemoglobin oldékonysága megszűnik, kikristályosodik, megváltozik a sejt alakja és oxigén szállítására képtelenné válik. Genetikai betegség. 2

A polipeptidek térszerkezete A polipeptidláncnak kétféle szerkezetét különböztetjük meg: alfa-hélix, béta-szalag. Béta-szalag (redő) A béta-konformációban a polipeptidlánc összetolt háztetőkhöz hasonló szerkezetet alkot. A szerkezet azáltal stabilizálódik, hogy a láncok egymás mellé rendeződnek és közöttük H-kötés alakul ki. Alfa-hélix Az alfa-hélixben a polipeptidlánc csavarvonalszerűen tekeredik. A spirál szerkezetét a láncon belül kialakuló H- kötések stabilizálják, amelyek a közel függőlegesen és egymással párhuzamosan elhelyezkedő C=O és NH csoportok között jönnek létre. A polipeptidlánc térszerkezetét - alfa-hélix vagy bétaszalag - a fehérjék másodlagos szerkezetének nevezzük. A másodlagos szerkezetet alapvetően az aminosavak minősége és sorrendje határozza meg. Fibrilláris fehérjék Azokat a fehérjéket, amelyek végig azonos másodlagos szerkezettel jellemezhetők - végig alfa-hélix vagy béta-szalag -, fibrilláris fehérjéknek nevezzük. A fibrilláris fehérjék hosszú, elnyúlt, szálas szerkezetűek, igen stabilak, vízben nem oldódnak. Fibrilláris fehérje pl.: fibroin: a selyem fehérjéje, keratin: a haj fehérjéje. A keratin Az elszarusodó hámszövetekben termelődő szerkezeti fehérje. Fő összetevője a szőrnek, hajnak, tollnak, szarupikkelynek. Szekunder szerkezete alfa-hélix. Felépítésében az összes aminosav részt vesz. A hajszál az egyes alfa-hélixek további rendeződésével jön létre. A hajszál rendkívül erős, ami annak köszönhető, hogy az egyes molekulák különböző erősségű kötésekkel összekapcsolódnak. Az egyik jelentős kötés a cisztein oldalláncok között kialakuló diszulfid-híd. A diszulfid-hidak felbontásával, a mikrofilamentumok elcsúszásával, majd újra a szálak összekapcsolódásával magyarázható a dauerolás. 3

A globuláris fehérjék A fehérjék harmadlagos szerkezetét a polipeptidlánc további térbeli elrendeződése határozza meg. A globuláris fehérjékben a polipeptidlánc szerkezete szakaszonként váltakozik, ezért a molekula egésze gömb alakú. Az eltérő szerkezetű részeket ún. rendezetlen szakaszok kapcsolják össze, ahol az alfa-hélix és a béta-szalag közötti átmeneti szerkezet alakul ki. A harmadlagos szerkezet stabilitását különféle kötések biztosítják: hidrogén-kötés, pl. a szerin oldalláncok között, van der Waals kötés, pl. az apoláris alanin oldalláncok között, ionos kötés, pl. a savas glutaminsav és a bázisos lizin között található, kovalens kötés, pl. ilyen két cisztein közötti diszulfid-híd. Az egyes másodlagos szerkezettel rendelkező szakaszok egymáshoz viszonyított térbeli helyzete tehát a harmadlagos szerkezettel jellemezhető. A globuláris fehérjék jól oldódnak vízben, kolloid állapotot hozva létre. Ez annak köszönhető, hogy a poláris, hidrofil oldalláncok a gombolyag felületén, míg az apoláris hidrofób oldalláncok a molekula közepén helyezkednek el. A felszínen levő hidrofil aminosav részek jól hidratálódnak, az apoláris részek egy hidrofób belső magot hoznak létre. A belső hidrofób mag, ill. a külső hidrátburok nagymértékben hozzájárul a fehérjék stabilitásához. Ugyanakkor nagyon fontos tény, hogy a fehérjék térszerkezete rendkívül bonyolult, ebből következően igen érzékenyen válaszol térszerkezetének megváltozásával a környezet hatásaira. A fehérjék harmadlagos szerkezetét befolyásoló környezeti tényezők: A hőmérséklet, könnyűfémsó koncentráció, a közeg hidrogénion koncentrációja, a nehézfémsók. A hőmérséklet emelésekor a molekularészek hőmozgása egyre intenzívebb lesz, aminek következtében az oldalláncok közötti stabilizáló kötések felszakadnak. A változás hatására a molekula elveszti jellegzetes térszerkezetét, letekeredik, azaz denaturálódik. A letekeredett láncok összeakadva térhálót alkotnak, melynek hézagaiban vízmolekulák helyezkednek el. A rendszer kolloid állapota megszűnik, durva diszperz rendszerré alakul, azaz a fehérjék kicsapódnak, koagulálnak. A folyamat visszafordíthatatlan, azaz irreverzibilis. Irreverzibilis denaturáció zajlik le tojás főzéskor is, minek hatására a molekulák véglegesen elvesztik harmadlagos szerkezetüket, biológiai aktivitásuk megszűnik. 4

Az élő sejtek ph-ja 7.1 körül van, a sejtekben a fehérjék működése, szerkezete ekkor optimális. Amennyiben változik a ph - azaz megváltozik a H + -ion koncentráció -, a bevitt ionok hatására megváltoznak a fehérjemolekulák töltésviszonyai. Az aminosav oldalláncok töltésének megváltozásakor a molekulát stabilizáló kötések felszakadnak, a molekula gombolyag letekeredik, a fehérje irreverzibilisen denaturálódik. A nehézfémsók - pl. Pb, Hg, - hatására a fehérjék irreverzibilisen denaturálódnak. A nehézfém ionok hozzákapcsolódnak a polipeptidlánchoz, felszakítják a láncot stabilizáló kötéseket. A könnyűfémsók koncentrációjának emelésekor az oldatba kerülő ionok hidratálódnak és nagy koncentrációjuk esetén saját hidrátburkuk kialakításához a vízmolekulákat a fehérjék hidrátburkából vonják el. A fehérjemolekulák, mivel hidrátburkukat elvesztik, összecsapódnak, azaz koagulálnak. Kiválva az oldatból megszűnik a kolloid állapotuk. A folyamat reverzibilis, azaz megfordítható, mivel ha a kicsapódott fehérjékhez feleslegben vizet adunk, a molekulák hidrátburka helyreáll, ismét kolloid állapotba kerülnek. A folyamatot kisózásnak is nevezzük, amely pl. (NH 4 ) 2 SO 4 hatására következhet be. Ismertek olyan fehérjék, amelyek nem egy, hanem több polipeptidláncból épülnek fel. Ilyen fehérje pl. a hemoglobin. A fehérjét felépítő egyes polipeptidláncokat alegységnek nevezzük. Az alegységek egymáshoz viszonyított térbeli helyzetét a negyedleges szerkezettel jellemezzük. Ilyen pl. a hemoglobin. A fehérjék csoportosítása összetételük szerint történik. 1. Proteidek vagy összetett fehérjék nem fehérje természetű, ún. prosztetikus csoportot is tartalmaznak: glükoproteidek: prosztetikus csoportjuk szénhidrát, o mucin a nyálban, o globulinok a vérben, lipoproteidek: prosztetikus csoportjuk lipid, o sejthártya fehérjéi, metalloproteidek: prosztetikus csoportjuk fémion, o hemoglobin. 2. Proteinek vagy egyszerű fehérjék. Csak aminosavakból állnak: albuminok a vérben, ill. a kollagén. 5