A/D ÉS D/A ÁTALAKÍTÓK



Hasonló dokumentumok
Analóg-digitális átalakítás. Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék

Elektronika Előadás. Digitális-analóg és analóg-digitális átalakítók

Digitális jelfeldolgozás

Analóg digitális átalakítók ELEKTRONIKA_2

Analóg-digitál átalakítók (A/D konverterek)

Mintavételezés és AD átalakítók

X. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ

Iványi László ARM programozás. Szabó Béla 6. Óra ADC és DAC elmélete és használata

A/D és D/A konverterek vezérlése számítógéppel

A/D és D/A átalakítók gyakorlat

Mérés és adatgyűjtés

Jelfeldolgozás a közlekedésben. 2017/2018 II. félév. Analóg-digitális átalakítás ADC, DAC

Mechatronika és mikroszámítógépek. 2016/2017 I. félév. Analóg-digitális átalakítás ADC, DAC

Műveleti erősítők. 1. Felépítése. a. Rajzjele. b. Belső felépítés (tömbvázlat) c. Differenciálerősítő

2. Elméleti összefoglaló

Teljesítmény-erősítők. Elektronika 2.

Orvosi Fizika és Statisztika

Áramkörszámítás. Nyílhurkú erősítés hatása

Elektronika I. Gyakorló feladatok

Analóg áramkörök Műveleti erősítővel épített alapkapcsolások

Elektronika 11. évfolyam

2.3. Soros adatkommunikációs rendszerek CAN (Harmadik rész alapfogalmak II.)

I. C8051Fxxx mikrovezérlők hardverfelépítése, működése. II. C8051Fxxx mikrovezérlők programozása. III. Digitális perifériák

Jelgenerátorok ELEKTRONIKA_2

Mérés és adatgyűjtés

Akusztikus MEMS szenzor vizsgálata. Sós Bence JB2BP7

ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM

4-2. ábra. A leggyakoribb jelformáló áramköröket a 4-3. ábra mutatja be A jelformáló áramkörök

PWM elve, mikroszervó motor vezérlése MiniRISC processzoron

ELEKTROTECHNIKA-ELEKTRONIKA ELEKTROTECHNIKA

2. gyakorlat Mintavételezés, kvantálás

Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató

Elektronika Előadás. Modulátorok, demodulátorok, lock-in erősítők

11.2. A FESZÜLTSÉGLOGIKA

Értékelés Összesen: 100 pont 100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 15%.

Mérés 3 - Ellenörzö mérés - 5. Alakítsunk A-t meg D-t oda-vissza (A/D, D/A átlakító)

Jelkondicionálás. Elvezetés. a bioelektromos jelek kis amplitúdójúak. extracelluláris spike: néhányszor 10 uv. EEG hajas fejbőrről: max 50 uv

Mérési jegyzőkönyv a 5. mérés A/D és D/A átalakító vizsgálata című laboratóriumi gyakorlatról

Villamos jelek mintavételezése, feldolgozása. LabVIEW 7.1

Elektronika Előadás. Analóg és kapcsoló-üzemű tápegységek

Mûveleti erõsítõk I.

Az Informatika Elméleti Alapjai

4. hét: Ideális és valódi építőelemek. Steiner Henriette Egészségügyi mérnök

Irányítástechnika GÁSPÁR PÉTER. Prof. BOKOR JÓZSEF útmutatásai alapján

Elektronika Előadás. Műveleti erősítők felépítése, ideális és valós jellemzői

Integrált áramkörök/3 Digitális áramkörök/2 CMOS alapáramkörök Rencz Márta Ress Sándor

1. Visszacsatolás nélküli kapcsolások

MIKROELEKTRONIKA, VIEEA306

Elektronika alapjai. Témakörök 11. évfolyam

Villamos jelek mintavételezése, feldolgozása. LabVIEW előadás

Dr. Oniga István DIGITÁLIS TECHNIKA 8

Teljesítményerősítők ELEKTRONIKA_2

M ű veleti erő sítő k I.

DIGITÁLIS TECHNIKA I

Gingl Zoltán, Szeged, :47 Elektronika - Műveleti erősítők

Feszültségérzékelők a méréstechnikában

Híradástechikai jelfeldolgozás

10.1. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ

Digitális tárolós oszcilloszkópok

Elektronika Előadás. Műveleti erősítők. Alapkapcsolások műveleti erősítővel.

A/D és D/A konverterek. Általában egy objektumon elvégzett méréshez szükséges a. mérendő tárgy gerjesztése, aminek hatására a tárgy válaszokkal

Erősítő tanfolyam Keverők és előerősítők

2.Előadás ( ) Munkapont és kivezérelhetőség

Hobbi Elektronika. Bevezetés az elektronikába: Műveleti erősítők - 2. rész

VÁLTAKOZÓ ÁRAMÚ KÖRÖK

Informatika Rendszerek Alapjai

A/D és D/A átalakítók

Analóg elektronika - laboratóriumi gyakorlatok

D/A konverter statikus hibáinak mérése

A 2009-es vizsgákon szereplő elméleti kérdések

ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 7. AZ AD KONVERZIÓ

1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

ELEKTRONIKAI ALAPISMERETEK

AUTOMATIKAI ÉS ELEKTRONIKAI ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ

XI. DIGITÁLIS RENDSZEREK FIZIKAI MEGVALÓSÍTÁSÁNAK KÉRDÉSEI Ebben a fejezetben a digitális rendszerek analóg viselkedésével kapcsolatos témákat

Máté: Számítógép architektúrák

Közlekedés gépjárművek elektronikája, diagnosztikája. Mikroprocesszoros technika. Memóriák, címek, alapáramkörök. A programozás alapjai

1. ábra. Repülő eszköz matematikai modellje ( fekete doboz )

Házi Feladat. Méréstechnika 1-3.

Békéscsabai Kemény Gábor Logisztikai és Közlekedési Szakközépiskola "Az új szakképzés bevezetése a Keményben" TÁMOP

Elektronika Előadás

Dr. Oniga István DIGITÁLIS TECHNIKA 4

11. Analóg/digitális (ADC) és Digital/analóg (DAC) átalakítók

Elektronika Oszcillátorok

Összeadás BCD számokkal

ELEKTRONIKAI ALAPISMERETEK

1. A mérés tárgya: Mechatronika, Optika és Gépészeti Informatika Tanszék D524. Műveleti erősítők alkalmazása

1. Egy lineáris hálózatot mikor nevezhetünk rezisztív hálózatnak és mikor dinamikus hálózatnak?

Műveleti erősítők - Bevezetés

Villamosságtan szigorlati tételek

3.6. HAGYOMÁNYOS SZEKVENCIÁLIS FUNKCIONÁLIS EGYSÉGEK

Mérési útmutató. A/D konverteres mérés. // Első lépésként tanulmányozzuk a digitális jelfeldolgozás előnyeit és határait.

Digitális mérések PTE Fizikai Intézet

ELEKTRONIKAI ALAPISMERETEK

M pont(30) : (ii) Adja meg az e egyenes egy olyan pontját, melynek első koordinátája 7.

a) Valódi tekercs b) Kondenzátor c) Ohmos ellenállás d) RLC vegyes kapcsolása

A tervfeladat sorszáma: 1 A tervfeladat címe: ALU egység 8 regiszterrel és 8 utasítással

Elektronikai technikus Elektronikai technikus

Szekvenciális hálózatok és automaták

Átírás:

A/D ÉS D/A ÁTALAKÍTÓK 1. DAC egységek A D/A átalakító egységekben elvileg elkülöníthető egy D/A dekódoló rész és egy tartó rész: A D/A dekódoló diszkrét időpontokban a digitális értékéknek megfelelő amplitúdók sorozatát szolgáltatja A tartó részegység az amplitúdók sorozatából időben és amplitúdóban folytonos jelet állít elő. A megvalósított D/A dekódolók általában egy nulladrendű tartó funkcióját is ellátják, feltéve, hogy a D/A dekódoló bemenetére megfelelő ütemezéssel érkezik a digitális jel, vagy a dekódoló bemenetén megfelelő regiszter található. A nulladrendű tartó a kimenetén lépcsőformájú jelet szolgáltat. Ha a kielégítő jelvisszaállításhoz ennél jobb áramkörre van szükség, külön áramkört használnak. Ilyen pl. az elsőrendű tartó, mely valamivel lassabb működésű. Manapság szinte kivétel nélkül integrált áramköri D/A átalakítókat alkalmaznak. Egy integrált DAC a következőket tartalmazza: - D/A átalakító - referenciaforrás - bemeneti regiszterek - buszillesztő áramkörök - kimeneti erősítő - 1 -

Jellemzők: Szorzó típusú D/A: digitális érték. r referenciafeszültség esetén u ki = S D, ahol S DA az átalakító érzékenysége, D a bemenő DA S S u Analóg jeltartomány: a D/A átkódolók alapvetően unipoláris kimenetűek (0 MAX). A kimenet feszültség vagy áram lehet, áram-kimenet esetén gyorsabb az átalakító működése. Áram-kimenetből feszültség-kimenetet áram-feszültség átalakítóval nyerhetünk: DA r MDA ki r S MDA D Digitális bemenő jel: kódolása bináris vagy BCD. A számok ábrázolása háromféle lehet: abszolutérték előjellel, eltolt nullpontú ábrázolás vagy kettes komplemens. A bevitel soros ill. párhuzamos lehet (a párhuzamos bevitel nagyobb sebességet eredményez). Átalakítási karakterisztika: Átalakítás során keletkező hibák: - linearitási hiba: a tényleges átalakítási karakterisztika maximális eltérése a referenciaegyenestől - differenciális linearitási hiba: az átalakítási karakterisztika meredekségének legnagyobb eltérése a referenciaegyenes meredekségétől - erősítési hiba: az ideális és a tényleges átviteli karakterisztika kezdeti és végpontjait összekötő egyenesek meredekségének különbsége - nullahiba: a bemenő jel azon értéke, melynek hatására az átalakító a nulla digitális értéket adja (ofszet) - beállási idő: az új digitális érték ráadásától az új analóg kimeneti értékhez adott hibasávon belüli beállásig eltelt idő - átkapcsolási tranziens: az új értékre történő beállás közben a kimeneten nagy tranziens jelentkezhet, melynek amplitúdója lényegesen meghaladhatja a régi és az új érték közti különbséget. Ilyen tranziens pl. az alul- és felüllövés vagy a túllövés. A legnagyobb tranziensek a legnagyobb helyiértékű bitek változásakor szoktak keletkezni. - 2 -

Híradástechnikai alkalmazás jellemzői: - harmonikus torzítás - intermodulációs torzítás - Sparious Free Dinamic ange (SFD) - Noise Power atio (NP) - fáziszaj Szintkiválasztós D/A Egy sokelemes feszültségosztó egyidejűleg előállítja az átalakító összes lehetséges kimenő feszültségét, majd az ezt követő analóg multiplexer a pillanatnyi digitális bemenő jelnek megfelelő feszültségszintet kapcsolja a kimenetre. - n bites átalakításhoz 2 n ellenállás és ugyanennyi kapcsoló szükséges - gyors átalakítás - bonyolult áramkör, magas ár - 3 -

Súlyozó hálózatos D/A - súlyozott referencia alkalmazása (akár feszültség, akár áram) - a bináris helyi értékeknek megfelelően súlyozva előállítható az analóg kimenő jel - súlyozott összegző: - súlyozó hálózat megvalósítása: -2 létra (bármely pontban betekintve az eredő ellenállás 2) i 1 2 i+ 1-4 -

Létrahálós feszültségátalakítós D/A r 2 A r = r 3 3 3 (ahol ½ a súlyozó faktor) A megvalósításhoz kis belső ellenállású feszültséggenerátor szükséges! 1 2 Létrahálós áramátkapcsolós D/A A A = I A D = a 2 1 1 = D I V + a 2 V és 2 2 I A +... = D I - Integrált kivitelben V -t is integrálni kell! (erősítőt nem) - 8-16 bites átalakítás - 30..300 ns beállási idő - 5 -

Súlyozott ellenállás hálózatos D/A I n i r = I ai 2 és I ahol a i az egyes kapcsolók állása A = i 1 - kapcsolók: CMOS (egyszerű) - nagyobb sebesség - nagyobb precizitás - sokféle, nagy ellenállások (hátrány!) - 6-8 bites felbontás Közvetett D/A átalakító (PWM Pulse Width Modulation) Működés menete: 1. A digitális adat a számlálóba kerül 2. Órajellel megindul a visszaszámlálás 3. Ha a regiszter tartalma nullára csökken, a kapcsoló földre kapcsolódik 4. A kapcsoló így addig tartja a referenciafeszültséget, míg a regiszter tartalma nem zérus. 5. T=1/f s idő múlva érkezik az újabb órajel, ekkor új digitális érték kerül a számlálóba. - 6 -

XAV A T D f C X T f N C D f C D N 1 T és T = N T C = N f C - A tehát f C -től független - nem gyors; nem jó felbontás 2. ADC egységek Analóg-digitális átalakítás során amplitúdóban és időben folytonos jelből amplitúdóban és időben egyaránt diszkrét jelet állítunk elő. A folyamat lépései: 1. Adott a folytonos jel 2. Időbeli diszkretizálás (mintavevő-tartó) MINTAVÉTELEZÉS 3. Amplitúdó diszkretizálása (A/D átkódoló) KVANTÁLÁS (viszonyítás referenciához) Többcsatornás A/D átalakító Blokkvázlat: A kondícionáló áramkört a külső körülmények kiiktatására használjuk. Ilyen áramkör lehet pl. egy áramerősítő (IA). Analóg multiplexer: A sok jelbemenet közül az egyiket kapcsolja a kimenetre. Nem elhanyagolható a kapcsolók közötti áthallás, ezért az átkapcsolás ütemezésére figyelni kell. Kapcsolás megvalósítható pl. MOS tranzisztorral. - 7 -

Szimmetrikus MX: kétszer annyi kapcsolóelem szükséges, mint az aszimmetrikushoz, de a jelátvitel így kevésbé lesz érzékeny a zavarokra. Mintavevő-tartó egység: Az áramkört az S/H (sample/hold) bemenetre adott logikai jel vezérli. Ha a vezérlés a kapcsolót zárt állapotban tartja, akkor a C h kondenzátor feszültsége megegyezik a bemenő feszültséggel, és az erősítő kimenete követi a kondenzátor ill. a bemenet feszültségét. Ez a követő (track, sample) üzemállapot. Ha a vezérlés megszakítja a K kapcsolót, a C h tartókondenzátor megtartja a kapcsoló megszakítási pillanatának (a mintavétel pillanatának) feszültségét, és ez a feszültség lesz az áramkör kimenetén is. Ez a tartó (hold) üzemállapot. A mintavevő-tartó áramkörben jelentkező hibák: - apertura delay (t ad, mintavételi késés): a vezérlő bemenet megváltozásától a mintavétel megtörténtéig eltelt idő (20 500 ns) - acquisition time (t aq, beállási idő): az az idő, ami ahhoz szükséges, hogy az áramkör kimenete adott hibán belül ( pl. ±0,1 %) elérje a bemeneti feszültséget. (20 ns 10µs) - hold step ( mq, töltésofszet): a kapcsoló vezérlő bemenetére adott ugrásjel a C s szórt kapacitáson keresztül q töltést visz be a tartókondenzátorba, ez q/c h nagyságú hibát okoz. - drop (esés): A valódi kapcsoló visszárama és a követő erősítő bemenő ellenállása lassan megváltoztatja a tartókondenzátor feszültségét, ez okozza a mintavett jel esését. - 8 -

Komparátor áramkörök: a bemeneteire adott két analóg jel értékét hasonlítják össze, a kimenet logikai állapota az összehasonlítás eredményétől függően 0 vagy 1. A/D átalakításnál az összehasonlítás referenciafeszültséggel történik. Egyszerű komparátor: Hiszterézises komparátor: komparálási feszültsége a kimenet logikai állapotától függ. Lassan változó vagy zajos jelek komparálásánál érdemes használni. Flash A/D: 6-8 bites átalakításra használják, nagyobb bitszám esetén már túl sok komparátort kellene alkalmazni. Az áramkör gyors átalakító, átalakítási ideje kb. 10 ns. - 9 -

D/A átalakítók (összefoglalás) N n bit D/A ki I ki ref A kimenet lehet feszültség vagy áram. Ha áram, akkor átalakítható feszültséggé. A D/A átalakító kimeneti feszültsége a következő alakban írható: ki n i ref 2 ai, ahol a i 0 vagy 1 i= 0 A bemenő szám (N) lehet bináris vagy BCD, a kimenet unipoláris (0 1) vagy bipoláris. Az átalakító transzfer karakterisztikája: unipoláris kimenet esetén: bipoláris kimenet esetén: ki ki N N teljes skála kitérés: FSD FSD 1 2 n n (2 + 2 +... + 2 ) (1 2 ) nem a teljes referencia, hanem egy kicsit ref (LSB-vel) kevesebb ealizációk: - 2 létra - súlyozott ellenállás hálózat: ref probléma: kapcsoló megvalósítása (τ = C sok idő) - 10 -

áramkapcsolókkal: ECL (emitter csatolt logika) nem telítéses (differenciálerősítő miatt) 4 db-osak vannak, két ilyen között egy 16-os áramosztó van A/D átalakítók (összefoglalás) be A/D N ref - Flash (direkt) A/D: - n bithez 2 n 1 db komparátor kell (sok) be részletesebben: komparátorok (párhuzamosan) 2 n -1 vezeték dekóder N (bináris) - dekóder: kiválasztja, hogy melyik vezeték - gyorsak (műveleti erősítők miatt) - 11 -

- felhasználása: digitális videójeleknél (ahol a sávszélesség: 5 6 Mhz) jelfeldolgozás - megvalósítás: CMOS-al - manapság 14-bites flash átalakítók is vannak - D/A-t tartalmazó A/D átalakító: - legegyszerűbb logika: számláló: 0-ról indul, addig megy, míg a komparátor billen másik: középről induló, előre-hátra számláló számláló ezek hátránya: lassú előnye: primitív - gyorsabb logika: SA (sukcesszív approximáció) pl.: D/A: 8 bit, ref = 10 V be = 4,5 V Kérdés: mi az első 4 bit? ref Megoldás: 1 0 0 0 vastag: megelőlegezi N 1 1 0 0 aláhúzva: megmarad 1 0 1 0-2-5-10 ms alatt 10-12 bit - D/A karakterisztikája, hibái: nemlinearitási hiba erősítési hiba offszet - 12 -

- D/A-t nem tartalmazó A/D: (feszültség idő konverter) K hány db órajel (időmérés) - analóg módon állítjuk elő a fűrészjelet (nem kell a D/A) - hátránya: kondenzátor sok mindentől függ (pl. hőmérséklet) - Kétszeresen integráló A/D (dual slope): int be1 < be2 T 1 t be1 3 be2 1 t 1 2 t 2 T 1 = állandó - kapcsoló 1-es (felső) állásban: integrálja a bemenetet - kapcsoló 2-es állásban (vízszintes): integrálja a referenciát (konstans meredekségű kisülés) addig, amíg a komparátor billen - kapcsoló 3-as (alsó) állásban: offszetkiegyenlítés (bemenet = föld; megméri, hogy T 1 alatt mekkora feszültség van a kimeneten, és ezt negatív előjellel a bemenetre teszi) - 13 -

+ bemeneten egy változtatható feszültség generátor - azért kettős integrálású, mert integrálja a bemenetet és a referenciát is - általában a hálózati feszültség (50 Hz) periódusidejének (20 ms) egész számú többszöröse a T 1 idő - a referencia pontossága meghatározza a rendszer pontosságát - az átalakító a bemenő feszültséget időaránnyá konvertálja - feszültség frekvencia átalakítás: - meszire elvihető a frekvencia - zavarokra érzéketlenebb (kiintegrálható belőle a zaj) - 14 -