University of Bristol - Explore Bristol Research

Hasonló dokumentumok
University of Bristol - Explore Bristol Research

Forensic SNP Genotyping using Nanopore MinION Sequencing

Supporting Information

Supplementary Table 1. Cystometric parameters in sham-operated wild type and Trpv4 -/- rats during saline infusion and

Supplementary Figure 1

Nan Wang, Qingming Dong, Jingjing Li, Rohit K. Jangra, Meiyun Fan, Allan R. Brasier, Stanley M. Lemon, Lawrence M. Pfeffer, Kui Li

Mapping Sequencing Reads to a Reference Genome

Correlation & Linear Regression in SPSS

Construction of a cube given with its centre and a sideline

Suppl. Materials. Polyhydroxyalkanoate (PHA) Granules Have no Phospholipids. Germany

Supplemental Table S1. Overview of MYB transcription factor genes analyzed for expression in red and pink tomato fruit.

Expression analysis of PIN genes in root tips and nodules of Lotus japonicus

Flowering time. Col C24 Cvi C24xCol C24xCvi ColxCvi

On The Number Of Slim Semimodular Lattices

Genome 373: Hidden Markov Models I. Doug Fowler

A rosszindulatú daganatos halálozás változása 1975 és 2001 között Magyarországon

A cell-based screening system for RNA Polymerase I inhibitors

Széchenyi István Egyetem

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Correlation & Linear. Petra Petrovics.

Correlation & Linear Regression in SPSS

USER MANUAL Guest user

Személyes adatváltoztatási formanyomtatvány- Magyarország / Personal Data Change Form - Hungary

Supplementary materials to: Whole-mount single molecule FISH method for zebrafish embryo

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Nonparametric Tests

SOLiD Technology. library preparation & Sequencing Chemistry (sequencing by ligation!) Imaging and analysis. Application specific sample preparation

Kezdőlap > Termékek > Szabályozó rendszerek > EASYLAB és TCU-LON-II szabályozó rendszer LABCONTROL > Érzékelő rendszerek > Típus DS-TRD-01

Trinucleotide Repeat Diseases: CRISPR Cas9 PacBio no PCR Sequencing MFMER slide-1

tccattaattcgacagaccagagttaaataatccttgtatgccattgtgatcacatctacagttcagattttgtatttca

Statistical Dependence

A jövedelem alakulásának vizsgálata az észak-alföldi régióban az évi adatok alapján

Manuscript Title: Identification of a thermostable fungal lytic polysaccharide monooxygenase and

16F628A megszakítás kezelése

FAMILY STRUCTURES THROUGH THE LIFE CYCLE

A teszt a következő diával indul! The test begins with the next slide!

Using the CW-Net in a user defined IP network

Néhány folyóiratkereső rendszer felsorolása és példa segítségével vázlatos bemutatása Sasvári Péter

Phenotype. Genotype. It is like any other experiment! What is a bioinformatics experiment? Remember the Goal. Infectious Disease Paradigm

Rotary District 1911 DISTRICT TÁMOGATÁS IGÉNYLŐ LAP District Grants Application Form

Modular Optimization of Hemicellulose-utilizing Pathway in. Corynebacterium glutamicum for Consolidated Bioprocessing of

Supporting Information

Proxer 7 Manager szoftver felhasználói leírás

Supporting Information

Személyes adatváltoztatási formanyomtatvány - Magyarország / Personal Data Change Form - Hungary

T-helper Type 2 driven Inflammation Defines Major Subphenotypes of Asthma

Supplemental Information. Investigation of Penicillin Binding Protein. (PBP)-like Peptide Cyclase and Hydrolase

Contact us Toll free (800) fax (800)

A vitorlázás versenyszabályai a évekre angol-magyar nyelvű kiadásának változási és hibajegyzéke

Ellenőrző lista. 2. Hálózati útvonal beállítások, kapcsolatok, névfeloldások ellenőrzése: WebEC és BKPR URL-k kliensről történő ellenőrzése.

Markerless Escherichia coli rrn Deletion Strains for Genetic Determination of Ribosomal Binding Sites

MELLÉKLET / ANNEX. EU MEGFELELŐSÉGI NYILATKOZAT-hoz for EU DECLARATION OF CONFORMITY

discosnp demo - Peterlongo Pierre 1 DISCOSNP++: Live demo

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Factor Analysis

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Nonparametric Tests. Petra Petrovics.

DOAS változások, összefoglaló

AZ ACM NEMZETKÖZI PROGRAMOZÓI VERSENYE

kpis(ppk20) kpis(ppk46)

Utasítások. Üzembe helyezés

Cashback 2015 Deposit Promotion teljes szabályzat

Mr. Adam Smith Smith's Plastics 8 Crossfield Road Selly Oak Birmingham West Midlands B29 1WQ

Tudományos Ismeretterjesztő Társulat

Üzleti élet Nyitás. Nagyon hivatalos, a címzettnek meghatározott rangja van, aminek szerepelnie kell

Üzleti élet Nyitás. Nagyon hivatalos, a címzettnek meghatározott rangja van, aminek szerepelnie kell

T Á J É K O Z T A T Ó. A 1108INT számú nyomtatvány a webcímen a Letöltések Nyomtatványkitöltő programok fülön érhető el.

Performance Modeling of Intelligent Car Parking Systems

Adatbázisok 1. Rekurzió a Datalogban és SQL-99

SAJTÓKÖZLEMÉNY Budapest július 13.

Bioinformatics: Blending. Biology and Computer Science

KELER KSZF Zrt. bankgarancia-befogadási kondíciói. Hatályos: július 8.

A magkémia alapjai. Kinetika. Nagy Sándor ELTE, Kémiai Intézet

Hibridspecifikus tápanyag-és vízhasznosítás kukoricánál csernozjom talajon

Word and Polygon List for Obtuse Triangular Billiards II

Hogyan használja az OROS online pótalkatrész jegyzéket?

Architecture of the Trypanosome RNA Editing Accessory Complex, MRB1

FÖLDRAJZ ANGOL NYELVEN

Márkaépítés a YouTube-on

Involvement of ER Stress in Dysmyelination of Pelizaeus-Merzbacher Disease with PLP1 Missense Mutations Shown by ipsc-derived Oligodendrocytes

Eladni könnyedén? Oracle Sales Cloud. Horváth Tünde Principal Sales Consultant március 23.

Cloud computing. Cloud computing. Dr. Bakonyi Péter.

White Paper. Grounding Patch Panels

Dynamic freefly DIVE POOL LINES

CLUSTALW Multiple Sequence Alignment

Statistical Inference

Which letter(s) show(s) a. Melyik betű(k) mutat(nak) . 1 flexor muscle group? flexor izomcsoportot? . 2 extensor muscle group?

Lexington Public Schools 146 Maple Street Lexington, Massachusetts 02420

Horizontal gene transfer drives adaptive colonization of apple trees by the fungal pathogen Valsa mali. Zhiyuan Yin, Baitao Zhu, Hao Feng, Lili Huang*

(NGB_TA024_1) MÉRÉSI JEGYZŐKÖNYV

Utolsó frissítés / Last update: február Szerkesztő / Editor: Csatlós Árpádné

Tavaszi Sporttábor / Spring Sports Camp május (péntek vasárnap) May 2016 (Friday Sunday)

ANGOL NYELVI SZINTFELMÉRŐ 2013 A CSOPORT. on of for from in by with up to at

ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN

Influence of geogas seepage on indoor radon. István Csige Sándor Csegzi Sándor Gyila

EN United in diversity EN A8-0206/419. Amendment

MATEMATIKA ANGOL NYELVEN

Az egészségügyi munkaerő toborzása és megtartása Európában

Autochartist Alakzatok gyors tájékoztató

A magyar racka juh tejének beltartalmi változása a laktáció alatt

Tutorial 1 The Central Dogma of molecular biology

TestLine - Angol teszt Minta feladatsor

Registered Trademark of Hemos Group Austria

Magyar - Angol Orvosi Szotar - Hungarian English Medical Dictionary (English And Hungarian Edition) READ ONLINE

Átírás:

Tan, B. G., Wellesley, F. C., Savery, N. J., & Szczelkun, M. D. (2016). Length heterogeneity at conserved sequence block 2 in human mitochondrial DNA acts as a rheostat for RNA polymerase POLRMT activity. Nucleic Acids Research, 44(16), 7817-7829. https://doi.org/10.1093/nar/gkw648 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1093/nar/gkw648 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Oxford University Press at http://dx.doi.org/10.1093/nar/gkw648. Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms

Supplementary Information to: Length heterogeneity at conserved sequence block 2 in human mitochondrial DNA acts as a rheostat for RNA polymerase POLRMT activity Benedict G. Tan, Frederick C. Wellesley, Nigel J. Savery* and Mark D. Szczelkun* DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK

A. MGSSHHHHHHSQDPNSSSSASPQEQDQDRRKDWGHVELLEVLQARVRQLQAESVSEVVVNRVDVARLPECGSGDGSLQPPRKVQMGAK DATPVPCGRWAKILEKDKRTQQMRMQRLKAKLQMPFQSGEFKALTRRLQVEPRLLSKQMAGCLEDCTRQAPESPWEEQLAQLLQEAPGKL SLDVEQAPSGQHSQAQLSGQQQRLLAFFKCCLLTDQLPLAHHLLVVHHGQRQKRKLLTLDMYNAVMLGWARQGAFKELVYVLFMVKDAGL TPDLLSYAAALQCMGRQDQDAGTIERCLEQMSQEGLKLQALFTAVLLSEEDRATVLKAVHKVKPTFSLPPQLPPPVNTSKLLRDVYAKDGRVS YPKLHLPLKTLQCLFEKQLHMELASRVCVVSVEKPTLPSKEVKHARKTLKTLRDQWEKALCRALRETKNRLEREVYEGRFSLYPFLCLLDEREVVR MLLQVLQALPAQGESFTTLARELSARTFSRHVVQRQRVSGQVQALQNHYRKYLCLLASDAEVPEPCLPRQYWEALGAPEALREQPWPLPVQ MELGKLLAEMLVQATQMPCSLDKPHHSSRLVPVLYHVYSFRNVQQIGILKPHPAYVQLLEKAAEPTLTFEAVDVPMLCPPLPWTSPHSGAFLL SPTKLMRTVEGATQHQELLETCPPTALHGALDALTQLGNCAWRVNGRVLDLVLQLFQAKGCPQLGVPAPPSEAPQPPEAHLPHSAAPARKA ELRRELAHCQKVAREMHSLRAEALYRLSLAQHLRDRVFWLPHNMDFRGRTYPCPPHFNHLGSDVARALLEFAQGRPLGPHGLDWLKIHLVN LTGLKKREPLRKRLAFAEEVMDDILDSADQPLTGRKWWMGAEEPWQTLACCMEVANAVRASDPAAYVSHLPVHQDGSCNGLQHYAALGR DSVGAASVNLEPSDVPQDVYSGVAAQVEVFRRQDAQRGMRVAQVLEGFITRKVVKQTVMTVVYGVTRYGGRLQIEKRLRELSDFPQEFVW EASHYLVRQVFKSLQEMFSGTRAIQHWLTESARLISHMGSVVEWVTPLGVPVIQPYRLDSKVKQIGGGIQSITYTHNGDISRKPNTRKQKNGF PPNFIHSLDSSHMMLTALHCYRKGLTFVSVHDCYWTHAADVSVMNQVCREQFVRLHSEPILQDLSRFLVKRFCSEPQKILEASQLKETLQAVP KPGAFDLEQVKRSTYFFS B. MGSSHHHHHHSSGLVPRGSHMSSVLASCPKKPVSSYLRFSKEQLPIFKAQNPDAKTTELIRRIAQRWRELPDSKKKIYQDAYRAEWQVYKEEIS RFKEQLTPSQIMSLEKEIMDKHLKRKAMTKKKELTLLGKPKRPRSAYNVYVAERFQEAKGDSPQEKLKTVKENWKNLSDSEKELYIQHAKEDET RYHNEMKSWEEQMIEVGRKDLLRRTIKKQRKYGAEEC C. MKSTTPKKITPNVTFCDENAKEPENALDKLFSSEQQASILHVLNTASTKELEAFRLLRGRRSINIVEHRENFGPFQNLESLMNVPLFKYKSTVQVC NSILCPKTGREKRKSPENRFLRKLLKPDIERERLKAVNSIISIVFGTRRIAWAHLDRKLTVLDWQQSDRWSLMRGIYSSSVYLEEISSIISKMPKADF YVLEKTGLSIQNSSLFPILLHFHIMEAMLYALLNKTFAQDGQHQVLSMNRNAVGKHFELMIGDSRTSGKELVKQFLFDSILKADPRVFFPSDKIV HYRQMFLSTELQRVEELYDSLLQAIAFYELAVFDSQPLEHHHHHH D. ATGAAATCTACGACTCCGAAGAAGATCACCCCGAATGTGACGTTCTGCGATGAGAATGCCAAAGAACCGGAAAACGCTTTAGACAAACT CTTTTCAAGCGAACAGCAGGCCAGTATTCTCCACGTTCTGAATACAGCATCGACCAAAGAACTGGAAGCGTTTCGCTTATTGCGCGGTCG TCGTAGCATCAACATTGTCGAACATCGTGAGAATTTCGGGCCTTTTCAGAACCTCGAATCGCTGATGAATGTCCCGCTGTTTAAATACAA GAGTACCGTGCAAGTTTGCAACTCCATTCTGTGTCCCAAAACTGGCCGCGAAAAGCGTAAGTCTCCGGAAAATCGCTTTCTGCGCAAACT GCTGAAACCCGACATTGAACGCGAACGTCTGAAAGCCGTAAACAGCATCATCAGTATTGTGTTCGGAACGCGCCGTATTGCTTGGGCAC ATTTAGACCGGAAACTGACGGTACTGGATTGGCAGCAAAGCGATCGCTGGAGTCTTATGCGTGGCATCTATAGTAGCTCGGTGTATCTG GAGGAGATTTCCTCGATCATTTCCAAAATGCCGAAAGCAGACTTCTATGTACTGGAGAAAACCGGTTTGTCCATTCAGAACTCCAGCCTG TTTCCGATTCTTCTGCATTTTCACATCATGGAAGCGATGCTGTATGCGTTGCTGAACAAAACCTTTGCGCAGGATGGGCAACATCAGGTC CTTTCGATGAACCGGAATGCGGTTGGCAAACACTTCGAGCTTATGATTGGTGATTCACGCACATCAGGCAAAGAGCTGGTGAAACAGTT CCTGTTTGATAGCATCTTAAAGGCTGATCCACGTGTTTTCTTTCCTAGCGATAAAATCGTGCATTATCGCCAGATGTTCTTATCAACCGAA CTGCAACGCGTGGAAGAACTGTACGATTCTCTCTTGCAAGCAATTGCGTTCTACGAATTGGCCGTCTTTGACTCTCAGCCACTCGAGCAC CACCACCACCACCACTGA Supplementary Figure S1: DNA and Protein Sequences. A. Protein sequence of human POLRMT with mitochondrial signal peptide removed (aa 41-1230) and a N-terminal His6 tag. Additional amino acids are highlighted in grey. B. Protein sequence of human TFAM with mitochondrial signal peptide removed (aa 43-246) and a N- terminal His6 tag. Additional amino acids are highlighted in grey. C. Protein sequence of human TEFM with mitochondrial signal peptide removed (aa 36-360) and a C-terminal His6 tag. Additional amino acids are highlighted in grey. D. Escherichia coli codon-optimised htefm gene sequence in pet24b-tefm.

Insertion of SpeI site into KpnI site placspe1 placspe2 CGGATAACTAGTTGGAGCGTAC GCTCCAACTAGTTATCCGGTAC NCR primers with Spe1 sites NCRSpeF NCRSpeR GCATGACTAGTCACCAGTCTTGTAAACC CCTAGACTAGTCTAAGAGCTAATAG DM of RPE1 mtdna to make pgc-ncr(rcrs) C2301Ts C2301Tas G2412As G2412Aas G2614As G2614Aas A2941Gs A2941Gas del2252s del2252as GATGTCTGTGTGGAAAGTGGCTGTGCAGACATTCA TGAATGTCTGCACAGCCACTTTCCACACAGACATC TGAACGTAGGTGCGATAAATAATAGGATGAGGCAGG CCTGCCTCATCCTATTATTTATCGCACCTACGTTCA GGCTATTTAGGCTTTATGACCCTGAAGTAGGAACC GGTTCCTACTTCAGGGTCATAAAGCCTAAATAGCC ACTTGCTTGTAAGCATGGGGAGGGGGTTTTGATGT ACATCAAAACCCCCTCCCCATGCTTACAAGCAAGT CAGAAGCGGGGGAGGGGGGGTTT AAACCCCCCCTCCCCCGCTTCTG Supplementary Figure S2: Primers pairs used for cloning of NCR of the human mtdna from RPE1 cells and the subsequent site-directed mutagenesis to produce the rcrs. Numbers in the primer names indicate the position on the RPE1 mtdna rather than the numbering of the rcrs.

A First G run Primers Reverse Second G run Forward CSB2n1F CSB2n2F CSB2n3F CSB2n4F CSB2n5F CSB2n6F CSB2n7F CSB2n8F CSB2n9F CSB2n10F CSB2n11F CSB2n12F Gs 1 2 3 4 5 6 7 8 9 10 11 12 CSB2m1R 1 X X X CSB2m2R 2 X X X X X CSB2m3R 3 X X X X X X CSB2m4R 4 X X X X X X X CSB2m5R 5 X X X X X X X X CSB2m6R 6 X X X X X X X X X X CSB2m7R 7 X X X X X X X CSB2m8R 8 X X X X X CSB2m9R 9 X X X CSB2m10R 10 X X X CSB2m11R 11 CSB2m12R 12 B Continuous G runs Primers Forward Reverse 9 CSB2nXF CSB2m9R 10 CSB2nXF CSB2m10R 11 CSB2nXF CSB2m11R 12 CSB2nXF CSB2m12R 13 CSB2nXF CSB2m13R 14 CSB2nXF CSB2m14R 15 CSB2nXF CSB2m15R 16 CSB2nXF CSB2m16R 17 CSB2nXF CSB2m17R 18 CSB2nXF CSB2m18R C CSB2nXF CSB2n1F CSB2n2F CSB2n3F CSB2n4F CSB2n5F CSB2n6F CSB2n7F CSB2n8F CSB2n9F CSB2n10F CSB2n11F CSB2n12F CSB2m0R CSB2m1R CSB2m2R CSB2m3R CSB2m4R CSB2m5R CSB2m6R CSB2m7R CSB2m8R CSB2m9R CSB2m10R CSB2m11R CSB2m12R CSB2m13R CSB2m14R CSB2m15R CSB2m16R CSB2m17R CSB2m18R TTTGGTGGAAATTTTTTGTTATGATGTCTG AGTTTGGTGGAAATTTTTTGTTATGATGTCTG AGGTTTGGTGGAAATTTTTTGTTATGATGTCTG AGGGTTTGGTGGAAATTTTTTGTTATGATGTCTG AGGGGTTTGGTGGAAATTTTTTGTTATGATGTCTG AGGGGGTTTGGTGGAAATTTTTTGTTATGATGTCTG AGGGGGGTTTGGTGGAAATTTTTTGTTATGATGTCTG AGGGGGGGTTTGGTGGAAATTTTTTGTTATGATGTCTG AGGGGGGGGTTTGGTGGAAATTTTTTGTTATGATGTCTG AGGGGGGGGGTTTGGTGGAAATTTTTTGTTATGATGTCTG AGGGGGGGGGGTTTGGTGGAAATTTTTTGTTATGATGTCTG AGGGGGGGGGGGTTTGGTGGAAATTTTTTGTTATGATGTCTG AGGGGGGGGGGGGTTTGGTGGAAATTTTTTGTTATGATGTCTG GCTTCTGGCCACAGCACTTAAACACATC CGCTTCTGGCCACAGCACTTAAACACATC CCGCTTCTGGCCACAGCACTTAAACACATC CCCGCTTCTGGCCACAGCACTTAAACACATC CCCCGCTTCTGGCCACAGCACTTAAACACATC CCCCCGCTTCTGGCCACAGCACTTAAACACATC CCCCCCGCTTCTGGCCACAGCACTTAAACACATC CCCCCCCGCTTCTGGCCACAGCACTTAAACACATC CCCCCCCCGCTTCTGGCCACAGCACTTAAACACATC CCCCCCCCCGCTTCTGGCCACAGCACTTAAACACATC CCCCCCCCCCGCTTCTGGCCACAGCACTTAAACACATC CCCCCCCCCCCGCTTCTGGCCACAGCACTTAAACACATC CCCCCCCCCCCCGCTTCTGGCCACAGCACTTAAACACATC CCCCCCCCCCCCCGCTTCTGGCCACAGCACTTAAACACATC CCCCCCCCCCCCCCGCTTCTGGCCACAGCACTTAAACACATC CCCCCCCCCCCCCCCGCTTCTGGCCACAGCACTTAAACACATC CCCCCCCCCCCCCCCCGCTTCTGGCCACAGCACTTAAACACATC CCCCCCCCCCCCCCCCCGCTTCTGGCCACAGCACTTAAACACATC CCCCCCCCCCCCCCCCCCGCTTCTGGCCACAGCACTTAAACACATC Supplementary Figure S3: Primers pair combinations used for site-directed mutagenesis (SDM). Primers pairs used to produce the adenine-interrupted discontinuous (A) CSB2 variants or continuous CSB2 variants (B). Primer sequences in C.

CSB2 G>A CSB2G>AF CSB2G>AR CSB2 ΔTP1 TP1delF TPMutR CSB2 G>A ΔTP1 TP1delF CSB2G>AR2 TP1 mutant (UC)3 TP1UC3F TPMutR TP1 mutant A6 TP1MutA6F TPMutR G9AG8 spacer AAA spacer AAAAAAATTTGGTGGAAATTTTTTGTTATGATGTCTG TTTTTTGCTTCTGGCCACAGCACTTAAACACATC ATGATGTCTGTGTGGAAAGTGGCTGTGCAG TTTCCACCAAACCCCCCCTCCCCCG ATGATGTCTGTGTGGAAAGTGGCTGTGCAG TTTCCACCAAATTTTTTTTTTTTTGCTTCTGGCCACAGCAC TCTCTCGTTATGATGTCTGTGTGGAAAGTGGCTGTGCAG TTTCCACCAAACCCCCCCTCCCCCG AAAAAAGTTATGATGTCTGTGTGGAAAGTGGCTGTGCAG TTTCCACCAAACCCCCCCTCCCCCG aaaf AAATTTGGTGGAAATTTTTTGTTATGATGTCTGTGTGGAAAGTGG G9AG8R CCCCCCCCTCCCCCCCCCGCTTCTGGCCACAGCAC G9AG8 spacer CGT spacer cgtf CGTTTTGGTGGAAATTTTTTGTTATGATGTCTGTGTGGAAAGTGG G9AG8R CCCCCCCCTCCCCCCCCCGCTTCTGGCCACAGCAC G10AG7 spacer AAA spacer aaaf AAATTTGGTGGAAATTTTTTGTTATGATGTCTGTGTGGAAAGTGG G10AG7R CCCCCCCTCCCCCCCCCCGCTTCTGGCCACAGCAC G10AG7 spacer CGT spacer cgtf CGTTTTGGTGGAAATTTTTTGTTATGATGTCTGTGTGGAAAGTGG G10AG7R CCCCCCCTCCCCCCCCCCGCTTCTGGCCACAGCAC G9AG6 Middle A mutation A>C G9CG6F CSB2n9R G9AG6 Middle A mutation A>T G9TG6F CSB2n9R CGGGGGGTTTGGTGGAAATTTTTTGTTATGATGTCTG CCCCCCCCCGCTTCTGGCCACAGCACTTAAACACATC TGGGGGGTTTGGTGGAAATTTTTTGTTATGATGTCTG CCCCCCCCCGCTTCTGGCCACAGCACTTAAACACATC Supplementary Figure S4: Primers pair combinations used for site-directed mutagenesis to produce the CSB2 variants and downstream mutants as indicated.

Supplementary Figure S5: Transcription assays of CSB 2 variants. Representative mini-gels from in vitro transcription assays using the CSB 2 variants as indicated by the key. The G10AG2 substrate (lane key #55) was originally included in our in vitro mini gel assays but was subsequently excluded from further analysis.

Supplementary Figure S6: Quantification of the effect of length heterogeneity on transcription product levels. A. Total TP levels measured from transcription assays using the CSB 2 variants quantified from mini-gels as indicated by the key in Supplementary Figure S5 (N = 3, error bars S.D.). The red line represents a basal TP level of (grey box are the S.D.), as measured in the absence of quadruplex formation where stalling is driven by the downstream poly-t tract alone (see G>A substrate in Figure 6). B-D. TP1, TP2 and TP3 levels, as indicated, measured separately from

transcription assays using the CSB 2 variants as indicated by the key in Supplementary Figure S5 (N = 3, error bars S.D.). The red lines represents basal TP levels (grey boxes are the S.D.), as measured in the absence of quadruplex formation where termination is driven solely by the downstream poly-t tract (Figure 6). Note the different y-axes scales.

Supplementary Figure S7: TP3 products are dependent on elongated, discontinuous G-tracts and are located within the second G-run. A. Plot of TP1 levels versus with TP2 or TP3 levels on the same CSB 2 variant (data from Supplementary Figure S6B-D). The dotted shapes indicate two groups of variants (G5AG9- G5AG11 and G6AG8-G6AG11) where there is a marked increase in the amount of TP2 produced relative to TP3. The appearance of the TP3 products above 3% appears to correlate with longer discontinuous CSB 2 variants of 16-18 guanines that in turn produce relatively high levels of total TP1. In comparison, TP2 products above 3% were observed with shorter discontinuous sequences (as low as 14 guanines). B-C. Percentages of TP3 (panel B) or TP2 (Panel C) as a function of position of the adenine (defined in Figure 3A) for discontinuous G- tracts of 9 to 17 residues. Data taken from Supplementary Figure S6C, D (N = 3, error bars

S.D.). Maximum TP3 formation for the 15-17 guanine sequences required that the adenine was located centrally at -1. Given that continuous sequences do not produce TP3 above background regardless of length (Figure 4 and 5), it appears that this product may absolutely require the adenine. For TP2 products there is a less clear relationship with the adenine position since the data error is more significant. Since TP2 bands were also observed with continuous sequences (Figure 5C), the adenine is not absolutely required to generate this product. C. Mapping the position of TP3. Scanned and normalised data from the sequencing gels in Supplementary Figure S9 and S11 is shown alongside data from Figure 5. As in Figure 5, the data was aligned to the 3ʹ terminal guanine of the G-tracts. The data is grouped according to the total number of guanines. Numbers in brackets are the average TP percentages from Figure 2D and Supplementary Figure S6A. For all sequences the positions of the TP1 and TP2 products align closely. The positions of the main TP3 bands were located 3-6 bp 5ʹ to the end of the G-tract. However, the rules governing the exact location of the main band are not clear, since they vary with both adenine position and number of guanines.

Supplementary Figure S8: Separation of CSB 2 transcription products using a sequencing gel. A full sequencing gel (left) and a magnified portion showing the TP region (right) for products from transcription reactions on DNA where the first G-run was fixed at either seven or eight guanines and the second G-run varied as indicated. Approximate positions of TP1, TP2 and TP3 are indicated. The rcrs 47 is shown, with the variable G-tract in red. Because length heterogeneity causes a change in distance between the transcription start site and the sequences downstream of the G-tract, transcription products that terminate at the same site on different substrates can have different lengths. For example, because TP1 and TP2 map to regions downstream of the G-tract, as the length of the second G-run increases, these bands

move up the gel (i.e., the transcripts become longer). This is shown by the diamonds symbols which represent the sequences T287TGTTA282 (TP1) and G296G295 (TP2) of the rcrs. The TP3 bands map to the second G-run and are more static (for example, relative to the 100 nt marker which aligns with the first G-run). Because of these relative differences in size of the products, in Figures 5, 6 and 7 we scanned the intensity of each sequencing lane and aligned the data to the final guanine of the G-tract, allowing direct comparison of the locations of the downstream products.

Supplementary Figure S9: Complete sequencing gels from Figure 5. Panels A-C correspond to panels in Figure 5A-C.

Supplementary Figure S10: Complete sequencing and mini-gels from Figure 7. A. Sequencing gel corresponding to scanned data in Figure 6B. B. Sequencing gel corresponding to Figure 6C. C. Representative mini-gel from in vitro transcription assay on the substrates in Figure 6C.

Supplementary Figure S11: Complete sequencing gels showing some of the variants in Supplementary Figure S7D not presented elsewhere.