1. Elektromos alapjelenségek



Hasonló dokumentumok
Elektrosztatikai alapismeretek

ELEKTROSZTATIKA. Ma igazán feltöltődhettek!

Elektromos alapjelenségek

A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test

ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Biológia tagozat. Fizika 10. osztály. II. rész: Elektrosztatika. Készítette: Balázs Ádám

Elektrosztatika tesztek

Vezetők elektrosztatikus térben

A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test

Elektrosztatika Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás

A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test

Villamos tér. Elektrosztatika. A térnek az a része, amelyben a. érvényesülnek.

Elektromosság, áram, feszültség

Az elektromos töltés jele: Q, mértékegysége: C (Coulomb) A legkisebb töltés (elemi töltés): 1 elektron töltése: - 1, C (azért -, mert negatív)

A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test

A testek részecskéinek szerkezete

Elektromos töltés, áram, áramkör

Elektromos áram, áramkör

TANMENET FIZIKA. 10. osztály. Hőtan, elektromosságtan. Heti 2 óra

1. SI mértékegységrendszer

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el.

1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés

A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét.

Elektrotechnika. Ballagi Áron

Elektromos töltés, áram, áramkörök

a térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus.

Mágneses mező jellemzése

Elektromos áram, áramkör

Mágneses mező jellemzése

Orvosi Fizika 12. Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet

É11. Nyugvó villamos mező (elektrosztatika) Cz. Balázs kidolgozása. Elméleti kérdések: 1.Az elektromos töltések fajtái és kölcsönhatása

Q 1 D Q 2 (D x) 2 (1.1)

Bevezetés az analóg és digitális elektronikába. III. Villamos és mágneses tér

Mágneses mező tesztek. d) Egy mágnesrúd északi pólusához egy másik mágnesrúd déli pólusát közelítjük.

Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont)

Tartalom ELEKTROSZTATIKA AZ ELEKTROMOS ÁRAM, VEZETÉSI JELENSÉGEK A MÁGNESES MEZÕ

TestLine - Fizika 8. évfolyam elektromosság alapok Minta feladatsor

1. ábra. 24B-19 feladat

= Φ B(t = t) Φ B (t = 0) t

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja

Az elektromosságtan alapjai

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra

Időben állandó mágneses mező jellemzése

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)

FIZIKA. Ma igazán feltöltődhettek! (Elektrosztatika) Dr. Seres István

Elektrosztatikai jelenségek

Pótlap nem használható!

FIZIKA ÓRA. Tanít: Nagy Gusztávné

2. Ideális esetben az árammérő belső ellenállása a.) nagyobb, mint 1kΩ b.) megegyezik a mért áramkör eredő ellenállásával

Thomson-modell (puding-modell)

A válaszok között több is lehet helyes. Minden hibás válaszért egy pontot levonunk.

FIZIKA. Ma igazán feltöltődhettek! (Elektrosztatika) Dr. Seres István

Hobbi Elektronika. Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA

Elektromos áram. Vezetési jelenségek

Budapesti Műszaki- és Gazdaságtudományi Egyetem Közlekedésmérnöki Kar Gépjárművek Tanszék

Megoldás: A feltöltött R sugarú fémgömb felületén a térerősség és a potenciál pontosan akkora, mintha a teljes töltése a középpontjában lenne:

W = F s A munka származtatott, előjeles skalármennyiség.

Fizika A2 Alapkérdések

Elektromos áram, áramkör, ellenállás

Az elektromágneses tér energiája

Fizika A2 Alapkérdések

Elektrosztatika tesztek

Vegyes témakörök. 9. Bevezetés az elektronikába - alapfogalmak, Ohm törvény, soros és párhuzamos kapcsolás

Kötések kialakítása - oktett elmélet

Fizika minta feladatsor

Sztehlo Gábor Evangélikus Óvoda, Általános Iskola és Gimnázium. Osztályozóvizsga témakörök 1. FÉLÉV. 9. osztály

Fizika 1 Elektrodinamika beugró/kis kérdések

Elektrosztatikai jelenségek

Elektromos áram, egyenáram

ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Komplex természettudományi tagozat. Fizika 11. osztály

Póda László Urbán János: Fizika 10. Emelt szintű képzéshez c. tankönyv (NT-17235) feladatainak megoldása

Elektrosztatika tesztek


Egyenáram. Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai

A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Elektromos áramerősség

71. A lineáris és térfogati hőtágulási tényező közötti összefüggés:

Fizika 1 Elektrodinamika belépő kérdések

7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át?

Kérdések Fizika112. Mozgás leírása gyorsuló koordinátarendszerben, folyadékok mechanikája, hullámok, termodinamika, elektrosztatika

FIZIKA II. Dr. Rácz Ervin. egyetemi docens

Elektromágnesség tesztek

EHA kód: f. As,

FIZIKA ZÁRÓVIZSGA 2015

Kondenzátorok. Fizikai alapok

Kifejtendő kérdések június 13. Gyakorló feladatok

VILODENT-98. Mérnöki Szolgáltató Kft. feltöltődés

A munkavégzés a rendszer és a környezete közötti energiacserének a D hőátadástól eltérő valamennyi más formája.

Elektronegativitás. Elektronegativitás

Munka, energia Munkatétel, a mechanikai energia megmaradása

Az elemeket 3 csoportba osztjuk: Félfémek vagy átmeneti fémek nemfémek. fémek

1. A gyorsulás Kísérlet: Eszközök Számítsa ki

VILLAMOS ÉS MÁGNESES TÉR

Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola

Elektromos ellenállás, az áram hatásai, teljesítmény

Az Ampère-Maxwell-féle gerjesztési törvény

Az atom- olvasni. 1. ábra Az atom felépítése 1. Az atomot felépítő elemi részecskék. Proton, Jele: (p+) Neutron, Jele: (n o )

Átírás:

1. Elektromos alapjelenségek 1. Bizonyos testek dörzsölés hatására különleges állapotba kerülhetnek: más testekre vonzerőt fejthetnek ki, apróbb tárgyakat magukhoz vonzhatnak. Ezt az állapotot elektromos állapotnak nevezzük. 2. Az elektromos állapot kimutatása elektroszkóppal történik. 3. Az elektromos állapot növelhető vagy csökkenthető, tehát mennyiségileg jellemezhető. Az elektromos állapot mértékét jellemző fizikai mennyiséget töltésnek nevezzük. Az elektromos töltés érintéssel átvihető egy másik testre. 4. Kétféle elektromos töltés létezik: pozitív és negatív töltésnek nevezzük őket, mert úgy adódnak össze, mint az előjeles számok. Megállapodás szerint a bőrrel dörzsölt üvegrúd töltése pozitív, míg a szőrmével dörzsölt műanyagrúdé negatív. Azonos töltések taszítják, ellentétesek vonzzák egymást. 5. A semleges testek a kétféle töltést egyforma mértékben tartalmazzák, dörzsöléskor szétválik a kétféle töltés. 6. Töltésmegmaradás tétele: zárt rendszer össztöltése állandó. 7. Bizonyos anyagokban a töltés magától szétterjed, vezetik a töltést; az ilyen anyagokat vezetőknek nevezzük. Pl.: fémek, nem desztillált víz (ionokat tartalmazó), emberi test, elektrolit oldat Más anyagok nem vezetnek, ezeket szigetelőknek nevezzük. Pl.: száraz fa, gumi, műanyag, üveg, porcelán, gázok 2. Az elektromos állapot anyagszerkezeti leírása Az atomok az atommagból és az elektronfelhőből épülnek fel. Az atommagban található a pozitív töltésű proton (p + ) és a semleges töltésű neutron (n 0 ). Az elektronfelhőben található a negatív töltésű elemi részecske, az elektron (e - ). 1. A protonok és az elektronok alapvető tulajdonsága az elektromos állapot. Töltésük nagyága megegyező, de ellentétes előjelű. Semleges test: A p + és az e - száma megegyezik Pozitív töltésű test: A p + száma nagyobb, mint az e - száma Negatív töltésű test: A p + száma kisebb, mint az e - száma 2. A vezetőkben elmozdulni képes töltéshordozók (fémekben delokalizált elektronok, elektrolit oldatokban ionok) vannak. A szigetelőkben a töltéshordozók nem tudnak elmozdulni. 1

3. Coulomb törvénye A törvény pontszerű töltések közt ható elektromos erőre vonatkozik. Két pontszerű töltés között fellépő elektromos erő nagysága a töltésekkel egyenesen, a közöttük lévő távolság négyzetével fordítottan arányos, és függ a két töltés körülvevő töltés anyagi minőségétől. A töltés egysége 1C. Két töltés mindegyike 1C, ha egymást 1 méter távolságból 9 10 9 N erővel taszítják vákuumban. Az elektromos erő nagyságát az alábbi összefüggés segítségével számolhatjuk ki. 4. Elektromos mező Az elektromos állapotban lévő testeket az anyag egy különleges megjelenési formája, az ún. elektromos mező veszi körül. A mezőt egy másik töltésre kifejtett erő alapján lehet felismerni. Elektromos térerősség: A mezőt pontonként jellemző fizikai mennyiség. Azt mutatja meg, hogy 1C töltésre a mező adott pontjában mekkora erő hat. Jele: E Vektormennyiség. Iránya megegyezik a pozitív töltésre ható erő irányával. Pontszerű töltés által keltett mezőben a térerősség a forrástöltéstől és a tőle mért távolságtól függ. A forrástöltéssel egyenesen, a távolság négyzetével fordítottan arányos. 2

Szuperpozíció elve: Ha az elektromos mezőt több pontszerű töltés hozza létre, akkor a mező egy tetszőleges pontjában a térerősséget úgy határozhatjuk meg, hogy íz egyes töltésektől származó térerősség-vektorokat összeadjuk. Az olyan mezőt, melynek minden pontjában a térerősség nagysága és iránya megegyezik, azt homogén mezőnek nevezzük. Az olyan mezőt, ami nem homogén, azt inhomogén mezőnek nevezzük. Homogén mezőt úgy hozhatunk létre, hogy két, párhuzamos fémlemezt ellentétesen feltöltünk. A lemezek közötti mezőben (a szélektől távol) homogén mező jön létre. 5. Elektromos mező szemléltetése Van de Graaf-féle szalaggenerátorral végzett kísérlet tapasztalatai: - a vattapamacsok meghatározott görbék mentén mozdulnak el, ezeket elektromos erővonalaknak nevezzük - az elektromos mezőt erővonalakkal szemléltethetjük. - olyan térbeli görbék, amellyel a térerősség iránya és nagysága is szemléltethető. A térerősség iránya: egy erővonalra bármely pontban húzott érintő a térerősség irányát határozza meg. A pozitív töltés keltette mező erővonalai a töltésből sugárirányban kifelé mutató félegyenesek. Negatív töltés esetén az erővonalak a töltés felé mutatnak. A térerősség nagysága: erővonalak sűrűségével szemléltethető: ahol nagyobb a térerősség, azt sűrűbben húzott vonalakkal szemléltetjük. Az erővonalakra merőleges egységnyi felületen keresztül annyi erővonalat rajzolunk, amennyi ott a térerősség számértéke. Egy adott felületen áthaladó erővonalak számát elektromos fluxusnak nevezzük. Jele: Ha a felület merőleges az erővonalakra, akkor: Ha a felület nem merőleges az erővonalakra, akkor a felület erővonalakra merőleges vetületével kell számolni. Speciális mezők erővonal képe: FIZIKA 10. 152/3.18 ábra 3

6. a Az elektromos mező által végzett munka Ha az elektromos mezőbe helyezett töltés elmozdul, akkor a mező munkát végez. Homogén mező esetén: A végzett munka nagysága mindenképpen független az úttól, csak az A és B pontok helyzetétől függ. Ahol d =, és az erővonalakkal bezárt szög Pontszerű töltés által keltett mező esetén: Tetszőleges elektrosztatikus mezőben: A mező által végzett munka, miközben egy töltés A pontból B pontba jut, független a pálya alakjától, csak a mező tulajdonságától és az AB egymáshoz viszonyított helyzetétől és az átvitt töltéstől függ. Az elektromos mező konzervatív. 6. b Az elektromos feszültség A feszültség az elektromos mezőt pontpáronként jellemzi munkavégzés szempontjából. Azt mutatja meg, hogy mennyi munkát végez a mező az egységnyi töltésen, miközben az a mező A pontjából a B pontjába jut. A feszültség előjeles skalármennyiség. Jele: U Ha a két pont közül az egyiket, a B-t rögzítjük, és a többi pont feszültségét, ehhez a rögzített ponthoz, mint alapponthoz viszonyítjuk, akkor az A pont potenciálját kapjuk. A potenciál az alapponthoz viszonyított feszültség. 4

Azt mutatja meg, hogy mennyi munkát végez az egységnyi töltésen, miközben a mező A pontjából az alappontba jut. A feszültség potenciálkülönbség. Az alappont önkényesen megválasztható. A gyakorlatban a Föld felszínét, elméleti számításoknál a végtelen távoli pontot választják. A mező azon pontjait, melynek potenciálja ugyanakkora, ekvipotenciális pontnak nevezzük. Ha egy felület minden pontja ekvipotenciális, akkor a felületet ekvipotenciális felületnek nevezzük. 7. a. Szigetelők elektromos mezőben Apoláros szerkezetű szigetelők esetén: A külső elektromos mező hatására a molekulákon belül a pozitív és negatív töltés kissé széthúzódik: dipólus molekulák jönnek létre, melynek tengelye a térerősséggel párhuzamos. Dipólusos szerkezetű szigetelők esetén: A külső elektromos mező hatására a molekulák befordulnak a térerősség irányába. Mindkét esetben a szigetelők belsejében a külső mező hatására a térerősség irányába rendezett dipólusláncok jönnek létre. Ezt a jelenséget elektromos polarizációnak nevezzük. 7. b. Vezetők elektromos mezőben Ha egy vezetőt elektromos mezőbe helyezünk, akkora a mező szétválasztja a mező pozitív és negatív töltéseit. Ezt elektromos megosztásnak nevezzük. A töltéselválasztás mindaddig tart, amíg a vezető belsejében a térerősség 0 nem lesz. (ha nem így lenne, akkor a töltések mozognának, így nem lenne egyensúly) A vezetőfelülettel körbetekert térfogatba a külső elektromos mező nem tud behatolni, a vezetőfelület tehát megvédi ezt a térrészt a külső mezőtől. Ezt a jelenséget elektromos árnyékolásnak nevezzük. A Faraday-féle kalitka alkalmazása: autók, gázpalackok (PB), mikrofonok, antennakábelek (koax) és elektromos berendezések esetén 5

8. Többlettöltés-elhelyezkedés a vezetőkön A többlettöltés mindig a vezető külső felületén helyezkedik el, azonban a többlettöltés eloszlása általában nem egyenletes (kivétel a gömb). Csúcsok, élek és kis görbületi sugarú helyek közelében a töltéssűrűség nagyobb: ezt csúcshatásnak nevezzük. Kísérlet: csúcsos testre vezetett többlettöltés elfújja a gyertya lángját A csúcson nagyobb a töltéssűrűség, ezért környezetében olyan erős elektromos mező keletkezik, ami a levegő molekuláit polarizálja; magához vonzza a levegő molekuláit, feltölti saját töltésével, majd eltaszítja azokat. Az eltaszított molekulák elektromos szelet hoznak létre. Ez fújja el a lángot. Csúcshatás következménye: a csúcsokkal rendelkező testek hamar elvesztik többlettöltésüket. 9. A kapacitás. Kondenzátorok Ha egy vezetőt feltöltünk, növekszik a potenciálja. Elektromos kapacitás: Azt mutatja meg, hogy mennyi töltést képes tárolni a mező egységnyi potenciál mellett. Jele: C Azokat az eszközöket, amelyek sok töltést képesek tárolni kis potenciál mellett (tehát nagy a kapacitásuk), kondenzátoroknak nevezzük. A kondenzátorok kapacitása függ: - a lemezezek felületétől - a lemezek távolságától - a köztük lévő szigetelő anyag anyagi minőségétől vákuum esetén: A relatív dielektromos állandó azt mutatja meg, hogy hányszorosára nő meg a kondenzátor kapacitásam ha vákuum helyett más szigetelőt használunk. 6

A feltöltött kondenzátor energiát tárol: energiája annyi, amekkora munkát kell végezni feltöltés közben. 7