Környezeti információs rendszerek II. (km 019_2) Dr. GYULAI ISTVÁN egyetemi docens Széchenyi István Egyetem Környezetmérnöki Tanszék

Hasonló dokumentumok
Környezeti információs rendszerek II. Légi és űrfelvételek beszerzése

Távérzékelt felvételek típusai és jellemzői

Az érzékelők legfontosabb elemei Optikai rendszer: lencsék, tükrök, rekeszek, szóró tagok, stb. Érzékelők: Az aktív felületükre eső sugárzás arányában


A távérzékelés és fizikai alapjai 4. Technikai alapok

A távérzékelés és fizikai alapjai 3. Fizikai alapok

INFORMATIKA ÁGAZATI ALKALMAZÁSAI. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP /1/A

Térinformatika és Geoinformatika

Általános nemzeti projektek Magyar Topográfiai Program (MTP) - Magyarország Digitális Ortofotó Programja (MADOP) CORINE Land Cover (CLC) projektek Mez

Földhasználati tervezés és monitoring 3.

Érzékelők csoportosítása Passzív Nem letapogató Nem képalkotó mh. radiométer, graviméter Képalkotó - Kamerák Letapogató (képalkotó) Képsíkban TV kamer

Térinformatikai adatbázis feltöltése nagyméretarányú távérzékelési adatokkal

DRÓNOK HASZNÁLATA A MEZŐGAZDASÁGBAN

A felszínborítás térképezés Magyarországon Monitorozás és Európában

Távérzékelés - műholdak

Távérzékelés, a jöv ígéretes eszköze

LÉGI HIPERSPEKTRÁLIS TÁVÉRZÉKELÉSI TECHNOLÓGIA FEJLESZTÉSE PARLAGFŰVEL FERTŐZÖTT TERÜLETEK MEGHATÁROZÁSÁHOZ

aktuális projekt hazai vonatkozásai Magyarországon és Európában

Távérzékelt felvételek és térinformatikai adatok integrált felhasználása a FÖMI mezőgazdasági alkalmazásaiban

A hiperspektrális képalkotás elve

A VÁROSI FELSZÍNBORÍTÁS-VÁLTOZÁS VIZSGÁLATA SZEGEDEN ŰR- ÉS LÉGIFELVÉTELEK ALAPJÁN

TÉRINFORMATIKA II. Dr. Kulcsár Balázs egyetemi docens. Debreceni Egyetem Műszaki Kar Műszaki Alaptárgyi Tanszék

A fotogrammetria ismeretek és a szakmai tudás fontossága

INFORMATIKA ÁGAZATI ALKALMAZÁSAI. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP /1/A

Távérzékelés a mezőgazdaságban és a környezetvédelemben

A felszínborítás térképezés Magyarországon Monitorozás és Európában

VÁGÓ JÁNOS, SERES ANNa, Hegedűs ANDRÁS, ALKaLMaZOTT TÉRINFORMaTIKa

GISopen Földmérési és Távérzékelési Intézet Mezőgazdasági területeket érintő katasztrófák és károk távérzékeléses felmérése

A légi traffipax térinformatikai fejlesztései

A Mezőgazdasági Parcella Azonosító Rendszer (MePAR) Innováció és Kommunikáció ELTE Bolyai Kollégium december 5.

Távérzékelés. Modern Technológiai eszközök a vadgazdálkodásban

Távérzékelés és Fotogrammetria a Térinformatika Szolgálatában

Új eredmények és lehetőségek a parlagfű távérzékeléses kimutatásában Surek György, Nádor Gizella, Hubik Irén

GIS és Távérzékelés a közlekedési adatnyerésben

Földfelszín megfigyelés Európára a GMES program keretében Büttner György (FÖMI, ETC-TE)

A GEOINFORMÁCIÓS TÁMOGATÁS KORSZERŰ ELEMEI, AVAGY ÚJ SZÍNFOLTOK A GEOINFORMÁCIÓS TÁMOGATÁS PALETTÁJÁN


A légköri sugárzás. Sugárzási törvények, légköri veszteségek, energiaháztartás

Fotointerpretáció és távérzékelés 6.

A városi vegetáció felmérése távérzékelési módszerekkel Vécsei Erzsébet


Kvantálás: a képfüggvény folytonos fényességértékei és a digitális megfelelőik közötti átalakítás: szürkeségi fokok számának megválasztása

A FIR-ek alkotóelemei: < hardver (bemeneti, kimeneti eszközök és a számítógép), < szoftver (ARC/INFO, ArcView, MapInfo), < adatok, < felhasználók.

Földmérési és Távérzékelési Intézet. GISopen 2013: Jogi változások informatikai válaszok március 13. NymE - Geoinformatikai Kar, Székesfehérvár


Távérzékelés a vízgazdálkodás szolgálatában. Bíró Tibor Nemzeti Közszolgálati Egyetem Víztudományi Kar

1.1 Emisszió, reflexió, transzmisszió

Geofizika alapjai. Bevezetés. Összeállította: dr. Pethő Gábor, dr Vass Péter ME, Geofizikai Tanszék

MŰHOLDAS VÁROSI HŐSZIGET VIZSGÁLAT

A VÁROSI HŐSZIGET VIZSGÁLATA MODIS ÉS ASTER MÉRÉSEK FELHASZNÁLÁSÁVAL

Hegyi Ádám István ELTE, április 25.

AURA. Copernicus felszínmonitorozás újdonságok: Corine Felszínborítás 2018 Nagyfelbontású Rétegek. Maucha Gergely

Antropogén eredetű felszínváltozások vizsgálata távérzékeléssel

Fotointerpretáció és távérzékelés 1.

ÁLATALÁNOS METEOROLÓGIA 2. 01: METEOROLÓGIAI MÉRÉSEK ÉS MEGFIGYELÉSEK

Térinformatika a hidrológia és a földhasználat területén

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény

A földhasznosítás változásának követése távérzékeléssel

A felhőzet hatása a Föld felszíni sugárzási egyenlegére*


TARTALOM. Távérzékelés fogalma I. Távérzékelés fogalma II. A távérzékelés multi-koncepciója

MFTTT Vándorgyűlés. Zboray Zoltán Igazgató. FÖMI Távérzékelési és Kozmikus Geodéziai Igazgatóság (TKGI) Földmérési és Távérzékelési Intézet

FELSZÍNI ÉS FÖLDALATTI. oktatási anyag

Az IDRISI szoftver fejlesztésének új eredményei. Az IDRISI Taiga eszköztára: Új fejlesztések. Image Processing: Szegmentálás SEGMENTATION

A távérzékelt felvételek tematikus kiértékelésének lépései

Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP /1/A A NÖVÉNYTERMESZTÉSI ÁGAZATOK ÖKONÓMIÁJA

115/2003. (XI. 13.) FVM rendelet a Mezőgazdasági Parcella Azonosító Rendszerről

ÁLTALÁNOS METEOROLÓGIA 2.

Sugárzáson, és infravörös sugárzáson alapuló hőmérséklet mérés.

Geoinformatikai rendszerek

A széleróziós információs rendszer alapjai

Agrár-környezetvédelmi Modul Vízgazdálkodási ismeretek. KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc

LAND CHANGE MODELER alkalmazása földhasználat kiértékelésében

A földművelésügyi és vidékfejlesztési miniszter. /2007. ( ) FVM rendelete


HULLADÉKCSÖKKENTÉS. EEA Grants Norway Grants. Élelmiszeripari zöld innovációs program megvalósítása. Dr. Nagy Attila, Debreceni Egyetem

A FÖMI MEZŐGAZDASÁGI TÁVÉRZÉKELÉSI PROJEKTJEI 2. rész

INFORMATIKA ÁGAZATI ALKALMAZÁSAI. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP /1/A

Globális változások lokális veszélyek

Parlagfű Információs Rendszer ismertetése. Egy országos komplex GIS megoldás

Városi környezet vizsgálata távérzékelési adatok osztályozásával

A színérzetünk három összetevőre bontható:

Földhasználati tervezés és monitoring 3.

A projekt bemutatása és jelentősége a célvárosok számára. Unger János SZTE Éghajlattani és Tájföldrajzi Tanszék

Távérzékelési technológiák a precíziós mezőgazdaságban

Szélerőműpark kialakítására alkalmas terület kiválasztása geoinformatikai módszerekkel Csongrád megye példáján

A TERMOKAMERA, AVAGY A CSÖRGŐKÍGYÓ STRATÉGIÁJA

Termőképességi térkép (KITErkep) alapján optimalizált termesztéstechnológia

29/2014. (III. 31.) VM rendelet az állami digitális távérzékelési adatbázisról

CSAPADÉK BEFOGADÓKÉPESSÉGÉNEK TÉRKÉPEZÉSE TÁVÉRZÉKELÉSI MÓDSZEREKKEL VÁROSI KÖRNYEZETBEN


A napenergia magyarországi hasznosítását támogató új fejlesztések az Országos Meteorológiai Szolgálatnál

Alapfogalmak folytatás

Városökológiai vizsgálatok Székesfehérváron TÁMOP B-09/1/KONV

TÉRINFORMATIKA II. Dr. Kulcsár Balázs főiskolai docens. Debreceni Egyetem Műszaki Kar Műszaki Alaptárgyi Tanszék

Színképelemzés. Romsics Imre április 11.

Sugárzásos hőtranszport

Ingatlan felmérési technológiák

Távérzékeléses parlagfű felmérési eredmények 2013-ban?

A DIGITÁLIS TÉRKÉP ADATAINAK ELŐÁLLÍTÁSA, ADATNYERÉSI ELJÁRÁSOK

Átírás:

Környezeti információs rendszerek II. (km 019_2) Dr. GYULAI ISTVÁN egyetemi docens Széchenyi István Egyetem Környezetmérnöki Tanszék

A globális erőforrás-gazdálkodás hatékony és folyamatosan működő eszköze a mesterséges holdakról készített távérzékelt adattömeg. A távérzékelés fogalma a hatvanas években fogalmazódott meg: információszerzés elektromágneses hullámok segítségével. Űrfelvételek: 800 km magasan Légi felvételek: 3 km magasságból

Alkalmazások egyéb területen A gyógyászatban pl. röntgen felvételek készítése, véráram-sebesség mérés, ultrahangos vizsgálat. Gépészet: kazánok hőmérséklet-különbség kimutatása termovízióval, elektromos meghajtások hőhatásának megfigyelése. Épületeknél: hőhidak felderítése termovíziós felvételeken, vagy szigetelés, hőáteresztés vizsgálata.

Forrás: Arató Cs.

Forrás: Kőháti Attila: Az űrkutatástól

fizikai alapok 13

2.1 A távérzékelés folyamata 14

2.2 Elektromágneses sugárzás részecske és hullám egyaránt 15

Elektromágneses spektrum 16

Elektromágneses spektrum 17

Elektromágneses spektrum 18

Elektromágneses spektrum 19

Elektromágneses spektrum 20

2.3 Alapfogalmak Térszög [szteradián,sr] 21

2a Radiometria Fluxus Φ [watt] kisugárzás besugárzás M d df W [ ] m 2 d M df' W [ ] m2 sugárzáserősség sugárzássűrűség I L d W [ ] d sr d2 W [ ] cos df. d m2sr 22

23

2.4 Terjedés és elnyelődés (abszorpció) Φ (x) = Φ (o) e - x : az anyagra jellemző abszorpciós együttható (Lambert-Beer törvény) 24

Néhány gyakoribb átlátszó, illetve áttetsző (építőipari) anyag jellemzői Anyag Vastag ság mm Visszaverődés (%) Abszorpció (%) Átlátszó, sima üveg Prizmás (zsinór-) üveg Ornamens üveg Huzalbeté tes üveg Matt üveg (fény a sima oldalról) Matt üveg (fény a mart oldalról) Opálüveg (tejüveg) Opál bevonatú (kétrétegű ) üveg 1 4 6 8 2 3 3 6 5 20 6 10 3 6 7 20 3 20 kb. 6 15 27 15 20 2 3 15 20 10 17 2 3 7 8 5 10 2 4 42 57 20 31 2 3 31 54 3 10 25

Példa Egy 3 mm-es opálüvegen 80 lumen fény halad át. Mennyi lesz a fényáram áthaladás után? (o)= 80 lumen, (x)=? = 20-31 %, 2-4 mm vastag opálüvegre, azaz x= 0,25 (20-31 átlaga) (x)= (o) e- x = 80 e- 0,25 = 80 0,78= 62,3 lumen Tehát ~63 lumen lesz áthaladás után. 26

2.4 Elnyelődés 27

2.6 Fekete test Kirchhoff (1860): ha valamely anyag képes egy adott hullámhosszú fényt kibocsátani, akkor annak elnyelésére is képes. Az elnyelő- és kibocsátóképesség hányadosa egy adott hullámhosszon csakis a hőmérséklettől függ. Abszolút fekete testen olyan testet értünk, amely minden ráeső sugárzó energiát teljes mértékben elnyel. 28

2.6 Fekete test Planck törvény 29

2.6 Fekete test 30

A Nap sugárzása 31

2b Visszaverődés (reflexió) 32

2b Spektrális görbék 33

2.7.1 Az elektromágneses spektrum 34

35

A légkör vertikális szerkezete 36

A talaj közeli levegő összetétele 37

Energia sugárzás és elnyelősávok 38

39

40

Példa. Legyen az optikai sűrűség 10 % - os: ext = 0,1 ( ) = 0,90 tehát az áteresztés 90 % - os. Másik eset: ext = 0,9 ( ) = 41 %. ext = 0,4 ( ) = 67 %. 41

42

Felvételi rendszerek Mérőkamera H H F O H c O 43

repülőgép 44

Ferdetengelyű (amatőr) légi felvétel 45

Mérő kamera repülőgépen RMK TOP 46

mélységélesség 47

A mélységélesség növelhető rekeszeléssel, egy bizonyos határig, de azon túl a minőséget rontja. A táblázat felső sora az alkalmazott rekeszértéket (f/d), az alsó sora pedig az elérhető maximális felbontást vonal/mm ben mutatja. 48

geometriai felbontás, képvándorlás Fényképészeti alapfogalmak 49

Színek összeadása és kivonása additív (RGB) és szubtraktív (sárga, bíbor, cián) színek vörös + zöld = sárga = fehér kék sárga + kék = fehér vörös + kék = bíbor = fehér zöld bíbor + zöld = fehér kék + zöld = cián = fehér vörös cián + vörös = fehér 50

Filmek érzékenysége 51

Színes, hamis színes fényképezés 52

Multispektrális felvétel 53

Multispektrális felvétel 54

Landsat űrfelvételek fekete-fehér megjelenítésben. A bal oldali a 3. (0,63-0,69, vörös) sávban, a jobb oldali a 4.(0,76-0,90, közeli infra) sávban készült ugyanabban az időpontban (2001-06-26.) Bal oldalon a sötét tónusú erdő jól elkülönül a körülötte lévő világos művelt parcelláktól, különösen az alatta lévőtől. A jobb oldalon viszont az erdőállomány bal oldalon sötét tónusa itt már mozaikosra vált, s így az erdőn belüli kultúrákat tudjuk szemlélni. 55 Multispektrális felvétel

Letapogatók Mechanikus letapogató 56

Mechanikus letapogató 57

Digitális sorkamera 58

CCD charge coupled device, töltés csatolt (analóg) eszköz CMOS complementary metal-oxide semiconductor, komplementer fémoxid félvezető

Digitális felvétel elve, CCD szenzor 60

RADAR 61

Oldalra néző radar 62

RADAR felvétel 63

Légi felvételek Kurzusvonal

66

film

3 Mérő kamera repülőgépen 68

kamera

kamerák

3 Digitális kamera 72

3 Multispektrális kamera 73

repülőgép

3 Kamerát hordozó repülőgép 76

Egyéb felvételek

3 Helikopter, modell repülőgép 79

3 Vitorlázó repülőgép, ballon 80

4 Légi és űrfelvételek beszerzése Légi felvételek: meglévő: FÖMI, HM, Eurosense készítendő: megrendelés, repülési terv 81

FÖMI adatbázis

83

84

Légi és űrfelvételek beszerzése Légi felvételek: meglévő: FÖMI, HM, Eurosense készítendő: megrendelés, repülési terv Űrfelvételek: a kínálatból kell választani 85

Mesterséges holdak Tudományos kutatások csillagászat geodézia ionoszféra, atmoszféra, magnetoszféra meteorit Nap Földfigyelés meteorológia távérzékelés Távközlés Navigáció 86

Gravitációs erő és centrifugális erő = G gravitációs állandó: 6,672 10-11 M m d v a Föld tömege: 5,975 10 24 kg a műhold tömege kg a Föld - műhold távolság m a mesterséges hold sebessége m/s 87

Példa h= 760 km, v=?, T=? (R = 6370 km) =7477 m/s ~ 7,5 km/sec = = 5991 sec ~ 100 min 88

89

90

Összefoglalva a pályaelemeket, az alábbiakat mondhatjuk: a mesterséges hold pálya magassága befolyásolja a távérzékelt terület nagyságát, pontosságát, visszatérési ciklusát, az inklináció szöge befolyásolja, hogy mely földrajzi hely felett halad a rektaszcenzió különbség megválasztásával a felvétel napszak szerinti idejét határozzuk meg (napszinkron pálya: egy adott terület felett mindig ugyanabban a napszakban halad el) 91

Landsat - 1 (1972-1978), Landsat - 2 (1975-1982), Landsat - 3 (1978-1983), Landsat - 4 (1982-1993), Landsat - 5 (1984 - ), Landsat - 6 (1993 - sikertelen), Landsat - 7 (1999 - ). Az első generációs mesterséges holdak (Landsat - 1, 2, 3) szenzorai: RBV (Return Beam Vidicon) hullámsáv: 0,505-0,750 m, egy kép által lefedett terület: 98 km x 98 km, terepi felbontás: 40 m MSS (Multispectral Scanner) hullámsáv: 4. csatorna 0,50-0,60 m 5. csatorna 0,60-0,70 m 6. csatorna 0,70-0,80 m 7. csatorna 0,80-1,10 m 8. csatorna 10,4-12,6 m (csak Landasat - 3 nál) egy kép által lefedett terület: 185 km x185 km, terepi felbontás: 80 méter (8. csatornánál 240m), 92

Landsat pályavetülete 93

A Landsat - 4, 5, mesterséges holdak szenzorai: MSS lásd korábbit, Thematic Mapper (térképező szkenner), TM. A korábbi multispektrális rendszerrel szemben korszerűbb, a geometriai felbontása jobb, a spektrális felbontása is javult. Pálya: magasság: inklináció keringési idő visszatérési idő: tömeg egy képpel lefedett terület felvételi nyílásszög pillanatnyi nyílásszög terepi felbontás közel poláris, napszinkron 705 km 98,2 99 perc 16 nap 1941 kg 185 km x 185 km 14,8 0,042 mrad (1-4 csat.), 0,044 (5., 7. csat.), 0,170 mrad 6. csat.) 30 m ill. 120 m (6. csat) 94

csatorna és hullámhossz alkalmazási terület [ m] 1. 0,45-0,52 kék Tengerpart, víztestek térképezése, vízbe hatolás mélysége, talaj és vegetáció elkülönítése, lombhullató és tűlevelű erdők elválasztása. 2. 0,52-0,60 zöld Vegetáció elkülönítése, a klorofill görbék elnyelési csúcsának meghatározása, építmények leválasztása. 3. 0,63-0,69 vörös Klorofill abszorpciós mérés, vegetáció szétválasztása, építmények azonosítása 4. 0,76-0,90 Biomassza tartalom meghatározása, víztestek és föld közeli infravörös elválasztása, talajnedvesség nyomonkövetése 5. 1,55-1,75 A vegetáció és a talaj nedvesség vizsgálata, felhős és közép infravörös havas területek elkülönítése. 6. 10,40-12,50 Talaj nedvességtartalom meghatározás, vegetáció termális infravörös betegségek elemzése, hőtérképezés. 7. 2,08-2,35 közép Ásványok, kőzetek térképezése, vegetáció nedvesség infravörös tartalom érzékelés 95

96

97

SPOT A francia, belga, svéd érdekeltségű mesterséges holdak neve: Systeme Pour l' Observation de la Terre, SPOT, földfigyelő rendszer Az irányító és ellenőrző központok: Toulouse és Kiruna. A kilövő állomás az egyenlítő környékén lévő Kourou, Francia Guyana (Dél - Amerika, tengerpart) Az irányítást a Francia Nemzeti Űrkutatási Központ (French Centre National d'etudes Spatiales, CNES) végzi HRV (High Resolution Visible) SPOT - 1 (1986), SPOT - 2 (1990), SPOT - 3 (1993), SPOT - 4 (1998), SPOT - 5 (2002. május 3.) Pléiades-1, 2 (2010) SPOT-6 (2012), SPOT-7 (2013) 98

99

multispektrális: 0,50-0,59 m zöld, 0,61-0,68 m vörös, 0,79-0,89 m közeli infra, pankromatikus: 0,51-0,74 m A pálya adatai: közel poláris, napszinkron pálya magasság: 832 km, inklináció: 98,7 keringési idő: 101 perc, visszatérési idő: 26 nap (5 nap) tömeg: 1750 kg, felvételi szög: 4,2 pillanatnyi felv. szög: 0,024 mrad (XS mód), 0,012mrad (p mód) geometriai felbontás: 20 méter (XS), 10 méter (P) egy kép által lefedett terület: 60 x 80 km 100

101

ERS Az Európai Űrügynökség (European Space Agency, ESA) által fellőtt mesterséges holdak: ERS - 1 (European Remote Sensing Satellite) (1991-2000), ERS - 2 (1995 - ), Envisat (2002 - ). óceánok monitorozása, a tenger és a jég állapotának, törvényszerűségeinek megismerése és tanulmányozása. Az atmoszféra és az óceán, az energia-átadások, tengeráramlások, a sarkkörökön lévő jégtömeg viselkedés, globális változások kutatása. -SAR, 5,3 GHz -képfelvételezés, 100 km szélességben, az óceánok, sarki zónák, partvidékek és szárazföld felszínéről, 30 m -es felbontással. - "hullám üzemmód" az óceánok felszínéről, hullámzásáról, a hullámok magasságáról és irányáról készített felvétel. - RA (Radar Altimeter), magasságmérő feladata hullámok magasság mérése (330 MHz frekvencián), jég (82,5 MHz frekvencián), 10 cm-es pontossággal. - ATSR - M, pásztázó radiométer (Along-Track Scanning Radiometer and Microwave Sounder) az óceánok és a felhők felszínének hőmérsékletét mérő berendezés. 500 km széles sávot pásztáz 1 km-es felbontással, 4 infravörös csatornát használva (1,6 m, 3,7 m, 11 m, 12 m) - Lézer reflektor, ami a műhold pálya adataira - Wind Skatterometer (szél szóródásmérő) a tengerek feletti szél irányát és sebességét képes mérni. 102

103

104

IRS India Bhaskara - 1 (1979) Bhaskara - 2 (1981) Fedélzetükön tv kamera és sugárzásmérő volt. IRS (Indian Remote Sensig System) mesterséges hold családot: IRS -1A (1988), IRS - 1B (1991), IRS -1C (1995), IRS - 1D 8 (1997) Az 1A műhold multispektrális pásztázója, a LISS I. (Linear Imaging Self Scanning Sensor) 7205 m-es pontosságú, míg az 1B-n használt LISS II. már a 36,5 m-es felbontást biztosító képeket szolgáltat. A csatornák az alábbiak: 1. 0,45-0,52 m 2. 0,52-0,59 m 3. 0,62-0,68 m 4. 0,77-0,86 m Az 1C és 1D mesterséges holdakat úgy tervezték, hogy ugyanolyan felszereléssel dolgoznak, csak ellentétes fázisban haladnak, az egyazon terület feletti áthaladások megduplázására. 105

Fedélzetükön az alábbi CCD szenzoros sorkamerákat hordozzák: - PAN: pankromatikus kamera, egy sávban működik, 0,5-0,9 m, geometriai felbontása 5,8 m, a lefedett sáv: 70,5 m. Alkalmazási terület: környezeti monitoring, erdészet, kartográfia. - LISS III.: multispektrális szkenner, 4 csatornával, az 1A műhold 1. csatornáját elhagyták és helyette infravörös csatornát építettek be 5. csat.: 0,55-1,75 m tartománnyal. Terepi felbontása 20 m, az 5. csatornánál ennél rosszabb, 70 m. A lefedett sáv: 142 km. Alkalmazási terület: Környezeti monitoring, mezőgazdaság, geológia. -WiFS: Wide Field Sensor, széles lefedésű érzékelő berendezés, amely a 3. és 4. csatornán érzékel, a lefedett sáv 770 km, kb. 200 m-es felbontással. Alkalmazási terület: globális változások nyomonkövetése illetve tanulmányozása. 106

IKONOS Amerikai kereskedelmi mesterséges hold. Fellövés éve: 1999. Felszerelése: multispektrális és pankromatikus szenzor. A használt csatornák: multispektrális 0,45-0,53 m (kék) 0,52-0,61 m (zöld) 0,64-0,72 m (vörös) 0,77-0,88 m (közeli infra) pankromatikus 0,45-0,90 m A pálya műszaki adatai: Napszinkron, közel poláris, magasság. 680 km, keringési idő: 98 perc, inklináció: 98, visszatérési idő: 5 nap lefedett terület: 11 x 11 km. A geometriai felbontás 4 m, illetve pankromatikusnál 1m. 107

IKONOS 108

QuickBird A DigitalGlobe TM (Denver, Colorado), állította pályára a kereskedelmi mesterséges holdat Boening DELTA - 2 hordozó rakétával 2001-ben. QuickBird - 2 műholdat. multispektrális (MS) 0,45-0,52 m, 0,52-0,60 m 0,63-0,69 m 0,76-0,90 m pankromatikus (PAN) 0,45-0,90 m A pálya műszaki adatai: Napszinkron, közel poláris, magasság: 450 km, keringési idő: 93,5 perc, inklináció: 97,2 lefedett terület: 16,5 x 16,5 km A geometriai felbontás MS-nél 2,4-2,8 m, PAN-nál: 0,6-0,7m. Az egyesített képek (MS + PAN) felbontása 0,7m. 109

QuickBird 110

QuickBird WorldView-1 WorldView-2 Panchromatic (B&W) 450-900 nm 400-900 nm 450-800 nm Multispectral: Coastal Blue 400-450 nm Blue 450-520 nm 450-510 nm Green 520-600 nm 510-580 nm Yellow 585-625 nm Red 630-690 nm 630-690 nm Red Edge 705-745 nm Near-IR 1 760-900 nm 770-895 nm Near-IR 2 860-1040 nm MS 1,6 m pan 0,4 m 111

112

Egyéb rendszerek Nemzetközi űrállomás ISS, (1998) Rapideye (2008) német 5 mesterséges hold, 5m felbontás, (kék, zöld, vörös, IR) MapMart 1,28 USD/km2, min 500 JERS-1 (1992), JERS-2 (1995) japán 5 csatorna Kína-1 (1970) Tienkung űrállomás (2011) Sencsou-9 (2012) 3 fős legénység Masat (2012) 113

114

115

5 Képátalakítás A képátalakítás célja: torzulásmentes kép, fototérkép, ortofoto térkép nyerése. Módszer: - analóg (optikai-mechanikai úton) - digitális (szoftverrel) 116

5 Optikai képátalakítás 117

5 KÉPÁTALAKÍTÁS (polinómos) transzformációval Feladat: Adva van egy perspektív torzulású légi felvétel Alakítsuk át transzformációval úgy, hogy a perspektív torzulás megszűnjön (minimális legyen) 118

5 Átalakítandó kép 119

5 A művelet kijelölése 120

5 Az elmozdítandó pontok kijelölése 121

5 A kép a transzformáció után 122

5 Az eredeti és a transzformált kép 123

5 Kiértékelés geometriai (cél: térkép) analóg (optikai-mechanikai eszközökkel) analitikus (koordináták előállítása) digitális (szoftverrel) leíró (cél: minősítés) interpretáció digitális képfeldolgozás 124

5 Tájékozás 125

5 Analóg kiértékelés Autográf, térképezés 126

5 Analóg-analitikus kiértékelés Wild A8 autográf 127

5 Analóg-analitikus kiértékelés Wild A8 128

5 Digitális kiértékelés Osztályba sorolás 129

Hazai projektek GYULAI ISTVÁN 1.természetvédelmi értékek térképezése: Natura 2000 2. országos felszínborítottság térképezése: Corine Land Cover 3. NÖVMON termésbecslés 8 stratégiai fontosságú mezőgazdasági terményre 4. mezőgazdasági parcella azonosító rendszer: MePAR 5. VINGIS

1. NATURA 2000 Magyarország az Európai Unióhoz való csatlakozással vállalta, hogy az Unió jogrendjét a hazai szabályozásba beépíti. Magyarországra is érvényes a két uniós direktíva, a Madárvédelmi- és az Élőhelyvédelmi Irányelv. A kijelöléssel hazánk területének közel 21%-a lett Natura 2000 terület. Az eredeti védett területeink csaknem mindegyike bekerült a hálózatba, de ezeken kívül további körülbelül 1.2 millió hektár kap uniós védettséget.

1. NATURA 2000

NEMZETI PARKOK ÉS TÁJVÉDELMI KÖRZETEK

2. CORINE térkép A program elnevezése: CORINE Land Cover, Corine országos felszínborítás CORINE (Coordination of Information on the Environment, környezeti adatok koordinációja), Felszínborítás: a földfelszín megfigyelhető, egy évnél nagyobb periódussal változó, biofizikai jellemzője.

2. CORINE A program főbb ismérvei: az EU által a 80-as években indított projekt méretarány - 1 : 100 000 a legkisebb térképezett folt mérete: 25 ha 28 ország (1998) részvétele, összesen kb 4.4 millió km2 feldolgozott terület.

A felszínborítási térkép alkalmas az alábbi feladatokra: környezeti folyamatok modellezése, regionális tervezés, tájgazdálkodás, vidékfejlesztés A térképezéshez az 1990 és 1992 között készült Landsat Thematic Mapper űrfelvételeket használták.

2. CORINE ŰRFELVÉTELBŐL TEMATIKUS TÉRKÉP

2. CORINE SZEGEDI PÉLDA

2. CORINE Alig, hogy befejeződik az 1: 100 000 méretarányú térkép, megindul az 1:50 000 ma kiértékelés is. A második kiértékelést 2000-2002 között tartalmilag frissítik

2 CORINE A kiértékelés során az alábbi nomenklatúrát használták: 1. Mesterséges felszínek 1.1. Lakott területek 1.1.1 Összefüggő település szerkezet 1.1.2 Nem-összefüggő település szerk. 1.2. Ipari, kereskedelmi területek, közlekedési hálózat 2. Mezőgazdasági területek 3. Erdők és természetközeli területek 4. Vizenyős területek 5. Vizek

2. CORINE Landsat űrfelvétel nem összefüggő település szerkezetről (balra) és kikötőről (jobbra)

2. CORINE Tőzegláp és sziget

3. NÖVMON A termésbecslés célja, hogy a betakarítás előtt megbízható adatokat szolgáltasson országosan a várható termésről. A döntéshozók számba veszik a szükséges raktár és szállító kapacitást, előkészítik a tárolást, előre tervezik a gabonaintervenciót. A gabonaintervenció első lépése a felvásárlás, amelynek során a Mezőgazdasági és Vidékfejlesztési Hivatal (MVH) megvásárolja a felajánlott gabonát.

3. NÖVMON

3. A NÖVMON nyolc fő szántóföldi növényre becsül: őszi búza őszi árpa, tavaszi árpa kukorica, silókukorica, napraforgó, lucerna, cukorrépa. Összesen a vetésterület kb. 70 %-ára.

3. A NÖVMON nyolc fő szántóföldi növényre becsül: őszi búza őszi árpa, tavaszi árpa kukorica, silókukorica, napraforgó, lucerna, cukorrépa. Összesen a vetésterület kb. 70 %-ára.

A NÖVMON MUNKAFOLYAMATA

4. A Közös Agrár Politika Az ötvenes években Nyugat-Európában a mezőgazdasági termelés - ellentétben a gazdaság más ágazataival - nem indult fejlődésnek. A paraszti jövedelmek messze elmaradtak az ipari átlagtól, fennállt a gazdaságok tömeges tönkremenetelének veszélye. A parasztgazdaságok helyzetének javítása érdekében az Európai Gazdasági Közösség alapítói speciális intézkedések meghozatalát határozták el.

4. Az alábbi célokat tűzték ki: A mezőgazdasági termelés és termelékenység növelése műszaki fejlesztéssel, a munkaerő optimális hasznosításával; a mezőgazdasági termelésből élők számára méltányos jövedelemszint biztosítása; a mezőgazdasági piac stabilizálása; az élelmiszer-ellátás biztonságának garantálása; a fogyasztók reális áron jussanak az élelmiszerekhez.

4. Uniós támogatás A 2004-ben csatlakozott tagállamoknak az egységes területalapú kifizetési rendszerét alkalmazzák (Cseh Köztársaság,... Magyarország,...) 2010-ig? marad érvényben.

4. KIK KAPJÁK? MILYEN FELTÉTELLEL? A KAP keretében nyújtott támogatások döntő részét a mezőgazdasági termelők kapják. A támogatásokhoz jutás alapfeltétele, hogy a termelő rendszeresen részletes információt szolgáltasson gazdaságáról, földterületéről, állatállományáról, termelési adatairól stb.

4. A mezőgazdasági parcella azonosító (MePAR) Az egész ország területére kialakított nyilvántartási rendszer, amely a földterület alapú támogatásokhoz szükséges és kötelezően előírt rendszer. Geometriai alapja az ország egész területéről készített légifelvétel sorozat.

4. MEPAR

4. MEPAR

5. VINGIS Az FVM-nek, mint a szőlő-bor ágazatot irányító Intézménynek, saját termelői szintű és teljes körű, naprakész és állandóan frissített adatbázissal kell rendelkeznie, hogy Magyarország hozzájusson az ágazatra jutó Közösségi támogatásokhoz. 1593/2000/EK rendelet szerint a tagállamoknak, 2005. január 1-jétől a mezőgazdasági parcelláikat, beleértve a szőlőültetvényeket is, térinformatikai rendszerben kell nyilvántartani

VINGIS

VINGIS

Összefoglalás A vizsgált programok (Natura 2000, CORINE, NÖVMON, MePAR, VINGIS) első három tagja űrfelvételekre támaszkodik, az utolsó kettő légi felvételekre. A távérzékelés alkalmas eszköz erőforrásgazdálkodásra, egy éven belüli és annál hosszabb periódusú változások figyelemmel kísérésére. Mind az öt projekt országos jelentőségű, alkalmazásszintű megoldás.