Transfer of experience for the development of solar thermal products. Specific Information Package. Hungary

Hasonló dokumentumok
A magyarországi napkollektor piac sajátosságai

Napkollektoros rendszerek megvalósítása a gyakorlatban

Napkollektoros rendszerek. Gyakorlati tervezési és s kivitelezési ismeretek

Transfer of experience for the development of solar thermal products. Specific Information Package. Hungary

építészet & design ipari alkalmazás teherautó felépítmény

Correlation & Linear Regression in SPSS

EEA, Eionet and Country visits. Bernt Röndell - SES

EED implementation in Hungary

EN United in diversity EN A8-0206/419. Amendment

BKI13ATEX0030/1 EK-Típus Vizsgálati Tanúsítvány/ EC-Type Examination Certificate 1. kiegészítés / Amendment 1 MSZ EN :2014

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Correlation & Linear. Petra Petrovics.

Outlook - SmartGrid; SmartMetering

INTELLIGENT ENERGY EUROPE PROGRAMME BUILD UP SKILLS TRAINBUD. Quality label system

Correlation & Linear Regression in SPSS

2. Local communities involved in landscape architecture in Óbuda

Utilizing Geothermal Energy in Hungary Today

Element Heat Interface Units (HIU).

MEGÚJULÓ ENERGIÁK HASZNOSÍTÁSÁNAK LEHETŐSÉGEI HAJDÚ-BIHAR ÉS SZABOLCS-SZATMÁR-BEREG MEGYÉKBEN

DECLARATION OF PERFORMANCE CPR-20-IC-040

Bird species status and trends reporting format for the period (Annex 2)

Ültetési és öntözési javaslatok. Planting and watering instructions

Natural Outdoor Weathering Természetes szabadtéri időjárásállóság-vizsgálat. It is simple??? Egyszerű???

A jövedelem alakulásának vizsgálata az észak-alföldi régióban az évi adatok alapján

MAKING MODERN LIVING POSSIBLE. Danfoss Heating Solutions

STUDENT LOGBOOK. 1 week general practice course for the 6 th year medical students SEMMELWEIS EGYETEM. Name of the student:

EN United in diversity EN A8-0206/445. Amendment

Cég név: Készítette: Telefon: Fax: Dátum:

Statistical Inference

Áprilisban 14%-kal nőtt a szálláshelyek vendégforgalma Kereskedelmi szálláshelyek forgalma, április

Nagykőrösi telephely részletes adatai

Magyar Energetikai Társaság Budapest, 2014 február 10

Expansion of Red Deer and afforestation in Hungary

Fostering the Sustainable Usage of Renewable Energy Sources in Central Europe - Putting Biomass into Action!

The IPCC SpecialReportonRenewableEnergy Sourcesand ClimateChangeMitigation IPCC WorkingGroup III Mitigationof ClimateChange.

Energy analyses of 16 public buildings and recommendations for development possibilities

Why residential energy efficiency moves slowly

CONCERTO COMMUNITIES IN EU DEALING WITH OPTIMAL THERMAL AND ELECTRICAL EFFICIENCY OF BUILDINGS AND DISTRICTS, BASED ON MICROGRIDS. WP 5 Del 5.

Utasítások. Üzembe helyezés

Results of the project Sky-high schoolroom SH/4/10

EN United in diversity EN A8-0206/482. Amendment

Professional competence, autonomy and their effects

FAMILY STRUCTURES THROUGH THE LIFE CYCLE

Kategória: Category: ...% európai / European...% USA-beli / from the USA...% egyéb / other

The system of mobile tank fire-fighting equipment A mobil tartály tűzoltás technikai eszközrendszere

TELJESÍTMÉNY NYILATKOZAT 0832-CPD-1651

Cég név: Készítette: Telefon:

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Factor Analysis

Performance Modeling of Intelligent Car Parking Systems

Contact us Toll free (800) fax (800)

FORGÁCS ANNA 1 LISÁNYI ENDRÉNÉ BEKE JUDIT 2

Kezdőlap > Termékek > Szabályozó rendszerek > EASYLAB és TCU-LON-II szabályozó rendszer LABCONTROL > Érzékelő rendszerek > Típus DS-TRD-01

OFFICE CAMPUS property of IMMOFINANZ

IP/09/473. Brüsszel, március 25

FÖLDRAJZ ANGOL NYELVEN

For the environmentally aware

«DURAK HAZELNUTS» PRESENTATION

Using the CW-Net in a user defined IP network

Implementation of water quality monitoring

DECLARATION OF PERFORMANCE No. GST REV 1.03 According to Construction Products Regulation EU No. 305/2011

Angol Középfokú Nyelvvizsgázók Bibliája: Nyelvtani összefoglalás, 30 kidolgozott szóbeli tétel, esszé és minta levelek + rendhagyó igék jelentéssel

Bird species status and trends reporting format for the period (Annex 2)

Smart City strategy in Hungary

EN United in diversity EN A8-0206/473. Amendment

Felújítás Épületgépészet

Hasznos és kártevő rovarok monitorozása innovatív szenzorokkal (LIFE13 ENV/HU/001092)

NSR Settlements. This session will discuss:

Statistical Dependence

Sebastián Sáez Senior Trade Economist INTERNATIONAL TRADE DEPARTMENT WORLD BANK

TELJESÍTMÉNY NYILATKOZAT 0333-CPD

Mangalica: The VM-MOE Treaty. Olmos és Tóth Kft. Monte Nevado

TELJESÍTMÉNY NYILATKOZAT 0333-CPD

WP2: Deliverable 2.1

TANULJUNK AZ ENERGIÁRÓL

A modern e-learning lehetőségei a tűzoltók oktatásának fejlesztésében. Dicse Jenő üzletfejlesztési igazgató

Decision where Process Based OpRisk Management. made the difference. Norbert Kozma Head of Operational Risk Control. Erste Bank Hungary

egyes EU tagállamokban? kitekintés MTA, ME, MMK Budapest, november 29.

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Nonparametric Tests

Cashback 2015 Deposit Promotion teljes szabályzat

ENROLLMENT FORM / BEIRATKOZÁSI ADATLAP

Lexington Public Schools 146 Maple Street Lexington, Massachusetts 02420

Baldwin St S Ashburn Rd Baldwin St N Anderson St Thickson Rd N Exhibit 'A' to Amendment to the Whitby Official Plan Exhibit 1 Deferral #2 Modification

Cloud computing. Cloud computing. Dr. Bakonyi Péter.

Rotary District 1911 DISTRICT TÁMOGATÁS IGÉNYLŐ LAP District Grants Application Form

ANGOL NYELV KÖZÉPSZINT SZÓBELI VIZSGA I. VIZSGÁZTATÓI PÉLDÁNY

DG(SANCO)/ MR

MELLÉKLET / ANNEX. EU MEGFELELŐSÉGI NYILATKOZAT-hoz for EU DECLARATION OF CONFORMITY

PIACI HIRDETMÉNY / MARKET NOTICE

A katalógusban szereplő adatok változásának jogát fenntartjuk es kiadás

4-42 ELECTRONICS WX210 - WX240

General information for the participants of the GTG Budapest, 2017 meeting

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Hypothesis Testing. Petra Petrovics.

practices Mosaic and timed mowing Mosaic and timed mowing Mosaic and timed mowing 10 m wide fallow strips (4 parcels)

Tudományos Ismeretterjesztő Társulat

DECLARATION OF PERFORMANCE. No. CPR-20-IC-204

Characteristics and categorization of transportation organizations

A Continental Automotive Hungary beszállítói stratégiája Beszállítók kiválasztása és fejlesztése helyben és globálisan

Having regard to the Treaty establishing the European Community,

In Hungary 61,5% of domestic electricity production is carbon-free thank to the use of nuclear power generation (51,4%) and parallel use of renewable

Minta ANGOL NYELV KÖZÉPSZINT SZÓBELI VIZSGA II. Minta VIZSGÁZTATÓI PÉLDÁNY

Bérczi László tű. dandártábornok Országos Tűzoltósági Főfelügyelő

Átírás:

Transfer of experience for the development of solar thermal products Specific Information Package Hungary

European Solar Thermal markets Developments and framework conditions Budapest, 16 April 2009 Uwe Trenkner - ESTIF Secretary General Rue d'arlon 63-67 B-1040 Bruxelles Belgium Email: info@estif.org Web: www.estif.org

Introducing ESTIF European Solar Thermal Industry Federation Representing the solar heating and cooling sector at EU level 105 members, representing >95% of the market A founding member of EREC Based in the Renewable Energy House, Brussels 2 Rue d'arlon 63-67 B-1040 Bruxelles Belgium Email: info@estif.org Web: www.estif.org

Thanks!!! This conference is supported by the European Commission under their Intelligent Energy- Europe Programme The sole responsibility for the content of this presentation lies with the authors. It does not necessarily reflect the opinion of the European Communities. The European Commission is not responsible for any use that may be made of the information contained therein. 3 Rue d'arlon 63-67 B-1040 Bruxelles Belgium Email: info@estif.org Web: www.estif.org

Building + solar thermal: the old add-on approach

Integrating solar thermal into buildings

Integrating solar thermal into buildings

Integrating solar thermal into buildings

Integrating solar thermal into buildings

EU Solar Thermal market 1990-2008* m 2 of collector area ~2.8 GW th of new capacity in 2008 9 Rue d'arlon 63-67 B-1040 Bruxelles Belgium Email: info@estif.org Web: www.estif.org

Great disparities in Europe 10 Rue d'arlon 63-67 B-1040 Bruxelles Belgium Email: info@estif.org Web: www.estif.org

Ambitious national target + coherent measures 11 Rue d'arlon 63-67 B-1040 Bruxelles Belgium Email: info@estif.org Web: www.estif.org

EU Renewables Directive Agreed by European Parliament and Council in December 2008 Formal adoption in April 2009 Transposition into national law within 18 months 12 Rue d'arlon 63-67 B-1040 Bruxelles Belgium Email: info@estif.org Web: www.estif.org

Main concepts of the RES-Directive 20% EU RES-target by 2020 Mandatory national targets (CZ: 6.1% in 2005 -> 13%in 2020) National Renewable Energy Action Plans: national targets for the shares of energy from renewable sources in transport, electricity and heating and cooling in 2020 adequate measures to be taken to achieve these national overall targets 13 Rue d'arlon 63-67 B-1040 Bruxelles Belgium Email: info@estif.org Web: www.estif.org

Major boost for solar thermal Renewable heating/cooling at the same level as RES in electricty and transportation RES obligation in new and existing buildings by 2015 Exemplary role of public buildings Qualification of installers European standards and certification 14 Rue d'arlon 63-67 B-1040 Bruxelles Belgium Email: info@estif.org Web: www.estif.org

Next steps NATIONAL IMPLEMENTATION National Renewable Energy Action Plans high target for RES heating/cooling best possible RES obligation qualification/certification of installers information to professionals reduction of administrative barriers examplary role of public buildings 15 Rue d'arlon 63-67 B-1040 Bruxelles Belgium Email: info@estif.org Web: www.estif.org

The new policy and market frameworks will be a key topic at the 4 th European Solar Thermal Energy Conference Rue d'arlon 63-67 B-1040 Bruxelles Belgium Email: info@estif.org Web: www.estif.org

Please do not hesitate to contact me: European Solar Thermal Industry Federation (ESTIF) Renewable Energy House Rue d Arlon 63-67 B-1040 Brussels Tel: +32 2 546 19 37 Fax: +32 2 546 19 39 Email: uwe.trenkner@estif.org Website: www.estif.org 17 Rue d'arlon 63-67 B-1040 Bruxelles Belgium Email: info@estif.org Web: www.estif.org

Budapest 16 April 2009 Solar thermal heating systems in European Union Christodoulaki Rosie MSc Environmental design & engineering BSc Physics Centre for Renewable Energy Sources Solar Thermal dept.

1. Primary energy demand Energy consumption in commercial and residential buildings: - 40% of Europe s energy bill. - 435 Mtoe in 2002. Increased demand for air conditioning in buildings: - Higher living and working standards - Adverse outdoor conditions in urban environments - Installed a/c has increased 5-fold in the last 20 years in Europe - Total a/c floor space: 30 million m 2 in 1980, over 150 million m 2 in 2000. - Annual energy use of room a/c was 6 TJ in 1990, estimated 160 TJ in 2010. CO 2 emissions are expected to increase 20-fold from 1990 to 2010, only in the EU Solar thermal systems can help alleviate the problem! Pool heating Domestic hot water Space heating Space cooling

The solution : Solar Energy Radiation supply from sun carries a 5 billion year guarantee Annually, the sun provides 1.5*10 18 kwh, that is more than 10,000 times the energy that human race needs. Source: Planning & Installing Solar Thermal Systems: A guide for installers, architects & engineers, EarthScan publications

Average annual solar irradiance is an important value for designing a solar plant. It depends on the geographical location, i.e. Saharan desert has 2.2 times higher radiation that Europe. Source: PVGIS The average solar irradiance is higher at lower latitudes, since the rotation axis of the earth forms an angle of 23.45 0 with the perpendicular.

2. Solar Collectors Optimum Angle Geographical location Winter use: geographical latitude of area + 15 0 Summer use: geographical latitude of area - 15 0 Annual use: collector angle = geographical latitude RESULTS OF INCIDENT RADIATION ON COLLECTORS (FROM TSOL) Place: Athens Azimuth: 0 G Inclined, Specific[kWh/m²] acording to collectors inclination (in degrees ) From: To: 0 10 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 1/ 1/ 1/ 2/ 66 80 91 96 100 104 107 109 111 112 113 112 111 109 107 104 100 1/ 2/ 1/ 3/ 75 84 91 93 96 97 99 99 99 99 98 96 94 91 88 84 80 1/ 3/ 1/ 4/ 104 112 116 118 119 119 119 118 116 114 111 108 104 99 94 89 83 1/ 4/ 1/ 5/ 146 151 152 152 151 149 147 143 139 134 129 123 116 108 101 92 84 1/ 5/ 1/ 6/ 182 183 181 178 175 170 165 159 153 145 137 128 119 109 100 90 79 1/ 6/ 1/ 7/ 200 200 195 191 185 180 173 166 158 149 139 128 118 108 96 85 75 1/ 7/ 1/ 8/ 213 214 210 205 199 194 187 180 171 162 151 139 128 117 105 91 80 1/ 8/ 1/ 9/ 200 206 206 204 202 199 194 188 182 174 165 155 144 132 121 109 96 1/ 9/ 1/10/ 156 168 176 179 180 181 180 178 175 171 166 161 154 146 138 128 118 1/10/ 1/11/ 106 120 130 134 138 140 142 143 142 142 140 137 134 130 125 119 113 1/11/ 1/12/ 66 77 86 90 94 96 99 100 101 102 102 101 99 97 95 92 88 1/12/ 1/ 1/ 53 63 72 76 79 82 85 87 88 89 89 89 88 87 85 83 80 Sum YEAR 1567 1658 1706 1716 1718 1711 1697 1670 1635 1593 1540 1477 1409 1334 1252 1165 1075 hotels season:1/4 to 1/11 1203 1242 1250 1243 1230 1213 1188 1157 1120 1077 1027 971 913 850 784 714 645 heating season: 1/11 to 1/4 364 416 456 473 488 498 509 513 515 516 513 506 496 484 468 450 430 "winter": 1/12 to 1/3 194 227 254 265 275 283 291 295 298 300 300 297 293 287 280 270 260

Unglazed collectors Properties No glazing, no insulation Low operation temperature Low cost, average payback time 1-5 years High thermal losses, low performance Applications Pool heating only. Warm climates: to extend the swimming period from April-October.

Flat plate collectors Properties Middle cost: more expensive than unglazed, but cheaper than vacuum Higher operation temperature Thermal insulation on back & edges Fragile, heavier: 20-32 kg/m 2 Transparent cover: black paint or spectral-selective coating (black chrome, black nickel, blue titanium) Spectral-selective coating: conversion of short-wave solar radiation into heat (light absorption capacity) is optimized, while thermal emissions are kept low. Absorption rate: 90-95%, emission rate 5-15% Stagnation temperature: 160-200 0 C Applications DHW Space heating Solar air conditioning (selective coating)

Collectors Comparison Collector type Cost Performance (kwh/m²a) Application Unglazed Low 300 Pool heating Flat plate (black paint) Middle 650 Pool heating, Hot water Flat plate (selective coating) Middle 700 Hot water, space heating, solar a/c

3. Solar Thermal Systems The solar collector converts the light that penetrates its glass into heat. The generated heat flows then to the hot water store. Thermosyphon No pumps, since gravity is used for liquid transport Forced circulation Circulating pumps required, in Northern - Central Europe Direct (drainback) system Direct circulation of domestic water through the collector, heat transfer medium: water. When the collector pump is switched off, the collector drains completely. Indirect (filled) system Solar circuit is separate from domestic water circuit, heat transfer medium: water-glycol. The collector circuit is partially or completely filled. Open system Open container at the highest point of solar circuit, which absorbs the volumetric expansion of the liquid caused by T changes Closed system Operate at high pressures (1.5-10 bar), which influences the T evaporation of the liquid.

Thermosyphon direct Thermosyphon Indirect hot Hot water water cold water cold water Heat exchanger Forced circulation, indirect collector hot water control hot store Auxiliary heater cold water

Combi Systems Pool heating, hot water and space heating Integration into existing fan coil units High energy saving potential Required collectors: 20% of space for 40-50% covering 100% covering with solar collectors & biomass

Systems Cost System Pool heating Thermosyphon Combi Pool heating Use 2008 Cost (incl. installation) 100 /m 2 collector Hot water 1,400 Hot water 1,600 Hot water, Heating Professional: Pool heating, Hot water, heating & airconditioning 500-750 /m 2 collector 400-650 /m 2 collector Characteristics Uncovered collectors, m 2 collector m 2 pool 150 lt boiler, 2.5 m 2 flat plate collector 150 lt boiler, 2.5 m 2 selective flat plate 1000 lt boiler, 15 m 2 selective flat plate 30.000 lt boiler, 500 m 2 selective flat plate

Global Sales

4. Solar Thermal Market in Europe, 2007 Breakdown per country, 2007 Concentration in the European market is decreasing 5 countries account for ¾ of the total just a few years ago the same share was held by Germany, Austria and Greece only Greece accounts for 9-10% of European sales.

Newly Installed Capacity per Capita in Europe, 2007 Big advance of Austria: 23,7 kwth per 1.000 capita, almost 3 times than Germany and more than 6 times than EU average ( 3,8 kwth per 1.000 capita) Greece has slowly and quietly increased its per capita market since 2002. Their 17,7 kwth per 1.000 capita is 4,5 times as big as the Eu average. France and Italy: Strong growth in recent years, but only 2,9 kwth installed per 1.000 capita each.

Solar Thermal Capacity in Operation, 2007 Cyprus is 1 st : 562 kwth in operation per 1.000 capita Greece is 3 rd EU average: 30,7 kwth /1,000 capita. Austria shows the rest what is possible: 244 kwth/1.000 capita, 8 times the EU average The figures relate to all installations built in the past and deemed to be still in operation (ESTIF assumes a life-time of 20 year for systems installed after 1989) and to today s size of the population.

Solar Collectors area in operation, 2007 2001: 12.3 million m 2 glazed collectors in operation - 11,7% increase collector in operation - 13,6% increase new collector area - 1.6 million m 2 glazed collectors for pools 2007: 21.9 million m 2 glazed collectors in operation

Conclusions/Remarks Large market growth potential In Greece only 25% of the buildings are equipped with a solar thermal system (>90% of the owners are satisfied) Seasonal storage For transferring the energy from low heating season to high heating season. Solar Cooling Better utilization of solar energy throughout the year Law modernization solar thermal system project study compulsory for every large building Financial incentives to cover part of investment & construction costs

Thank you for your attention!. Centre for Renewable Energy Sources Solar Thermal Department 19klm. Marathonos av., 19009, Pikermi tel. 00302106603300, fax. 00302106603301 www.cres.gr R. Christodoulaki rozi@cres.gr

Solar Keymark in Europe Advantages - Disadvantages DI (FH) Roland Sterrer, BSc. Österreichisches Forschungs- und Prüfzentrum Arsenal GmbH arsenal research

What may have the following things in common? floor heating waste water pipe thermal insulation cast iron pipes sun glasses ladders They may fulfil the requirements of the relevant European Standards They may be produced in a factory where an quality management is implemented. Both aspects are controlled by an independent party periodically. So they can be granted are Keymark

KEYMARK The Keymark is the pan-european voluntary third-party certification mark, demonstrating to users and consumers that a product is in conformity with the relevant European Standard. At the moment 25 certification bodies located in 15 different European countries already operate Keymark schemes on the basis of almost 150 European Standards for 28 product groups. The Keymark should not be confused with CE marking... the key to the European market!

What is the SOLAR Keymark? CEN/CENELEC European Mark Scheme, called also a KEYMARK Scheme specially for Solar thermal collectors (EN12975) Factory made solar thermal systems (EN12976) Product certification independent factory inspection / QMS (periodically) independent testing according to EN standards (test samples to be sampled by independent inspector) biannual surveillance test, detailed inspection of products

The Solar Keymark History Before 2003: If you wanted to sell one collector to different countries in Europe, you had to undergo several different tests and gain additional certificates and approvals. = very complicated, expensive and cumbersome in 2003 the European Solar Thermal Industry and major testing institutes formulated the Solar Keymark Scheme rules major goal: to reduce the wild growth of testing requirements, certificates in order to reduce the trade barriers and open the European market for Solar Thermal products

Current standards Collectors EN 12975: Durability, reliability, safety, performance of liquid heating collectors, glazed & unglazed, low temperature Not included: ICS, (tracking concentrating collector), acc. ageing, air collectors Factory made systems EN 12976: Durability, reliability, safety, performance of kits Not included: Tests for DHW+SH (combisystems), air systems, cooling

EN 12975 Scope of application liquid heating collectors flat plate evacuated tubes uncovered absorbers (i.e. for swimming pools) validating the durability, reliability and safety requirements 3 test methods for the thermal performance characterisation not applicable to: collectors in which the thermal storage unit is an integral part of the collector to such an extent that the collection process cannot be separated from the storage process. EN12976 Premanufactured Systems not applicable to tracking concentrating collectors

EN 12975 Tests to be performed Internal pressure High-temperature resistance / Stagnation temperature Exposure Internal & External thermal shock tests Rain penetration Freeze resistance (if freeze resistant collector) Mechanical load Thermal performance Impact resistance (optional) Final inspection Thermal performance test

The trend strong increase of products certified over 450 products all national subsidy schemes and regulations in EU accept Solar KEYMARK only exceptions: Spain: ISO 9001 certificate Germany: Blue Angel declaration (525 kwh/a) France: some insurance companies ask for CSTBat)

How can I get one? apply for Solar Keymark at Certification Body factory inspection quality management system at production site ISO 9001 recommended but not strictly required sampling of items to be tested out of production or stock testing of items in independent laboratory according to EN standards Certification Body grants Keymark

and then? start marketing the Solar Keymark states to the buyer: reliable quality reliable performance information start exporting The Solar Keymark works almost all over Europe No need for the doing the same tests in the different countries regular inspection of product and factory paying annual certification fee report changes in product

Resume of benefits reduced testing for producers one test for all countries freedom of choice with testing centres type testing instead of testing of all possible collectors (different sizes,..) high quality products on the market e.g. no Chinese products have passed the testing so far at arsenal research improved quality through factory inspection the standard of production processes improves gives financing institutions confidence to support high quality keeps financing schemes alive

Are there any problems? no valid EN standard no Keymark solar air collectors, collectors made of polymers,.. duration: 3-6 months mostly due to long duration of durability testing which depends on the actual weather still some additional requirements Germany, Spain, France Solar Keymark scheme rules and standard need rework to be more efficient and open for new developments

Solar Keymark Network to ensure a smooth process of Solar Keymark certification Updating the Solar Keymark certification scheme promotion to make it accepted in all national building regulations and renewable energy subsidy schemes quality assurance measures such as round robin tests are performed Participants: empowered certification bodies accredited test labs inspection bodies solar Keymark secretariat (ESTIF) official representative from CEN chairman of TC 312 chairman of ISO 180 One representative of each national trade association that is a member of ESTIF Industry participants raising issues being discussed at the meeting.

Outlook Solar Keymark for solar storages according to EN12977-3 draft: IEA-SHC Task on testing and certification proposed: IEE project on updating standards for solar thermal applications more countries will make SK a requirement for financial incentives noneu (Autralia, US,..) countries will accept the Solar Keymark

www.solarkeymark.org list of certified products list of testing laboratories list of certification bodies download of brochures in CZ, Spanish, Engl., German detailed country reports Further information www.estif.org

Keymark versus CE marking The Keymark is very often confused with CE marking. The Keymark is a demonstration that the product is in conformity with the relevant European Standard. The Keymark can help to choose between products conforming to the legally required minimum characteristics in the European Economic Area, and products conforming to the complete European Standard. The Keymark is a Quality mark. The Keymark addresses users and consumers. The Keymark is a voluntary certification mark. The Keymark can only be granted by certification bodies, who are responsible to ensure continued compliance of the product with the requirements. CE marking is an indication that the product should be in conformity to the provisions of all applicable European Directives. CE marking can be based on compliance of the product with the characteristics mentioned in Annex ZA of the relevant harmonised European Standard. Some characteristics in that standard may not be included in Annex ZA. CE marking is a passport for the EU market. CE marking addresses the responsible market surveillance authorities. CE marking is mandatory. The affixing of CE marking may require the intervention of Notified Bodies, but always remains the responsibility of the manufacturer or his authorised representative.

A magyarországi napkollektor piac sajátosságai Budapest, Hotel Helia Kiváló meteorológiai adottságok Óriási lemaradás Kiszámíthatatlan támogatáspolitika Zavaros napkollektor kínálat Viszonylag hosszú megtérülési id Varga Pál cégvezet

Nemzetközi kitekintés www.estif.org

Nemzetközi kitekintés

Hazai helyzet Év 2004 2005 2006 2007 2008 2009 Támogatási intenzitás: 30% 0% 1/3 15% 30%? Maximális támogatás, ezer Ft 0.- 500.- (250) 300.- 265.- 1.200.-? NEP Pályázati keret, millió Ft? 0? 3.200.- ~800.- 1.300.-

Hazai meteorológiai adottságok Vízszintes felületre érkez globális napsugárzás Magyarországon A legnagyobb különbség: 8% Az ország egész területe alkalmas a napenergia gazdaságos hasznosítására!

Hazai meteorológiai adottságok 50 liter víz 10 C-ról 50 C-ra melegítésének h szükséglete Déli tájolású, 45 -os d lés felületre érkez, és ebb l napkollektorokkal hasznosítható napsugárzás havi megoszlása Magyarországon Érkez napsugárzás: Hasznosítható napsugárzás: ~1300-1400 kwh/(m 2.év) ~500-600 kwh/(m 2.év)

Hazai meteorológiai adottságok www.naplopo.hu

Magyarországi jellemz rendszertípus Napkollektorok Tároló Szabályozó Cs vezeték rendszer Szoláris szerelési egység Tágulási tartály

Mire használható a napkollektoros rendszer? Melegvíz készítés F tés rásegítés Épület h szükséglet és a hasznosítható napenergia aránya Medence f tés

Dilemma Magyarországon: milyen kollektort használjuk?? Síkkollektor, vagy vákuumcsöves kollektor?

Dilemma Magyarországon: milyen kollektort használjuk? Vákuumcsöves napkollektorok Szelektív síkkollektorokkollektorok Efficiency characteristic curves (referring to Absorber area) 1,0 0,8 0,6 0,4 0,2 623 (Vaillant VTK 550) 624 (Oertli Sun 3000) 604 (Thermomax Solamax 30 - TDS 300) 603 (Thermomax Solamax 20 - TDS 300) 602 (Thermomax Mazdon 30 - TMA 600S) 601 (Thermomax Mazdon 20 - TMA 600S) 597 (Viessmann Vitosol 250) 589 (Schott ETC 16) 559 (Focus Technology FSCB-20-SS) 534 (Collectra OPC 15 T) 500 (Consolar TUBO 11 CPC) 456 (Hoval Solamax) 414 (Hoval Solkit Mazdon) 404 (Schw eizer Energie Swisspipe 2) 370 (Paradigma CPC 14 Star) Efficiency characteristic curves (referring to Absorber area) 1,0 0,8 0,6 0,4 0,2 613 (Rüesch Terza) 598 (Tecalor TSK 25 S) 595 (Velux CLI U10 2000) 590 (Sun-Systems Synox 9000 si) 588 (Brötje FK 25 R) 585 (Vescal Oertli SKF 225) 584 (Friap Friap 230) 582 (SESOL 2.5 Quick Var 1) 580 (SESOL FK3.8) 579 (Vögelin Aldo 225) 576 (Energiebig ENZX 54) 573 (Stiebel Eltron SOL 25 Plus) 572 (Geo-Tec GSE 2000/TIN) 567 (Winkler VarioSol A) 566 (Winkler VarioSol A-antireflex) 0,0 0,00 0,02 0,04 0,06 0,08 x [m K / W] 0,10 0,12 0,0 0,00 0,02 0,04 0,06 x [m K / W] 0,08 0,10 0,12 Efficiency characteristic curves (referring to Absorber area) 1,0 0,8 0,6 0,4 344 (GreenOneTec VK29) 338 (Viessmann VitoSol 200 D20) 264 (Thermomax Memotron TMO 600) 250 (Microtherm SK-6) 239 (ThermoLUX LUX 2000-6R) 238 (ThermoLUX LUX 2000-5R) 221 (AMK SLL-120/50-H) 196 (Sunda SEIDO 5-16) 182 (Sunda SEIDO 1-16) 181 (Sunda SEIDO 2-6) 115 (Schw eizer Energie TTS 2700) 56 (Microtherm SK-6F) Efficiency characteristic curves (referring to Absorber area) 1,0 0,8 0,6 0,4 562 (Teufel u. Schw arz Eurosol) 561 (Sonnenkraft SK 500 N Sunselect) 560 (Ebner P2) 556 (Solarw erk 2.60) 547 (P. Weissb. DW 750 Select) 546 (P. Weissb. DW 580 Standart) 537 (Rosskopf OEKO 3000) 535 (Solarw erk 2.25) 533 (Niklaus Vela Star AR) 532 (Solarenergie Kranmodulk. IDK) 529 (ROTEX Solaris V26) 527 (Ernst Schw eizer AV 23) 521 (Sandler S 03) 0,2 0,2 0,0 0,00 0,02 0,04 0,06 x [m K / W] 0,08 0,10 0,12 0,0 0,00 0,02 0,04 0,06 x [m K / W] 0,08 0,10 0,12

Zavaros napkollektor kínálat Magyarországon: M szaki paraméterek Teljesítmény: 0-2400 W = 1318 W/m 2 Maximális üzemi nyomás:4 bar Méretek: 1,00 x 2,00 x 0,06 m Aktív felület: 1,82 m² rtartalom: 1,7 liter Tömeg: 38,6 kg Pangási h mérséklet: 180ºC Mérési eredmények Hatásfok: (1318 W / 1000 W ) 100 = 132% Forrás: www.solarkollektor.hu

Példák Magyarországon megvalósult, nagyobb rendszerekre Budaörs

Példák Magyarországon megvalósult, nagyobb rendszerekre Dunaújváros, Solanova épület

Példák Magyarországon megvalósult, nagyobb rendszerekre Tesco áruház, Érd

Napkollektorok rendszerek gazdasági viszonyai Villamosenergia A1 kedvezményes Lakossági villamos energia díjak (Ft/kWh) Energia díj Rendszerhasználati díj VET 147. -a alapján fizetend pénzeszközök Energia adó Nettó végfelhasználói díj ÁFA (20 %) Bruttó végfelhasználói díj 20,59 13,772 0,335-34,7 6,94 41,64 A1 normál árszabás 21,90 13,772 0,335-36,01 7,2 43,21 A2 árszabás csúcsid szak 26,14 13,772 0,335-40,25 8,05 48,3 völgyid szak 16,14 13,772 0,335-30,25 6,05 36,3 B árszabás 13,71 6,922 0,335-20,97 4,19 25,16 Vezetékes földgáz 3,113 Ft/MJ + 20% ÁFA = 3,74 Ft/MJ = 13,45 Ft/kWh = (127 Ft/m 3 ) Figyelembe vett rendszerhatásfok: 70% Gázár a hatásfok figyelembevételével: 13,45 Ft/kWh / 0,7 = 19,27 Ft/kWh

Napkollektorok rendszerek gazdasági viszonyai Családi ház, 6m 2 napkollektor, beruházás bruttó 150.000 Ft/m 2 Energiahordozó fajtája Napkollektoros rendszer fajlagos beruházási költsége (K) Éves energia-megtakarítás a kollektorokkal (Qk) Villamos áram A Lakossági általános B Lakosság i vezérelt 150.000.-Ft/m2 600 kwh/m2 Vezetékes földgáz Energia bruttó egységára (Pe) 43,21 Ft/kWh 25,16 Ft/kWh 19,27 Ft/kWh Éves megtakarítás egy négyzetméter napkollektorral: (Mév = Qk x Pe) 25.926 Ft/év 15.096 Ft/év 11.562 Ft/év Egyszer sített megtérülési id (K/Mév): (Mév = Qk x Pe) 5,8 év 9,9 év 12,9

Gróf f Gyula Napkollektorok Energetikai értékelése Energy assessment of the solar collectors

Energetikai értékelés Energy Assessment Mit értünk ez alatt? What does it mean? = Technikai + Gazdasági Technical + Economical Szempontrendszer Point of view Optimum

Kihez szól? Who is the listener? Felhasználók (nem szakmai közönség) Users (non specialists) Szakmai közönség (specialists): Tervez k (Designers) Installációs szakemberek Fejleszt k (Developers)...

Technikai szempontok: (Technical aspects) Funkcionális megfelel ség g (functions)( Termodinamikai megfelel ség (thermodynamics) Élettartam (life( cycle) Környezeti hatások (environmental impacts) Szabványosított min sítési eljárások! (standards)

Kollektor értékelés s termodinamikai lehet ségei: Cél: meghatározni az energia átalakítás hatékonyságát veszteségeket (mennyiség, min ség) utalni a gazdaságosságra

Characterization of the heat transport:

f(t f,t h ) g(t h, T o ) f( TfTh) g( Th, To) = 0 T T h P = f( T T ) g( T, T ) max f hmax hmax o hmax

TO gt ( h, TO) = 1 Th T 5 O 4 4 Thmax = Tf + 3 T hmax 4 f TT C T T, h = f h ( ) 4 4 f ( TT) C T T, h = f h T = T T hmax f O TO gt ( h, TO) = 1 T h

Energy method - Energia szemlélet

I n-1 R L,n-1 I n R L,n m T o/(n-1)= T i/n R B,n T o/n =T i/(n+1)

η= η ax I a X 0 1 2 2 η = t time time ( ) Δ ( ) W& τ T τ dτ A I( τ) dτ I

E η Ex = E x, in x, out

The performance of a solar heating system depends on the local climatic conditions the collector area and type the overall annual performance of a solar system is technically limited by the amount of energy that can be collected during the winter time. Improvements in collector design can also have a significant effect on the overall system performance. the temperature levels the delivery temperature and the cold water supply temperature.

New application fields by solar thermal systems Gundula Tschernigg arsenal research

Table of content State of the art Plant hydraulics of combined solar systems in large applications 2 pipe system 4 pipe system Building integration Some impressions the good, the bad, the ugly Erneuerbare EnergieRenewable Energy Technologies

State of the art Erneuerbare EnergieRenewable Energy Technologies

Raumheizung Development of combined solar systems Combined solar systems of the 1st generation in Austria (Started at the beginning of the 90's until the end of the 90's, at a small number of dwellings also used today) Kollektorfeld KW Trinkwasserspeicher KW Kessel Erneuerbare EnergieRenewable Energy Technologies

Warmwasser Development of combined solar systems Combined solar systems of the 2 nd generation in Austria (Started in the middle of the 90's until today) Kollektorfeld Energiespeicher T3 Raumheizung Bereitschaftsspeicher Zirkulation T2 KW Kessel Erneuerbare EnergieRenewable Energy Technologies

Numerous results of measurement showed. Solar supported distribution nets of the 1 st and 2 nd generation are not always working as efficiently as they should (losses!) Return temperatures are usually very high Heat producer up to 20% Kollektorfeld Energiespeicher T3 Heat storage up to 30% of the total heat demand Bereitschaftsspeicher Heat distribution up to 40% T2 Kaltwasser Warmwasser Zirkulation low annual system performance (often 30 to 40%) low specific solar gains and Kessel covering degrees Raumheizung Erneuerbare EnergieRenewable Energy Technologies

Requirements of solar supported heat distribution nets of the 3 rd generation Holistic systems Adapted basic conditions for the use of solar systems Conceptional reduction of calorific losses Highest comfort for occupants Hygienically harmless drinking water heating up Economically meaningfully Modern control of operating Apart from the employment in new buildings an employment in existing buildings must be possible Erneuerbare EnergieRenewable Energy Technologies

Plant hydraulics of combined solar systems in large applications Kollektorfeld Energiespeicher T3 Warmwasser T2 Kaltwasser Warmwasser Kaltwasser Kessel Warmwasser Kaltwasser Erneuerbare EnergieRenewable Energy Technologies

Solar supported heat systems of the 3 rd generation in Austria Boiler Kollektorfeld Energiespeicher T3 Kaltwasser Warmwasser T2 Boiler Kaltwasser Warmwasser Kessel Boiler Heat distribution from a 2-pipe system Hot water heating with a decentralised storage Meaningful employment with small energy densities Kaltwasser Warmwasser Erneuerbare EnergieRenewable Energy Technologies

Solar supported heat systems of the 3 rd generation in Austria Kollektorfeld Energiespeicher T3 Warmwasser T2 Kaltwasser Warmwasser Kaltwasser Kessel Heat distribution from a 2-pipe system Hot water heating in a decentralised flow principle Meaningful employment with small and high energy densities Warmwasser Kaltwasser Erneuerbare EnergieRenewable Energy Technologies

Advantages of 2-pipe systems 80% Referenzgebäude mit 12 WE - Konzeptvergleich anhand dreier Kennzahlen 800 Solarer Deckungsgrad bzw. Systemwirkungsgrad [%]] 70% 60% 50% 40% 30% 20% 10% 700 600 500 400 300 200 100 Spezifischer Kollektorertrag [kwh/m²a] 0% 0 500 1000 1500 2000 2500 3000 3500 Auslastung [kwh/m²a] SD : 2-Leiter-Netz, dez. Boiler SW: 2-Leiter-Netz, dez. Boiler SW: 4-Leiter-Netz, inkl. zus. WT SE: 4-Leiter-Netz, inkl. zus. WT SD: 4-Leiter-Netz SW: 4-Leiter-Netz SD: 2-Leiter-Netz, dez. Stationen SW: 2-Leiter-Netz, dez. Stationen SE: 2-Leiter-Netz, dez. Boiler SE: 4-Leiter-Netz, inkl. zus. WT SE: 4-Leiter-Netz SE: 2-Leiter-Netz, dez. Stationen Erneuerbare EnergieRenewable Energy Technologies 0

Advantages of 2-pipe systems Return is nearly constant at 30 C and offers best conditions for the use of solar thermal systems 100 90 T-Netz-VL T-Netz-RL T-Solarsek.-VL T-Solarsek.-RL T-Puffer-VL 80 70 Temperatur [ C] 60 50 40 30 20 10 0 27.10.03 00:00 28.10.03 00:00 29.10.03 00:00 30.10.03 00:00 31.10.03 00:00 01.11.03 00:00 02.11.03 00:00 03.11.03 00:00 Erneuerbare EnergieRenewable Energy Technologies

Advantages of 2-pipe systems Comparison of annual return temperatures of three different systems, 12 units, 20% solar covering degree 70 Koll. Rücklauftemperatur [ C] 60 50 40 30 20 10 0 2-Leiter-Netz, dezentrale Boiler 2-Leiter-Netz, dezentrale Stationen 4-Leiter-Netz, RWV Jänner Februar März April Mai Juni Juli August September Oktober November Dezember Erneuerbare EnergieRenewable Energy Technologies

Advantages of 2-pipe systems Distribution losses are set to a minimum Because of the system a automatically heat support can be achieved Extensive tests show cheaper heat prices compared to 4- pipe systems A gain in comfort and absolutely harmless water hygiene Reduction of the error frequency in industrial manufactured substations and no auxiliary energy is needed Erneuerbare EnergieRenewable Energy Technologies

Solar supported energy distribution nets: 2-pipe systems with decentralised district heating substations Solar system If an energy storage is integrated: > Operational mode: Low (Matched) Flow Conventional boiler: Feeds into the energy storage Heat distribution: With a pair of pipes (2 pipes) Hot water preparation: Decentralised flow principle in the flat Kollektorfeld Energiespeicher Kessel Erneuerbare EnergieRenewable Energy Technologies Warmwasser Kaltwasser Warmwasser Kaltwasser Warmwasser Kaltwasser

Solar supported energy distribution nets: 2-pipe systems with decentralised district heating substations Important components: Mixing valve Pump District heating substations Application: Kollektorfeld New building, residential buildings in compact building method, reconstruction Energiespeicher Kessel Warmwasser Kaltwasser Warmwasser Kaltwasser Warmwasser Kaltwasser Erneuerbare EnergieRenewable Energy Technologies

Substations Advantages of substations: Industrial manufacturing Highest quality criteria No external energy requirement Low investment costs Individual design (finery, in the wall, different geometry) Erneuerbare EnergieRenewable Energy Technologies

Functions of substations Warmwasser Kaltwasser 45 C 10 C 1 1 9 2 3 4 10 Netz RL 20-40 C Netz VL 65 C 1 7 6 8 5 1 1 1 1 25-40 C Heizung RL 65 C Heizung VL 1 Absperrventil 2 Rückschlagklappe 3 Sicherheitsventil 4 Durchflussgesteuerter Temperaturregler 5 Rücklauftemperaturbegrenzer 6 Differenzdruckregler 7 Zählerpassstück 8 Zonenventil 9 Passstück Kaltwasser 10 Zirkulationsbrücke All components for decentralized hot water heating and space heating are contained Important components for hot water preparation: Plate heat exchanger: hot water is produced when its needed > Small risk of legionella > Highest hygiene Proportional controller: regulates the hot water temperature and adapts the flow rate to the hot water consumption > No calcification because of the temperature limit Erneuerbare EnergieRenewable Energy Technologies

Functions of substations Warmwasser Kaltwasser 45 C 10 C 1 1 9 2 3 4 10 Netz RL 20-40 C Netz VL 65 C 1 7 6 8 5 1 1 1 1 25-40 C Heizung RL 65 C Heizung VL 1 Absperrventil 2 Rückschlagklappe 3 Sicherheitsventil 4 Durchflussgesteuerter Temperaturregler 5 Rücklauftemperaturbegrenzer 6 Differenzdruckregler 7 Zählerpassstück 8 Zonenventil 9 Passstück Kaltwasser 10 Zirkulationsbrücke Important components for heat preparation: Differential pressure regulating valve: hot water is produced when its needed > Provide a constant mass flow in individual units of the dwellings > Inappropriate adjusting can be prevented by fixed pre-setting Return controller: are used in the return and fixed on 40 C Thermostatic valve: control the temperature in the units Erneuerbare EnergieRenewable Energy Technologies

Measuring devices of substations Warmwasser Kaltwasser 45 C 10 C 1 1 9 2 3 4 10 Netz RL 20-40 C Netz VL 65 C 1 7 6 8 5 1 1 1 1 25-40 C Heizung RL 65 C Heizung VL 1 Absperrventil 2 Rückschlagklappe 3 Sicherheitsventil 4 Durchflussgesteuerter Temperaturregler 5 Rücklauftemperaturbegrenzer 6 Differenzdruckregler 7 Zählerpassstück 8 Zonenventil 9 Passstück Kaltwasser 10 Zirkulationsbrücke Important components for measuring the demand: Water meter > measures the total amount of hot water used in a unit Heat meter > measures the total amount of hot water and heat used in a unit Can be read out manually or via a bus-sytem Erneuerbare EnergieRenewable Energy Technologies

Distribution net Characteristics of 2-pipe systems with substations Strongly varying flow due to the decentralized hot water preparation Constant flow temperatures over an entire operational year Kollektorfeld Energiespeicher Warmwasser Kaltwasser Warmwasser Kaltwasser Kessel Warmwasser Kaltwasser Erneuerbare EnergieRenewable Energy Technologies

Distribution net Volume flow Between summer and winter varying volume, usage of two pumps: > Pump for summer > Pump for winter > Reduction of the needed electricity Ascending pipe needs to be regulated correctly, usage of a differential pressure regulating valve Mixing valve: temperatures up to 95 C during summer mean highest requirements on the mixing valve Erneuerbare EnergieRenewable Energy Technologies

Solar supported energy nets: 2-pipe systems with decentralised hot water storage Solar system If an energy storage is integrated: > Operational mode: Low (Matched) Flow Conventional boiler: Feeds into the energy storage Heat distribution: With a pair of pipes (2 pipes) Hot water preparation: Kollektorfeld Decentralised flow principle in the flat Energiespeicher T2 Kessel Boiler Boiler Boiler Kaltwasser Warmwasser Kaltwasser Warmwasser Kaltwasser Warmwasser Erneuerbare EnergieRenewable Energy Technologies

Solar supported energy nets: 2-pipe systems with decentralised hot water storage Boiler Important components: Mixing valve Kollektorfeld Energiespeicher Kaltwasser Warmwasser Pump T2 Boiler Decentralized load substations Application: Kessel Boiler Kaltwasser Warmwasser New building, residential buildings in compact building method, reconstruction (already existing devices can sometimes be further used) Kaltwasser Warmwasser Erneuerbare EnergieRenewable Energy Technologies

Hot water preparation / Space heat supply Hot water storage: Dimensioning on a daily use of 150-200 litres Placement: storage, toilet, bath, possibly cellars > Importantly: short ways to the taps Loading of the hot water storage: external heat exchangers Loading: > Deep return temperatures can be obtained > Importantly: hydraulic uncoupling Low loads, irradiation-strong time periods (at noon), load duration (1h) Space heat supply: Dimensioning of radiators on a max. 65/40 C Usage of low temperature systems possible without any problems Boiler Kaltwasser Warmwasser Erneuerbare EnergieRenewable Energy Technologies

Summary Erneuerbare EnergieRenewable Energy Technologies

Zirkulation Solar supported 4-pipe systems Application Reconstruction of buildings with already existing central hot water distribution Raumheizung Kollektorfeld Energiespeicher Bereitschaftsspeicher Warmwasser T2 Kaltwasser Functions: One pair of pipes for the heat supply One pair of pipes for the hot water demand Separation in: Systems with one storage (max. 10 units) Systems with two storages (larger dwellings) Kessel Erneuerbare EnergieRenewable Energy Technologies

4-pipe system with hot water storage Application: for a maximum of 10 flats Hot water storage Cost-intensive by interior coating or high-grade steel high requirements on water hygiene Kollektorfeld WW Zirkulationsleitung Raumheizung Integration of the solar system Internal heat exchanger Plate heat exchanger KW Temperature delimitation of the storage on 60 C: Calcifying danger of the external heat exchanger Kessel Erneuerbare EnergieRenewable Energy Technologies

4-pipe system with one steel storage Steel storage Is used as energy storage Integration of the solar system Internal heat exchanger Plate heat exchanger Hot water preparation Internal water storage Internal tube heat exchanger Kollektorfeld WW KW Zirkulationsleitung Raumheizung Because of the standing energy store medium, the heat transfer Kessel between hot water and storage medium is rather small! Supply security is ensured by the provision of a large amount of hot water and large boiler or tube heat exchanger area Erneuerbare EnergieRenewable Energy Technologies

Warmwasser 4-pipe system with two-storage systems Application For large hot water consumption Kollektorfeld T2 Energiespeicher Bereitschaftsspeicher Zirkulation Raumheizung KW Layout Central energy storage (steel), Central hot water storage to cover peak loads Conventional heat generator feeds exclusive in the energy storage Energy storage supplies the space heating Kessel Erneuerbare EnergieRenewable Energy Technologies

Ranges of recommended angles of inclination and alignment of collector surfaces in dependence of the solar covering degree Erneuerbare EnergieRenewable Energy Technologies

Building Integration Erneuerbare EnergieRenewable Energy Technologies

Potential New buildings Old buildings / redevelopment Requirements for architects Erneuerbare EnergieRenewable Energy Technologies

Architecture New buildings design flexibility Integration Presentation Erneuerbare EnergieRenewable Energy Technologies

Architecture Old buildings / redevelopment design flexibility After war buildings of the 50ties to the 70ties Combination with a redeveloment of the faacade Monumental protection In the city old part of town Erneuerbare EnergieRenewable Energy Technologies

Architecture - requirements Standard sizes Special sizes available Colored absorbers Colored cover strip Large surfaces Erneuerbare EnergieRenewable Energy Technologies

Collector integration To take care of: Variations in temperature (particularly by construction units closely linked to other parts of the building) Bird-ate Note! > Life span of the roofing and/or the roof framing > Weight - collectors 20-30 kg/m2 > Wind and suction forces Erneuerbare EnergieRenewable Energy Technologies

Facade integration Multiple use of facade collectors Solar collector Weather protection of the front Design element Noise control facade collectors with backing ventilation no problems from the building design aspect facade collectors without backing ventilation brings auxiliary use to thermal insulation passive-solar element Advantages Reduction of calorific losses Cost saving by multiple use small/no preservation work Old building and new building-suited Erneuerbare EnergieRenewable Energy Technologies

Adjustment and inclination of collectors Yearly variation of the global radiation on inclined surface in kwh/m ², month Erneuerbare EnergieRenewable Energy Technologies

Irradiation in the facade Irradiation approx. 30% smaller than on inclined surface 160 Strahlungssumme pro Monat kwh/m²mon, 45 kwh/m²mon, 90 140 120 [kwh/m².mon] 100 80 60 40 20 0 Jan Feb Mrz Apr Mai Jun Jul Aug Sep Okt Nov Dez Erneuerbare EnergieRenewable Energy Technologies Monat

Colored absorbers smaller selective layer larger collector surfaces necessary Erneuerbare EnergieRenewable Energy Technologies

Enlargement of the collector surface With colored absorbers the surface must be increased between 20% and 70% to selectively coated absorbers Combined systems need less enlargement than plants for water preparation Anlage Einfamilienhaus, 4 Personen, WW- Bereitung Einfamilienhaus, 4 Personen, WW- Bereitung und 8 kw Heizlast Solarer Deckungsgrad [%] 70 40 Solarlack zu Grün/blau zu Rotbraun zu selektiv selektiv selektiv [m²/m²] [m²/m²] [m²/m²] 1,5 1,5 1,7 1,2 1,3 1,4 Erneuerbare EnergieRenewable Energy Technologies

Facade integration Costs Use Collector surface must be increased Piping more dificult Reduced calorific losses Saving of glass facade (if planned) No preservation work (Painting ) Noise control Element architectural value Erneuerbare EnergieRenewable Energy Technologies

the good, the bad and the ugly

Erneuerbare EnergieRenewable Energy Technologies

Erneuerbare EnergieRenewable Energy Technologies

Erneuerbare EnergieRenewable Energy Technologies

Erneuerbare EnergieRenewable Energy Technologies

Erneuerbare EnergieRenewable Energy Technologies

Erneuerbare EnergieRenewable Energy Technologies

Erneuerbare EnergieRenewable Energy Technologies

Erneuerbare EnergieRenewable Energy Technologies

Erneuerbare EnergieRenewable Energy Technologies

Erneuerbare EnergieRenewable Energy Technologies

Erneuerbare EnergieRenewable Energy Technologies

Erneuerbare EnergieRenewable Energy Technologies

Thank you for your attention! Contact: DI (FH) Gundula Tschernigg arsenal research Giefinggasse 2, 1210 Wien, Austria ph: +43 (0) 50550-6374, f: +43 (0) 50550-6613 mobile: +43 (0) 664/ 825 11 75 gundula.tschernigg@arsenal.ac.at www.arsenal.ac.at/eet

New developed solar thermal systems for heating and cooling Budapest, 16 th April 2009 Tsekouras Panagiotis Mech. Engineer NTUA Centre for Renewable Energy Sources Solar Thermal Dept.

Overview Solar Thermal Systems Solar Collectors Solar Cooling Technologies HIGH COMBI, Best Practice

Overview Solar Thermal Systems Solar Collectors Solar Cooling Technologies HIGH COMBI, Best Practice

Domestic Hot Water Systems DHW Space Heating Space Cooling Central Sustem for DHW

Solar Combi Systems DHW Space Heating Space Cooling

M M M M M Solar Combi plus Systems DHW Space Heating Space Cooling DHW E-2 E-4 MCooling Heating

Loads vs Solar Radiation Coincidence of solar gains and cooling loads Reduction of electric peak loads Better utilization of solar energy throughout the year Mismatch of Solar Radiation and Heating Load

Energy Storage Exploit Better Solar Energy Raise Solar Fraction Increase initial cost Extra space required

Overview Solar Thermal Systems Solar Collectors Solar Cooling Technologies HIGH COMBI, Best Practice

Flat Plate Collectors Properties Middle cost: more expensive than unglazed, but cheaper than vacuum Higher operation temperature Thermal insulation on back & edges Fragile, heavier: 20-32 kg/m 2 Absorber: black paint or spectral-selective coating Spectral-selective coating: conversion of short-wave solar radiation into heat (light absorption capacity) is optimized Absorption rate: 90-95%, emission rate 5-15% Applications DHW Preparation Space heating Solar air conditioning Source: Wagner & Co ESTIF

Vacuum Collectors Properties High cost Minimal convection thermal losses (tube pressure < 10-5 bar) Low radiation losses High efficiency, even with low radiation Low weight Average annual efficiency 45-50% (with 1000kWh/m 2 irradiation, the energy yield is 450-500kWh/m 2 a Stagnation temperature: 200-350 0 C Applications Solar air conditioning Industrial applications (steam generation)

Overview Solar Thermal Systems Solar Collectors Solar Cooling Technologies HIGH COMBI, Best Practice

Basic Concept chilled water heat Thermal driven cooling process conditioned air

Principle of Operation Conventional Chiller Sorption Chiller QM = Qc + W QM = Qc + QH 1.3 kw 2.4 kw W Compression QH Sorption 0.3 kwe 1.4 kwt 1 kwc 1 kwc Qc Qc

Cooling Technologies

Closed Cycle Systems ~18 C Driving temperature >60 C Supply air system Chilled ceiling Fresh air Chiller (thermally driven) 15-18 C (< 12 C) 6-9 C Chilled water - temperature Fan coil Conditioned area Source : Fraunhofer ISE

Open Cycle Systems Driving temperature > 50 C Return air Conditioned area Supply air Desiccant Evaporative Cooling (DEC) Source : Fraunhofer ISE

Comparison Efficiency Operational temperature, 2007 Open systems Liquid DEC: = 60C, COP = 0.7 Solid DEC: T = 80C, COP = 0.5 Closed systems Absorption: = 75C, COP = 0.7 Adsorption: T = 55C, COP = 0.5 Initial cost Collector area needed, 2007. Open systems Liquid DEC: 4500 /kw, 5 m 2 /kw Solid DEC: 3500 /kw, 0.5 m 2 /kw Closed systems Absorption: 2000 /kw, 4 m 2 /kw Adsorption: 5500 /kw, 2.5 m 2 /kw Source : CA Balaras, G Grossman, HM Henning, Solar Air-Conditioning in Europe - an overview, Renewable Energy & Sustainable Energy Reviews, 11, 2007, 299-314

Overview Solar Thermal Systems Solar Collectors Solar Cooling Technologies HIGH COMBI, Best Practice

The Greek plant, HIGH COMBIConcept

The Greek plant, End User Data Building Data CRES Offices, Athens Area 545 m 2 Heating Load (max) 51 KW Heating Energy Demand 22 MWh Cooling Load (max) 45 KW Cooling Energy Demand 18 MWh DHW Demand - Heating / Cooling Distribution System Fan Coils 8.0 Energy (MWh) 6.0 4.0 2.0 0.0 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Building Energy Demands, Heating / Cooling

The Greek plant, Solar System Energy System Data Type Unit Collectors Flat Plate 120 m 2 Primary Circuit Fluid Mixture of propylene glycol and water 30 % Chiller Absorption 35 kw Heat Rejection GHE & Cooling Tower Storage Buried Cylindrical Tank 180 m 3 Heating supply/ return Temperature Fan Coils 45 / 40 o C Cooling supply/ return Temperature Fan Coils 7 / 12 o C Back up System Heat Pump 50 KW Estimated Solar Fraction ~ 95%

The Greek plant, Storage System Innovative Seasonal Storage Storage Cylinder 180 m 3 Position Underground (Tground ~ 15 o C) 1 m Restrictions High Water Level 8 m Structure Steel & Concrete Insulation Polyurethane & Chipped Tyres 0,4 W/(m 2 K) Heat Rejection Ground Horizontal Ground Heat Exchangers Clay/ Silt, dry Type Unit 402 m (1 st loop) 463 m (2 nd loop) 0,5 W/(m K)

Information www.highcombi.eu Further information Progress Contacts Deliverables / Reports News Thank you for your attention!

Magyarország támogatáspolitikája a megújuló energiák területén Bánfi József Energetikai szakért

Visszatekintés A megújuló energiaforrások hasznosítása jelent ségét a világ már a 70-es években felismerte (els olajár-robbanás 1973). Magyarországon is elindultak az els próbálkozások. Hosszú, de nem igazán eredményes múlt áll mögöttünk. Állami támogatás alig-alig volt. Nagyobb lendületet a Széchenyi-terv (2001-2002) és a villamos energiáról szóló 2001. évi CX. törvény (VET) adott. Széchenyi-terv: vissza nem térítend támogatás VET: kötelez átvétel, ártámogatás (KÁP), zöld bizonyítvány KIOP (2004-2006) EU-s és hazai forrásból: vissza nem térítend támogatás KEOP (2007-2013) EU-s és hazai forrásból: vissza nem térítend támogatás Lakossági támogatás: Széchenyi-terv (2001-2002) NEP (nemzeti energiatakarékossági program) vissza nem térítend támogatás + kedvezményes hitel 2004-2006, 2008

Eredmények Széchenyi-terv: támogatott projektek száma: 196 db (lakosságival) támogatások összege: 143,7 MFt KIOP-1.7. megújuló támogatott projektek száma: 22 db támogatással létrejöv kapacitások: 21,8 MW KEOP-4. (Környezet és Energia Operatív Program) 2007-2013 Forrás: 75 % EU, 25 % nemzeti, energiahatékonyság 41,4 MrdFt megújuló hasznosítás 68,5 MrdFt KEOP-2007-2008 keretösszeg a megújulókra 13,26 MrdFt pályázatok száma - benyújtott: 122 db - elfogadott: 26 db - még nem elbírált: 38 db

A jelen KEOP-2009-4.2.0/B Helyi h - és h tési igény energiaigény kielégítése megújuló energiaforrásból KEOP-2009-4.4.0 Megújuló energia alapú villamos energia-, kapcsolt h és villamos energia-, valamint biometán termelés KEOP-2009-5.2.0/B Harmadik feles finanszírozás (Épületenergetikai pályázatok megújuló energiaforrás felhasználással kombinálva) KEOP-2009-5.3.0/B Épületenergetikai fejlesztések megújuló energiafelhasználással kombinálva