Szenzorhálózatok Fizikai és adatkapcsolati réteg ( )

Hasonló dokumentumok
Szenzorhálózatok Fizikai réteg ( ) Vidács Attila Távközlési és Médiainformatikai Tanszék I.B.228, T:19-25,

Szenzorhálózatok és alkalmazásaik. Bevezetés

Szenzorhálózatok Adatkapcsolati réteg ( ) Vidács Attila Távközlési és Médiainformatikai Tanszék I.B.228, T:19-25,

Szenzorhálózatok és alkalmazásaik. WSN bevezető. Fizikai réteg.

Szenzorhálózatok és alkalmazásaik. Adatkapcsolati réteg. MAC megoldások.

Szenzorhálózatok III.

Számítógépes Hálózatok. 4. gyakorlat

Szenzorhálózatok Szenzor MAC ( ) Vidács Attila Távközlési és Médiainformatikai Tanszék I.B.228, T:19-25,

Bevezetés. Számítógép-hálózatok. Dr. Lencse Gábor. egyetemi docens Széchenyi István Egyetem, Távközlési Tanszék

IoT rendszerek kommunikációs megoldásai vitmav22

Számítógépes Hálózatok. 5. gyakorlat

Számítógépes Hálózatok 2010

Zigbee: vezeték nélküli komplex szenzorhálózatok gyorsan, olcsón, hatékonyan

Hálózati Architektúrák és Protokollok GI BSc. 3. laborgyakorlat

Wireless technológiák Meretei Balázs

MACAW. MAC protokoll vezetéknélküli LAN hálózatokhoz. Vaduvur Bharghavan Alan Demers, Scott Shenker, Lixia Zhang

Hálózati réteg. WSN topológia. Útvonalválasztás.

Szenzorhálózatok Szenzor MAC (folyt.), Hálózati réteg, topológia, útvonalválasztás ( )

Kommunikációs rendszerek programozása. Wireless LAN hálózatok (WLAN)

Vezeték nélküli helyi hálózatok

Számítógépes Hálózatok és Internet Eszközök

Hálózati Technológiák és Alkalmazások

2011. május 19., Budapest UWB ÁTTEKINTÉS

Számítógép hálózatok gyakorlat

1. A vezeték nélküli hálózatok rádiós szabályozása

A Zigbee technológia

A Component-Base Architechture for Power-Efficient Media Access Control in Wireless Sensor Networks

OFDM technológia és néhány megvalósítás Alvarion berendezésekben

Alacsony fogyasztású IoT rádiós technológiák

Adatkapcsolati réteg 1

Szenzorkommunikációs lehetőségek az IoT világában. Dr. Fehér Gábor BME Távközlési és Médiainformatikai Egyetem

Kábel nélküli hálózatok. Agrárinformatikai Nyári Egyetem Gödöllő 2004

Számítógép-hálózatok zárthelyi feladat. Mik az ISO-OSI hálózati referenciamodell hálózati rétegének főbb feladatai? (1 pont)

Hálózatok. Alapismeretek. A hálózatok célja, építőelemei, alapfogalmak

Szenzorhálózatok LEACH esettanulmány ( ) Vidács Attila Távközlési és Médiainformatikai Tanszék I.B.325, T:19-25,

Hálózati Technológiák és Alkalmazások

Mobil kommunikáció /A mobil hálózat/ /elektronikus oktatási segédlet/ v3.0

Számítógépes hálózatok

Hálózati Technológiák és Alkalmazások

Számítógépes Hálózatok 2013

Járműinformatika Multimédiás buszrendszerek (MOST, D2B és Bluetooth) 4. Óra

Számítógépes Hálózatok

BWA Broadband Wireless Access - szélessávú vezetéknélküli hozzáférés

Mobil Távközlési és Informatikai Laboratórium BME-HIT

Frekvencia tartományok. Számítógépes Hálózatok és Internet Eszközök. Frekvencia tartományok rádió kommunikációhoz

Számítógépes Hálózatok ősz Adatkapcsolati réteg, MAC korlátozott verseny, Ethernet, WLAN; LAN-ok összekapcsolása

pacitási kihívások a mikrohullámú gerinc- és lhordó-hálózatokban nkó Krisztián

Hálózati technológiák és alkalmazások. Vida Rolland

WiFi hálózatok üzemeltetése

Számítógépes Hálózatok és Internet Eszközök

RFID rendszer felépítése

Számítógép hálózatok 3. gyakorlat Packet Tracer alapok M2M Statusreport 1

Benkovics László ZTE Hungary K:

UWB. Bevezetés Elmélet Alkalmazások

Energiahatékony kommunikáció szenzorhálózatokban

Távközlő hálózatok és szolgáltatások Optikai hozzáférési hálózatok

Gigabit Ethernet, 10 Gigabit Ethernet. Jákó András BME EISzK

Wireless hálózatépítés alapismeretei

COMPEX WLM200NX n a/b/g dual-band vezetéknélküli minipci modul

The Flooding Time Synchronization Protocol

MAC címek (fizikai címek)

Alapsáv és szélessáv. Számítógépes Hálózatok Amplitúdó-moduláció. Szélessáv

Az LTE. és a HSPA lehetőségei. Cser Gábor Magyar Telekom/Rádiós hozzáférés tervezési ágazat

Hálózatok I. A tárgy célkitűzése

LAN Technológiák. Osztott médium hálózatok. LAN-ok

Számítógépes hálózatok

Infokommunikáció a közlekedésben (VITMJV27)

Autóipari beágyazott rendszerek. A kommunikáció alapjai

Tartalom Iparági kérdések A rendszer kialakítás kérdései Felhasználói vonatkozások A ZigBee technológia ismertetése A ZigBee technológia alkalmazása T

Számítógépes Hálózatok

Időjárásállomás külső érzékelőjétől érkező rádiójel feldolgozása

A Li-Fi technológia. Bagoly Zsolt. Debreceni Egyetem Informatika Kar február 13.

Energiahatékony mobilitás biztosítása időosztás-alapú vezeték nélküli hálózatokban

Hálózatok II. A hálózati réteg torlódás vezérlése

MERRE TART A HFC. Koós Attila Gábor, Veres Zoltán , Balatonalmádi

Programozó- készülék Kezelőkozol RT óra (pl. PC) Digitális bemenetek ROM memória Digitális kimenetek RAM memória Analóg bemenet Analóg kimenet

Lokális hálózatok. A lokális hálózat felépítése. Logikai felépítés

AGSMHÁLÓZATA TOVÁBBFEJLESZTÉSE A NAGYOBB

Két típusú összeköttetés PVC Permanent Virtual Circuits Szolgáltató hozza létre Operátor manuálisan hozza létre a végpontok között (PVI,PCI)

Multiprotocol encapsulation (RFC1483) - IETF Classical IP over ATM (RFC1577) - IETF LAN Emulation (LANE) - ATM Forum Multiprotocol over ATM (MPOA) -

2. előadás. Radio Frequency IDentification (RFID)

Hálózati alapismeretek

Autóipari beágyazott rendszerek. Local Interconnection Network

IP alapú kommunikáció. 8. Előadás WLAN alapok Kovács Ákos

ADATKAPCSOLATI PROTOKOLLOK

Csoportos üzenetszórás optimalizálása klaszter rendszerekben

Tájékoztató. Értékelés. 100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 40%.

KÖFOP VEKOP A jó kormányzást megalapozó közszolgálat-fejlesztés

16. fejezet Az IEEE evolúciója és keretszerkezete

Hálózati architektúrák és rendszerek. 4G vagy B3G : újgenerációs mobil kommunikáció a 3G után

Helyi hálózatok. (LAN technológiák, közös médium hálózatok)

SPECIÁLIS CÉLÚ HÁLÓZATI

MOBIL ÉS VEZETÉK NÉLKÜLI BMEVIHIMA07 HÁLÓZATOK. 3. gyakorlat. Gódor Győző

BWA- Broadband Wireless Accessszélessávú vezetéknélküli hozzáférés

Vezetéknélküli Érzékelő Hálózatok

Irányítástechnika fejlődési irányai

1. ELŐADÁS. Bevezetés, alapok, ismétlés május 19., Budapest

WLAN (vezetéknélküli LAN)

Számítógép-hálózatok A közeghozzáférési alréteg

Tartalom. Az adatkapcsolati réteg, Ethernet, ARP. Fogalma és feladatai. Adatkapcsolati réteg. A hálókártya képe

Átírás:

Szenzorhálózatok Fizikai és adatkapcsolati réteg (2011.10.19) Vidács Attila Távközlési és Médiainformatikai Tanszék I.B.228, T:19-25, vidacs@tmit.bme.hu

Tartalom Fizikai réteg létező és spec. WSN megoldások energiahatékonyság Adatkapcsolati réteg Vezetéknélküli MAC technikák ALOHA CSMA Vivőérzékeléses többszörös hozzáférés Lekérdezés (Polling)

A fizikai réteg Fizikai réteg: Azok az eszközök és eljárások, mely az adatok átviteléhez, az adatkapcsolati entitások közti fizikai összeköttetés létrehozásához, fenntartásához, és bontásához szükségesek. Cross-layer design ISO OSI alkalmazási réteg megjelenítési réteg viszony réteg szállítási réteg hálózati réteg adatkapcsolati réteg fizikai réteg

Jellemzők és követelmények Tipikusan nagyon kis átvitt adatmennyiség. néhány bit/nap Inkább kisebb átviteli sebesség és nagyobb késleltetés az alacsonyabb árért és hoszabb élettartamért cserébe. Pl: Egy (vagy több) év üzemidő 750 mah AAA elemmel Univerzális (globális), licensz nélküli üzemeltethetőség. Nagyban limitálja a lehetséges frekvenciasávot és modulációt

Példák a fizikai rétegre Szenzorhálózatokban a kommunikáció történhet elektromágneses (RF, IR) vagy akusztikus úton. Létező rádiófrekvenciás (RF) megoldások: Bluetooth IEEE 802.11b (WLAN) (IEEE 802.15.4) Speciális WSN megoldások PicoRadio WINS μamps

Bluetooth WPAN (Wireless Personal Area Network) megoldás 2.4 GHz ISM sáv Moduláció: 1 MBaud bináris GFSK (Gaussian Frequency Shift Keying) frekvenciaugratásos szórt spektrumú (FHSS), 1600 ugrás/mp, 79 db 1-MHz-es csatorna (USA-ban) Problémák WSN alkalmazásnál: A hálózatfelderítés FHSS esetében hosszadalmas, mert a node-ok aszinkron működésűek. A viszonylag keskenysávú (1MHz) modulácó miatt a csatornaszűrő megvalósítása bonyolult és költséges. (Az alacsony-frekvenciás áramköri elemek nagy mérete és a nagy kapacitorok, valamint a nagy warm-up periódus miatt.) A közeli csatornák szétválasztása is bonyolult.

IEEE 802.11b WLAN (Wireless LAN) szabvány 2.4 2.5 GHz ISM sáv 14 db 22 MHz-es átlapolódó csatorna, 5 MHz-enként (USA-ban csak az első 11 használható) 802.11 szabvány három 1 Mb/s (ill. 2 Mb/s) fizikai réteg opciót definiál: infravörös (IR) frekvenciaugratásos szórt spektrumú (FHSS) direkt szekvenciális szórt spektrumú (DSSS) 1 Mb/s esetén: különbségi bináris fázisugratás (DBPSK) 2 Mb/s esetén: különbségi kvadratúra fázisugratás (DQPSK) 802.11b: kiterjesztés 5.5 Mb/s-ra ill. 11 Mb/s-ra Complementary Code Keying (CCK), 11 Mc/s és DQPSK, 8 bit/szimbólum

IEEE 802.11b Az eredeti 1 és 2 Mb/s-os direkt szekvenciális 802.11 fizikai réteg egy lehetséges megoldás WSN-ek esetében: Egyszerű hardver. Megfelelő adatátviteli sebesség. A direkt szekvenciális kódolás mentes a frekvenciaugratásos módszerek hátrányaitól. Hátrány: A 11 Mc/s-os chip-sebesség túlságosan magas egy alacsony fogyasztású eszköznek. A 11 Mb/s-os 802.11b kiterjesztés energiafelhasználása és ára (komplexitása) messze meghaladja egy WSN korlátait!

PicoRadio PicoRadio program Uni California (Berkeley), 1999 DSSS, CSMA MAC protokol UWB (ultrawide band) Könnyen integrálható, a sávszélesség-hatékonyság nem annyira fontos. Fontos tulajdonsága: wake-up rádió sleep móddal Wake-up rádióvevő: 1μW átlagos teljesítménnyel működik A wake-up jel vételekor felébreszti a fő rádiót. A wake-up jel tartalmazza az állomás ID-jét, így csak a szükséges csomópontok ébrednek fel. Nincs szükség a node-ok közötti szigorú időszinkronra.

WINS WINS Wireless Integrated Network Sensors Project Uni California, Los Angeles és Rockwell Science Center 1998-ban piacra vitték Sensoria Corp. néven (San Diego) Szórt spektrumú, 900 MHz vagy 2.4 GHz ISM sávban CMOS technológiára épült és optimalizált az alacsony előállítási költség miatt.

μamps μamps Program Massachusetts Institute of Technology (Cambridge) Teljes WSN rendszer, hangsúly az energiatakarékosság. (LEACH Low Energy Adaptive Clustering Hierarchy protokoll kifejlesztése, ld. később) Cél a sleep time maximalizálása többszintű jelzés start-up energia problémája a sleep->aktív átmenet esetén

Fizikai réteg tervezési kérdései A két legfontosabb követelmény: alacsony ár és hosszú élettartam.

Ár, mint tervezési kérdés... A fizikai réteg költsége elsősorban a hardver ára chip-ek ára + külső alkatrészek ára Cél: egyetlen chip + antenna + elemek (Az antenna és az elemek integrálása nem lehetetlen, de nehéz.) Az egyik legnehezebb feladat a referencia frekvenciához használt kvarc kristály integrálása. Lehetséges alternatíva: MEMS (mikro-elektromechanikai) rezonátor Egyenlőre azonban még nem kiforrott technológia, a pontossággal és stabilitással bajok lehetnek. Következmény: Olyan fizikai réteget tervezzünk, amely nem követel meg túl szigorú előírásokat a rezonátorral szemben.

Ár: analóg kontra digitális A chip árát befolyásolja az analóg és digitális integrált alkatrészek aránya. A digitális elemek mérete a litográfiai eljárások fejlődésével csökken. Az analóg elemek mérete tipikusan nem csökken a technológia fejlődésével. (Pl. passzív komponensek paraméterei a fizikai méreteik függvénye, pl. kapacitor felület) A lehetséges két alternatíva: Analóg elemek nagy dimenziójú régi (és ezért olcsó) technológiával. Csak digitális komponensek, új technológia, így apró (és ezért olcsó) áramkörök. Hosszú távon a trend az all-digital technológiának kedvez. Az RF áramkörök energiafogyasztása is a mérettel arányos.

Ár: csatornaszűrő... Az RF adóvevők egyik legnagyobb alkatrésze a vevő-oldali csatornaszűrő. Analóg esetben szükségesek nagy méretű kapacitorok. Digitális esetben az AD konverter elé szükséges egy anti-alias szűrő. A csatornaszűrő mérete fordítottan arányos a szűrő sarokfrekvenciájával (azaz egyenesen arányos az árával). Következmény: Olyan fizikai réteget tervezzünk, ahol a szükséges vevőszűrő sarokfrekvenciája maximális (azaz nagy sávszélességű).

Ár: nagy darabszám... Nagy darabszám csökkenti az egységárat. Következmény: Olyan fizikai réteget tervezzünk, amely összhangban van a lehető legtöbb ország szabályozási környezetével. Megoldás: ISM sáv használata (De melyik? 2.4 GHz, 5.8 GHz vagy 24 GHz?)

Ár: rendelkezésre álló technológiák... Magas (pl. 60 GHz) frekvenciatartományban működő áramkörök gyártástechnológiája (pl. SoC szilikon CMOS) jelenleg még drága és nem energia-optimális. Alacsony (pl. 1 GHz) frekvencián a node mérete miatti kis antenna okoz problémát. A megfelelő ISM sáv kiválasztása egy kompromisszum az ár és energiafogyasztás, valamint a méret és antennahatékonyság között. Jelenlegi optimum: 2.4 GHz ISM sáv

2.4 GHz ISM sáv A 2.4 GHz-es ISM sáv jelenleg egyáltalán nem üres : Pl. IEEE 802.11b (Wi-Fi) WLAN, Bluetooth WPAN A különböző technológiák más-más csatornahozzáférési stratégiát használnak -> erősen unfair lehet! A különböző szolgáltatások együttélése és kompatibilitása a fizikai réteg tervezésének kulcskérdése! Pl: szórt spektrumú megoldások a robosztusság miatt Lehetséges alternatíva: 3.1-10.6 GHz UWB (ultra-szélessáv) Helymeghatározási képesség nagyon jó (néhány cm). Nagy node-sűrűség lehetséges. Egyelőre csak az USA-ban szabványos.

Energiafelhasználás (élettartam) Az energia-probléma két komponense: 1. Az energiaforrás (elem) 2. A rendszer energiafogyasztása.

Energiaforrások A szenzorok alacsony energiafogyasztása (~50 μw) lehetővé teszi újszerű energiaforrások használatát Pl: napenergia-cella, RF, mechanikus vibrációs eszközök A hagyományos szárazelemek mégis a legáltalánosabbak. Töltésmegújulás jelensége: Egy elem kapacitása sorozatos impulzusokkal kisütve jóval nagyobb, mint folyamatos állandó lemerítés esetében. WSN esetében a börsztös adatküldés mellett az alacsony átlagos energiafogyasztás kiválóan illeszthető a jelenséghez: a nagy fogyasztású komponensek (pl. rádióadó) aktiválása csak rövid időkre, megfelelően nagy időközönként.

Energiafogyasztás - példa 2db AAA elem (750 mah), 1 éves élettartam (8760 óra) I avg 750mAh /8760h 86A Átlagos felvett teljesítmény (1.8 V feszültségszabályozóval) P avg 1.8V 86A 154. 8W Tipikus 2.4 GHz CMOS adóvevő 32 mw teljesítménnyel ad és 38 mw teljesítménnyel vesz. (átlag ~35 mw) I on 19. 5mA I stby 30A Ekkor az I avg T I (1 T ) I on on on stby összefüggésből: T on 0.0029

Energiafogyasztás T on =0.0029 praktikusan 4 perc naponta. A kevés információközlés ellenére az aktív kommunikáció időtartama alatt nagy bitsebességet követel meg. T on tartalmazza a warm-up periódust is. Sok de rövid kommunikáció esetében a warm-up periódusokban elfolyó áram lehet a döntő! A DSSS rendszerek 250 kbps (nyers) adatátviteli sebességgel előnyösek.

Tartalom Fizikai réteg létező és spec. WSN megoldások energiahatékonyság Adatkapcsolati réteg Vezetéknélküli MAC technikák ALOHA CSMA Vivőérzékeléses többszörös hozzáférés Lekérdezés (Polling)

Adatkapcsolati réteg Adatkapcsolati réteg fő feladatai: keretképzés hibadetektálás és javítás pl Hamming kód, CRC, Go-Back-n forgalomszabályozás (flow control) pl: ACK, Stop&Wait közeghozzáférés vezérlése MAC Medium Access Control ISO OSI alkalmazási réteg megjelenítési réteg viszony réteg szállítási réteg hálózati réteg adatkapcsolati réteg fizikai réteg

Közeghozzáférés vezérlése (MAC) A hálózatokat két csoportba oszthatjuk: 1. pont-pont közötti összeköttetés bármely két csomópont között 2. üzenetszórásos csatorna az összes csomópontnak Pont-pont összeköttetés esetén a csatorna dedikált, nincs szükség MAC-re. Üzenetszórásos csatorna esetében a fő kérdés: A közös csatorna hozzáférési jogáért folytatott küzdelemben ki lesz a győztes? Alternatív elnevezések: Többszörös hozzáférésű = Multiple Access Véletlen hozzáférésű = Random Access

Közeghozzáférés vezérlése (MAC) A csatornakiosztás lehet statikus vagy dinamikus Statikus megosztási módszerek: frekvenciaosztásos (FDM Frequency Division Multiplexing) időosztásos (TDM Time Division Multiplexing) kódosztásos (CDM Code Division Multiplexing) Hátrány: Nagy állomásszám és/vagy nem egyenletes forgalom esetén a kihasználtság drasztikusan lecsökken. Dinamikus csatornakiosztás esetén a változó igényeknek megfelelően oszthatjuk ki a csatornahozzáférés jogát.

MAC Feltételézések, követelmények Feltételezések a csatornakiosztás vizsgálatánál: N független állomás, egymással kommunikálnak Egyetlen csatorna, minden állomás ezen ad és vesz Ütközés: Ha két keretet időben átlapolódik, a jelek összekeverednek, ütközés lép fel. Az ütközést az összes állomás érzékeli. Folyamatos idő vs. résekre osztott idő. Csatornafigyelés: Képesek-e az állomások adás előtt megállapítani, hogy a csatornát már használja-e valaki? Spec. WSN követelmények: A node-ok aktív részvétele csak az idő kis töredékében biztosítható. (energiatakarékosság) Az frekvenciagenerátorok (MEMS, olcsó kristály) pontossága csekély, így az időosztásos technikák nem hatékonyak. Egyszerűen implementálható (olcsó) megoldások.

Közeghozzáférési (MAC) technikák Vezetéknélküli MAC technikák ALOHA CSMA Vivőérzékeléses többszörös hozzáférés Lekérdezés (Polling) Szenzorhálózati megoldások WINS PicoRadio MD (Mediation Device) protokoll

ALOHA Az első, véletlen hozzáférésű vezetéknélküli MAC. Csillag hálózati topológia, a központban egy vezérlővel. Külön csatornák a be- és kimenő forgalomnak. Az állomások a csatornához aszinkron módon férnek hozzá. Ütközés után az állomások újra próbálkoznak egy véletlen várakozási idő után. Poisson érkezési folyamat esetén az áteresztőképesség: Ge 2G, ahol G a felajánlott forgalom. Az elérhető maximális áteresztőképesség: 1/(2e)=0.184. Spec: réselt ALOHA-val a csatornakihasználtság javítható WSN szempontból a csillag topológia a mester csomóponttal nem megfelelő.

CSMA Vivőérzékeléses többszörös hozzáférés CSMA alapú protokoll-család, az ALOHA csatornakihasználtságán próbál meg javítani. Alapötlet: Minden állomás az adás előtt belehallgat a csatornába, és csak akkor kezd el adni, ha a csatorna szabad. nem-perzisztens CSMA: Ha a csatorna szabad, továbbítja a csomagot. Ha a csatorna foglalt, egy véletlen ideig várakozik, majd újra próbálkozik. Hátrány: A várakozás ideje alatt a csatorna kihasználatlan. Ha a csatorna szabaddá válik, egyszerre többen is próbálkozhatnak adással. p-perzisztens CSMA: Ha a csatorna szabad, p valószínűséggel azonnal ad, (1-p) valószínűséggel viszont várakozik. A p paraméter optimális értéke a forgalom függvénye.

CSMA rejtett terminál problémája A B C A éppen ad B-nek. C is szeretne adni B-nek. Belehallgat a csatornába, üresnek találja azt, ezért elkezd adni. B-nél interferencia lép fel, a csomagok elvesznek.

CSMA látható terminál problémája A B C D B éppen ad A-nak. C szeretne adni D-nek. Belehallgat a csatornába, de foglaltnak találja azt, így nem kezd el adni. A C-D kommunikáció nem jöhet létre, pedig B nem okozna interferenciát D-nél.

CSMA foglalt jelzéssel A rejtett és látható terminál problémája jelentősen rontja a csatornakihasználást WLAN rendszerekben. Megoldás: Foglalt jelzés adása egy másodlagos csatornán Az éppen csomagot fogadó állomás foglalt jelzést küld egy külön csatornán. Minden állomás adás előtt ellenőrzi a foglalt jelet is. Hátrány: A node-oknak képesnek kell lenniük egyszerre adni és venni. (Nagyobb komplexitás, nagyobb fogyasztás, magasabb ár) Nagyobb sávszélességigény a két csatorna miatt.

MACA Többszörös hozzáférés ütközés elkerüléssel MACA Multiple Access with Collision Avoidance Ötlet: RTS-CTS ( kérés küldéshez szabad küldeni ) jelzéscsere a kommunikáció kezdetekor. A küldő egy RTS csomagot küld a célnak. Ha nem foglalt, a cél visszaküld egy CTS csomagot. A küldő elkezd adni. További variációk RTS-CTS kézfogásra: CSMA/CA (Collision Avoidance): IEEE 802.11 WLAN szabványban MACAW: Xerox Palo Alto research Center FAMA (Floor Aquisition Multiple Access)

CSMA szenzorhálózatokban CSMA alkalmazásakor probléma, hogy az állomásoknak adott ideig hallgatniuk kell a csatornát mielőtt adnának. Globális időszinkron hiányában, nagy szomszédszám esetén egy node különböző időkben kell figyeljen a különböző szomszédaira. (Nincs idő alvásra.) Globális időszinkron egy ad-hoc, multi-hop hálózatban tetszőleges fizikai topológia esetén egyáltalán nem triviális feladat.

Lekérdezés (Polling) CSMA alternatívája lehet a lekérdezés (poll). Lekérdezés esetén egy node csak akkor adhat, ha erre engedélyt kap egy mester node-tól. Ez megköveteli, hogy időről időre a mester lekérdezze a nodeokat, hogy kívánnak-e adni. Ha egy node jelzi, hogy adni szeretne, a mester kijelöli, hogy mikor teheti ezt meg. így a mester vezérli a csatorna-hozzáférést. Előnyök: Determinisztikus időzítés, nincs véletlen késleltetés (azaz a késleltetés ingadozás kicsi). A központosított csatornavezérlés lehetővé teszi a rugalmas, igény szerinti kiosztást (QoS biztosítása). A fair csatornahozzáférés biztosítható. Mentes a rejtett terminál problémától.

Lekérdezés (Polling) Hátrányok WSN-ben: A mester node terhelése magas. A node-oknak figyelniük kell a lekérdezésekre, esetlegesen a nemleges választ is továbbítaniuk kell. A node-ok számával arányosan a lekérdezésre szánt idő is növekszik. (Több száz ill. ezer node esetében ez időtrabló!) Az architektúra feltételezi, hogy minden node a mester rádiókörnyezetén belül van (single-hop kommunikáció). Megj.: Léteznek kiterjesztések multi-hop esetre is.

Lekérdezés (Polling) A Bluetooth is lekérdezéses algoritmust használ. Single-hop, maximum 7 slave node, szinkron átvitel (pl. valósidejű hang) Három energiatakarékos mód: HOLD: adott fix ideig alszik, de szinkronban marad SNIFF: időről időre felébred néhány lekérdezésre PARK: hosszabb ideig alszik A különböző módok menedzselése messze nem triviális feladat.