SZENZOROK ÉS MIKROÁRAMKÖRÖK
|
|
- Aurél Fodor
- 8 évvel ezelőtt
- Látták:
Átírás
1 SZENZOROK ÉS MIKROÁRAMKÖRÖK 14. ELŐADÁS: SUGÁRZÁSÉRZÉKELŐK II 2014/2015 tanév 2. félév 1
2 1. Nem-mikroelektronikai (hagyományos) érzékelők. 2. Sugárzás és félvezetőanyag kölcsönhatása. 3. Félvezető és mikroelektronikai sugárzásdetektorok. 4. Illesztő áramkörök, töltésérzékeny és áramérzékeny erősítők. Sokcsatornás analizátor. 5. Sugárzás hatása elektronikai eszközökre. 2
3 BEVEZETŐ: A SUGÁRZÁS KIMUTATÁSA Diffúziós ködkamrák: A ködkamra (más néven Wilson-kamra) egy zárt tartály, amiben víz vagy alkoholgőz van és egy rendkívül hideg felület. Ha a kamrába egy vagy részecske érkezik az a pályája mentén ionpárokat hoz létre, aminek hatására a ködkamrában kicsapódik a gőz és - mint a sugárhajtású repülő gépek - kondenzcsíkot húznak maguk után. Így megfigyelhetők a radioaktív részecskék pálya és meg is lehet számlálni őket. 3
4 BEVEZETŐ: A SUGÁRZÁS KIMUTATÁSA A fényképen egy ködkamráról készült felvétel látható. A vékony, hosszú, csíkok -részecskék útvonalát jelzik a rövidebb vastag vonalak pedig -részecskék pályája. 4
5 BEVEZETŐ: GÁZIONIZÁCIÓS ÉS FÉLVEZETŐ DETEKTOR 5
6 BEVEZETŐ: FILM DÓZISMÉRŐ Filmdózismérő válaszjelének dózisfüggése 6
7 TERMOLUMINESZCENS DÓZISMÉRÉS A termolumineszcens detektorok működésének alapja az, hogy a sugárzás (általában -sugárzás) hatására a kristályok elektronjai gerjesztett állapotba kerülnek, majd a kristály szennyezőatomjain befogódnak, és onnan csak felmelegítés hatására lépnek ki és térnek vissza az alapállapotba. Eközben látható, vagy ahhoz közeli hullámhosszú fényt emittálnak. A kibocsájtott fotonok száma arányos a doziméterben eredetileg elnyelt sugárzással. 7
8 TERMOLUMINESZCENS DÓZISMÉRÉS A KFKI Pille TLD fényhozamának időfüggése (hőmérsékletfüggése) kifűtéskor. A méréskor a középső, a dózissal arányos csúcs területét kell meghatározni. 8
9 ő 9
10 PILLE DOZIMÉTER A KFKI Energiatudományi Kutatóintézetében űrállomáson való felhasználásra kifejlesztett PILLE dózismérő két részből áll: 1. Tetszőleges számú TL doziméterből, ami egy levákumozott üvegcsőbe (burába) zárt kis fűtőtestre speciális CaSO 4 :Dy kristályszemcsékből áll; ezeket gerjeszti az ionizáló sugárzás. 2. Egy könnyű, kompakt, hordozható TLD kiolvasó rendszerből, ami órával rendelkezik és programozható. Így magában a készülékben, a mérőállásban hagyott doziméter segítségével lehetővé válik a dózisteljesítmény időprofiljának meghatározása, akár operátori beavatkozás nélkül is. Természetesen a készüléktől távol besugárzott doziméterek kiértékelése is lehetséges. Dy: diszprózium, ritkaföldfém, csak ásványokban fordul elő. 10
11 PILLE DOZIMÉTER A TLD kiolvasó mikroprocesszorral (µp) vezérelt egysége biztosítja a doziméterek abszorbeált dózisának előzetes kiértékelését. A kiolvasó a TL anyagot a burában előre meghatározott módon fűti, az ennek következtében leadott fénymennyiséget mérve, az abszorbeált dózis mérhető; értéke megjeleníthető és a kivehető memóriakártyán tárolható. A kártyán 8000 mérés adatai (dózis, a kiolvasó és a doziméter azonosító kódja, a dátum és idő, hiba kód, a mérés és kiértékelés paraméterei, és a digitális hevítési görbe) tárolhatók. A kiolvasó főbb részei: mikroprocesszor (µp), a fűtés tápegysége, fotoelektronsokszorozó (PMT), szélessávú I/U és A/D konverter, memóriakártya meghajtó, nagyfeszültségű tápegység (HV). 11
12 PILLE DÓZISMÉRŐ A Pille rendszer egyszerűsített tömbvázlata 12
13 PILLE DOZIMÉTER Természetesen létezik a PILLÉ-nek földi, de szintén hordozható változata is (PorTL), amelyet széles körben alkalmaznak a környezeti sugárzás monitorozásra, pl. Pakson is. Ezek a fejlett doziméter-kiolvasó egységek korrigálni tudnak a környezet hőmérsékletének tág határok közötti ingadozásaira is. 13
14 Második űrutazás: március 25 április 3, teljes mért dózis 596 Gray. 14 Average dose rate from lauch-to-docking 10,8 Gray/h
15 15
16 HAGYOMÁNYOS SUGÁRZÁSÉRZÉKELŐK A legfontosabb nem-mikroelektronikai sugárzásdetektorok: Szcintillációs detektorok Gáztöltésű detektorok, ezen belül proporcionális számláló Geiger-Müller cső 16
17 SUGÁRZÁSOK HATÁSAI 17
18 SUGÁRZÁSOK HATÁSAI 18
19 SUGÁRZÁSOK HATÁSAI 19
20 SZCINTILLÁCIÓS DETEKTOR Szcintilláció: az ionizáló sugárzás által leadott energia gerjeszti a szcintillátor anyagot, amely fényt emittálva relaxálódik. Szcintillátor anyagok: Szervetlen kristályok: NaI(Tl), ZnS(Ag), CsI(Tl), CaF2(Eu) Szervetlen molekulák Alkalmazás: -spektroszkópia folyadék-szintilláció / számlálás 20
21 SZCINTILLÁCIÓS DETEKTOR A szcintilláció látható és/vagy UV fény felvillanását jelenti. A szcintillációs detektor szcintillációs anyagból és fotoelektronsokszorozóból áll. A szcintillációs anyagon áthaladó -foton vagy elektron gerjeszti az atomokat, amelyek az alapállapotba való relaxációnál szcintillációs fotont bocsájtanak ki, ezeket a PEM 21 detektálja.
22 SZCINTILLÁCIÓS DETEKTOR A detektor maga egy szcintillációs kristály (talliummal aktívált nátrium-jodid, NaI(Tl) a Röntgen-, bizmut-germanát (BGO), kadmium-volframát (CWO), illetve lutécium-oxiortoszilikát (LSO) a -tartományban), ami a beérkező sugárzás hatására a látható fény tartományába eső fényfelvillanást hoz létre. A fény egy fotoelektron-sokszorozóra jut, ami fényt elektromos jellé alakítja és fel is erősíti. A fotoelektron-sokszorozó kimenetéről a jel egy nagy bemenő ellenállású előerősítőre jut, majd egy nagy erősítésű erősítő következik. Az erősítő láncot egy amplitúdó - diszkriminátor követi, amit már a kijelző egység követ. Az amplitúdó-diszkriminátor lehetővé teszi egy energia szint beállítását, ami alatti jeleket a kijelző egység figyelmen kívül hagy. Így csökkenthetők a háttérsugárzás okozta zavarok. 22
23 SZCINTILLÁCIÓS DETEKTOR Fotoelektron-sokszorozó (photoelectron multiplier, PEM) Jó tulajdonságok: egyedi fotonszámlálás (single photon counting) rendkívül kis zaj Hátrányok: viszonylag nagy méret mechanikai érzékenység mágneses tér zavarja nagy feszültséget (kv) igényel Helyettesítése (perspektivikusan): nagy felületű PIN és/vagy APD dióda 23
24 GÁZIONIZCÁCIÓS DETEKTOROK Elv: gáznemű közegben létrehozott töltések mérése. 24
25 GÁZIONIZÁCÁCIÓS DETEKTOROK a-b iomizációs kamra energia szelektív, pl. -spektrométer b-c proporcionális kamra energia szelektív, nagy méret, - sugárzás (sugárkapuk) d-e Geiger-Müller cső nem energia szelektív,, dózismérők. 25
26 GEIGER-MÜLLER CSŐ/SZÁMLÁLÓ Fém henger közepén, attól elszigetelten, egy vékony fémszál húzódik, amire V-os feszültséget kapcsolunk. A fém henger alkohol gőzzel és egyéb gázok keverékével van töltve vagy csak halogén gázokkal, attól függően, hogy a cső önkioltó típus-e vagy sem. Az ionizáló sugárzás hatására a töltőgáz ionizálódik és a rákapcsolt nagy feszültség miatt lavinaszerűen megindul rajta az áram. A csővel sorba kapcsolt munkaellenálláson ekkor feszültség impulzus jelenik meg, amit felerősítve a számláló egységre vezetnek. 26
27 G-M CSŐ ÜZEMMÓDJAI Proporcionális üzemmód: Alacsony anódfeszültségnél az áramerősség arányos a primér részecskék által keltett töltéssel. Ekkor mérhető a részecske által a detektorban leadott energia. Számláló üzemmód: Nagy anódfeszültségnél az eszköz áram-feszültség karakterisztikája telítést mutat (plátó), minden ionizáló részecskénél azonos nagyságú impulzust keletkezik. 27
28 DÓZISTELJESÍTMÉNY MÉRÉS A Geiger-Müller számlálókat dózisteljesítmény mérésre szokták beskálázni, vagy pedig CPM-re. Ez a Count Per Minute rövidítése, ami a percenkénti beütések számát jelöli. Utóbbi esetben a Geiger-Müller cső adatlapjáról kell kinézni, hogy az adott CPM érték mekkora dózisteljesítménynek felel meg. 28
29 SUGÁRZÁS ÉS (FÉLVEZETŐ)ANYAG KÖLCSÖNHATÁSA Az érzékelőn akkor van kimenőjel, ha kölcsönhatás van az érzékelő anyaga és az érzékelendő jel, mennyiség között. Félvezetők és EM sugárzás ( -, Röntgen-, stb.) kölcsönhatása (három fő mechanizmus): - Fotoeffektus (tipikusan 0,25 MeV fotonenergiánál) - Compton szórás (néhány száz kev és néhány MeV közötti energiáknál) - Elektron-pozitron párkeltés (kb. 1 MeV energia felett) 29
30 SUGÁRZÁSÉRZÉKELŐK A legfontosabb és legelterjedtebb, nagyenergiájú EM sugárzás, illetve a nagyenergiájú részecske (nukleáris) sugárzás érzékelő a pin dióda. A záróirányban előfeszített félvezető dióda rendkívűl hatékonyan választja szét és gyűjti össze külön-külön a kiürítetett rétegben a nagyenergiájú sugárzás elnyelését kísérő ionizáció által keltett töltéshordozókat. Mivel a nagyenergiájú sugárzások abszorbciós tényezője nem túl nagy ( cm -1, összehasonlítás képen, a sávél környékén a látható- vagy infravörös tartományban ez cm -1 ), ezért az elegendően nagy elnyelés hossz csak igen nagy fajlagos ellenállású illetve erősen kompenzált félvezetőanyaggal érhető el. 30
31 PN-ÁTMENETES NUKLEÁRIS RÉSZECSKE ÉRZÉKELŐ Pn-átmenetes (p + -n - -n + dióda) sugárzásérzékelő: kb. 3eV energia kelt egy elektronlyukpárt, magasabb jelszint minta klasszikus gáztöltésű érzékelőknél), jó linearitás széles energiatartományban, nagyobb érzékenység, kisebb helyfoglalás.
32 NAGYENERGIÁJÚ -SUGÁRZÁS ABSZORPCIÓS TÉNYEZŐJE 32
33 FOTOEFFEKTUS Tipikusan < 0,25 MeV fotonenergiánál dominál. Fotoelektromos-effektus: a beeső foton egy belső héjon lévő elektront üt ki. Az üresen maradt helyre a külső héjakról történik feltöltés, amely szekunder foton-emisszióval jár. 33
34 FOTOEFFEKTUS A foton elektron-lyuk párokat kelt: N = E/ε N - a keltett e-h párok száma; E - beeső -, Röntgen-, stb. foton energiája; ε - egy e-h pár keltéséhez szükséges energia. Az elnyelési mélység az atomok rendszámától Z -5 szerint függ. = const x (h ) -7/2 d Z -5 34
35 ELEKTRON-LYUK PÁRKELTÉSI ENERGIA Félvezető anyag Tiltott sáv (ev) Energiaveszteség egy e-h párra Rendszám Z Ge 0,66 3,0 32 Si 1,12 3,65 14 CdTe 1,56 4,4 48, 52 GaAs 1,42 4,7 31, 33 SiC 3,0 9 14, 6 HgI 2 2,1 4,2 80, 53 C (gyémánt) 5,
36 ELEKTRON-LYUK PÁRKELTÉSI ENERGIA Average energy to create an electron hole pair as a function 36 of band-gap energy for a selection of semiconductors.
37 ELEKTRON-LYUK PÁRKELTÉS Numerikus példa: 1 MeV energiájú -foton szilícium (Si) detektorban N = 1x10 6 /3,65 = 2,74x10 5 elektron-lyuk párt kelt. A töltéscsomag össztöltése Q = 4,4 fc. C = 1 pf kondenzátoron U =Q/C = 44 mv feszültséget hoz létre. 37
38 COMPTON SZÓRÓDÁS Néhány 100 kev és néhány MeV között a meghatározó kölcsönhatási illetve elnyelési folyamat. Compton-effektus: a beeső fotonok az atomok külső héján lévő elektronokon szóródnak, az atomot ionizálva szabad elektronokat keltenek. 38
39 COMPTON SZÓRÓDÁS A Compton effektusnál a h energiájú foton mint részecske ütközik egy (nyugalomban lévő) elektronnal, és energiája egy részét annak átadja. Az ütközésben az elektron mozgási energiára és impulzusra tesz szert, a fotonnak megváltozik az impulzusa (iránya), és energiát veszítve csökken a frekvenciája (h ). A h energiájú és h/c impulzusú foton ütközése az m o c 2 nyugalmi tömegű és zérusimpulzusú elektronnal a relativisztikus mechanika törvényeivel (energia- és impulzus-megmaradás) írható le. 39
40 COMPTON SZÓRÓDÁS A Compton effektus a fotoeffektus mellett a fény részecsketermészetének másik klasszikus kísérleti bizonyítéka, (fizikai Nobel-díj, 1927). A foton a kölcsönhatásban nem nyelődik el, csak veszít az energiájából, majd újabb szóródás - vagy ha az energiája eléggé lecsökkent - fotoelektromos gerjesztés következhet. 40
41 ELEKTRON-POZITRON PÁR KÉPZŐDÉS Nagy energiáknál (E > 2m o c 2 = 1,02 MeV) elektron-pozitron párkeltés lehetséges. Ezek sorozatos ütközések miatt elveszítik energiájukat, majd a pozitron egyesül egy rácselektronnal, és két nagyenergiájú foton keletkezik, melyek Compton-szóródással nyelődnek el. 41
42 RÉSZECSKE-SUGÁRZÁS ELNYELÉSI MECHANIZMUSAI A töltött részecskéket tartalmazó sugárzás ( -, -, protonsugárzás, stb.) Coulomb-kölcsönhatások sorozatát indítja el a szilárd test elektronjaival. A -sugárzás energiájának jelentős része az atomok gerjesztésére és ionizációjára fordítódik. Az atomok különböző elektronhéjairól elektronok lökődnek ki, és a belső pályákon így keletkezett helyekre a külső pályákról elektronok hullanak be, melyet a megfelelő elektromágneses hullám (látható fény, UV fény, vagy Röntgensugárzás) kísér. 42
43 RÉSZECSKE-SUGÁRZÁS ELNYELÉSI MECHANIZMUSAI A folyamatos kölcsönhatások következtében fékeződő elektron elektromágneses sugárzó, és így mozgási energiájának egy része folytonos spektrumú Röntgensugárzássá alakul. A -sugárzás anyagban való elnyelésére csak közelítőleg érvényes összefüggés: I = I o exp(-mx) (x - rétegvastagság, m - abszorpciós együttható). 43
44 Semiconductor sensors Semiconductors widely used for charged particle and photon detection based on ionisation - same principles for all types of radiation What determines choice of material for sensor? Silicon and III-V materials widely used physical properties availability ease of use cost Silicon technology is very mature high quality crystal material relatively low cost but physical properties do not permit it to be used for all applications 44
45 FÉLVEZETŐK DETEKTOROKBAN Félvezető anyag N D - N A [cm -3 ] Nagytisztaságú Si (hpsi) 3x10 10 Lítiummal (Li) kompenzált Ge vagy Si (77 K) > 10 8 Nagytisztaságú Ge (77 K) (hpge) > 5x10 9 CdTe, nagytisztaságú CdTe, kompenzált < GaAs, epitaxiás réteg (v < 200 m) GaAs, tömb, félszigetelő (v < 1 mm)) SiC HgI 2 félszigetelő C (gyémánt) szigetelő 45
46 Requirements on diodes for sensors Operate with reverse bias should be able to sustain reasonable voltage larger E (V) = shorter charge collection time Dark (leakage) current should be low noise source, ohmic current = power Capacitance should be small noise from amplification ~ C, defined by geometry, permittivity and thickness circuit response time ~ [R] x C Photodetection thin detector: high E but high C unless small area X-ray and charged particle detection "thick" detectors required for many applications efficiency for x-rays larger signals for energetic charged particles dielectric between conducting regions commercial packaged photodiodes 46
47 Silicon as a particle detector Signal sizes typical H.E. particle ~ e 300µm Si 10keV x-ray photon ~ 2800e Ge large crystals possible higher Z must cool for low noise No in-built amplification E < field for impact ionisation Voltage required to deplete entire wafer thickness V depletion (q/2e)n D d 2 N D = substrate doping concentration N D cm -3 => r = (qµn D ) kΩ.cm V depletion 70V for 300µm Electronic grade silicon N D > cm -3 N D = : N Si ~ 1 : ultra high purity! GaAs less good material - electronic grade crystals less good charge collection further refining required Float Zone method: local crystal melting with RF heating coil 47
48 PIN DIÓDÁK MINT NUKLEÁRIS DETEKTOROK A félvezető sugárzásdetektorok lényegében pn-átmenetes, vagy p-i-n szerkezetű diódák, elvileg igen hasonlóak a fotodiódákhoz. Specifikus különbségek: - nagyobb rekombinációs veszteség, kisebb kvantum-hatásfok; - kis elnyelési tényező, igen vastag kiürített rétegre van szükség. 48
49 Ge(Li) ÉS Si(Li) DETEKTOR Li-iondrift technlógiával készült detektor vázlata. "Driftelt" Ge(Li) és Si(Li) detektorok: lényegében PIN diódák. Az intrinsic réteget Li ionok elektromos térrel segített alacsony hőmérsékleti diffúziójával alakítják ki. 49
50 Ge(Li) ÉS Si(Li) DETEKTOR A lítium I. oszlopbeli elem, igen kicsi az atomsugara, ezért rácsközi atomként épül be a félvezető kristályrácsába, ott ionizálva Li + ionént donor, és így kompenzálja a kristály p- típusú háttérszennyezőit. A Li + ion a kristályrácsban annyira mozgékony, hogy a Ge(Li) detektoroknak még a tárolási hőmérséklete is jóval a szobahőmérséklet alatt van! A Ge(Li) detektor természetesen csak alacsony hőmérsékleten (pl. 77 K) üzemeltehető. A Si(Li) detektort is 77 K-en szokás üzemeltetni, a zaj lecsökkentése céljából. 50
51 Ge(Li) ÉS Si(Li) DETEKTOR A Li driftelt detektor univerzális, alkalmas részecskesugárzás (pl. -, - sugárzás), vagy elektromágneses sugárzás ( -, Röntgen-sugárzás) érzékelésére és mérésére. Ha csak a korpuszkuláris sugárzás érzékelése a cél, az ablakra igen vékony alumínium réteget kell felvinni, mely átengedi az - és -részecskéket, de elnyeli a fotonokat, így a háttérzaj kiszűrhető. 51
52 Silicon microstrip detectors Segment p-junction into narrow diodes E field orthogonal to surface each strip independent detector Detector size limited by wafer size < 15cm diameter Signal speed <E> 100V/300µm p-type strips collect holes v hole 15 µm/ns Connect amplifier to each strip can also use inter-strip capacitance & reduce number of amplifiers to share charge over strips Spatial measurement precision defined by strip dimensions and readout method ultimately limited by charge diffusion s ~ 5-10µm 52
53 JELFELDOLGOZÁS A záróirányban előfeszített pn átmeneten alapuló sugárzásérzékelők más típusú jelfeldolgozó áramkört igényelnek mint a hasonló szerkezeti kialakítású optikai sugárzásdetektorok. A részecske- vagy kvantumdetektorban egyedi töltések, illetve töltéscsomagok keletkeznek, a töltésfelhalmozódás ideje nagyjából a kiürített rétegben való áthaladás ideje, tipikusan néhány nanosec néhány tíz nanosec. A töltéscsomag mérése kapacitív impedancia révén történhet. 53
54 TÖLTÉSÉRZÉKENY ERŐSÍTŐ 54
55 TÖLTÉSCSOMAG ÉRZÉKELÉSE 55
56 FET ELŐERŐSÍTŐ Félvezetető detektor illesztése nagy bemeneti impedanciájú erősítőhöz. 56
57 TÖLTÉSÉRZÉKENY ERŐSÍTŐ Töltésérzékeny erősítő jelének zavarszűrése és a jelalak formálása RC és CR szűrővel. A két egységnyi erősítésű fokozat szerepe a töltésérzékeny erősítő, az integráló tag (RC), és a differenciáló tag (CR) funkcióinak szétválasztása. 57
58 DETECTOR SIGNAL PROCESSING 58
59 CdTe (CdZnTe) ALAPÚ ENERGIA- SPEKTRÁLIS ÉRZÉKELŐ 59
60 CdTe (CdZnTe) ALAPÚ ENERGIA- SPEKTRÁLIS ÉRZÉKELŐ The XR-100T-CdTe and -CZT are high performance X-ray and -ray detection systems. They are based upon planar semiconductor radiation detector, mounted on a thermoelectric cooler inside a small hybrid package. Thermoelectric cooling permits very high energy resolution without cryogenic cooling. This system is well-suited for X-ray and -ray spectroscopy applications requiring high energy resolution but where the use of liquid nitrogen is inconvenient or impossible. They are finding increasing applications in fields as diverse as chemical analyses using X-Ray Fluorescence under field conditions, isotopic measurements for environmental remediation and for national security measurements, medical uses, and many research uses. 60
61 CdTe (CdZnTe) ALAPÚ ENERGIA- SPEKTRÁLIS ÉRZÉKELŐ 61
62 SOKCSATORNÁS ANALIZÁTOR Schematic diagram of the detector and electronics. Typical outputs from each stage of the processing electronics are sketced below. 62
63 MULTICHANNEL ANALYZER: ENERGY SPECTRUM In most applications, one is interested in measuring the deposited energy, which is proportional to the total charge rather than the current. Charge is the integral of current so the detector is attached to a chargesensitive preamplifer, which produces an output pulse with a voltage step directly proportional to the time integral of the current. The preamp is followed by a shaping amplifier, which shapes the pulse to allow accurate measurements under realistic conditions. The shaped, noise filtered and amplified voltage pulse with peak amplitude proportional to the deposited energy, is then sent to a multichannel analyzer, which measures the peak amplitude of many pulses, producing a histogram showing the number of pulses with amplitude measured within the range of each channel. This is the output spectrum. 63
64 Mo RÖNTGEN-FORRÁS SPEKTRUMA 64
65 ÓLOM (Pb) RÖNTGEN SPEKTRUMA Representative spectrum from Pb X-Rays measured using an Amptek XR-100T-CdTe system. 65
66 URÁNIUM SPEKTRUMA 97%-os dúsítású (235U) uránium, illetve elszegényített (235U) uránium fluoreszcens spektruma. Különbség: 185,72 kev-os csúcs megjelenése, illetve hiánya. 66
67 A SUGÁRZÁS KIMUTATÁSA Ködkamrát akár házilag is készíthetünk, erre több leírást is találni az interneten, egyetlen nehezebben beszerezhető alkatrész az a szárazjég. Azonban ha nem szeretnénk ezzel foglalatoskodni, akkor a paksi atomerőmű bemutató termében meg is tekinthetünk egy üzemképes példányt. 67
68 68
69 Silicon detector radiation damage As with all sensors, prolonged exposure to radiation creates some permanent damage - two main effects Surface damage Extra positive charge collects in oxide all ionising particles generate such damage MOS devices - eg CCDs - are particularly prone to such damage Microstrips - signal sharing & increased interstrip capacitance - noise Bulk damage atomic displacement damages lattice and creates traps in band-gap only heavy particles (p, n, p, ) cause significant damage increased leakage currents - increased noise changes in substrate doping 69
MIKROELEKTRONIKAI ÉRZÉKELİK II
MIKROELEKTRONIKAI ÉRZÉKELİK II Dr. Pıdör Bálint BMF KVK Mikroelektronikai és Technológia Intézet és MTA Mőszaki Fizikai és Anyagtudományi Kutató Intézet 2. ELİADÁS: SUGÁRZÁSÉRZÉKELİK II 2. ELİADÁS: SUGÁRZÁSÉRZÉKELİK
-A homogén detektorok közül a gyakorlatban a Si és a Ge egykristályból készültek a legelterjedtebbek.
Félvezető detektorok - A legfiatalabb detektor család; a 1960-as évek közepétől kezdték alkalmazni őket. - Működésük bizonyos értelemben hasonló a gáztöltésű detektorokéhoz, ezért szokták őket szilárd
A gamma-sugárzás kölcsönhatásai
Ref. [3] A gamma-sugárzás kölcsönhatásai Az anyaggal való kölcsönhatás kis valószínűségű hatótávolság nagy A sugárzás gyengülését 3 féle kölcsönhatás okozza. fotoeffektus Compton-szórás párkeltés A gamma-fotonok
Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.
Különböző sugárzások tulajdonságai Típus töltés Energia hordozó E spektrum Radioaktí sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktí sugárzások detektálása. α-sugárzás pozití
Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.
Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása. Magsugárzások (α, β, γ) kölcsönhatása atomi rendszerekkel (170-174, 540-545 o.) Direkt és
Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT)
Röntgensugárzás az orvostudományban Röntgen kép és Komputer tomográf (CT) Orbán József, Biofizikai Intézet, 2008 Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken
3. GAMMA-SUGÁRZÁS ENERGIÁJÁNAK MÉRÉSE GAMMA-SPEKTROMETRIAI MÓDSZERREL
3. GAMMA-SUGÁRZÁS ENERGIÁJÁNAK MÉRÉSE GAMMA-SPEKTROMETRIAI MÓDSZERREL A gamma-sugárzás elektromágneses sugárzás, amely vákuumban fénysebességgel terjed. Anyagba ütközve kölcsönhatásba lép az anyag alkotóelemeivel,
Röntgensugárzás. Röntgensugárzás
Röntgensugárzás 2012.11.21. Röntgensugárzás Elektromágneses sugárzás (f=10 16 10 19 Hz, E=120eV 120keV (1.9*10-17 10-14 J), λ
Részecske- és magfizikai detektorok. Atommag és részecskefizika 9. előadás 2011. május 3.
Részecske- és magfizikai detektorok Atommag és részecskefizika 9. előadás 2011. május 3. Detektorok csoportosítása Tematika Gáztöltésű detektorok, ionizációs kamra, proporcionális kamra, GM-cső működése,
Nehéz töltött részecskék (pl. α-sugárzás) kölcsönhatása
Az ionizáló sugárzások kölcsönhatása anyaggal, nehéz és könnyű töltött részek kölcsönhatása, röntgen és γ-sugárzás kölcsönhatása Az ionizáló sugárzások mérése, gáztöltésű detektorok (ionizációs kamra,
SUGÁRZÁS DETEKTÁLÁS - MÉRÉS SUGÁRZÁS DETEKTÁLÁS - MÉRÉS. A sugárzás mérés eszközei Méréstechnikai módszerek, eljárások
SUGÁRZÁS DETEKTÁLÁS - MÉRÉS A sugárzás mérés eszközei Méréstechnikai módszerek, eljárások Dr. Kári Béla Semmelweis Egyetem ÁOK Radiológiai és Onkoterápiás Klinka / Nukleáris Medicina Tanszék SUGÁRZÁS DETEKTÁLÁS
Sugárzások kölcsönhatása az anyaggal
Radioaktivitás Biofizika előadások 2013 december Sugárzások kölcsönhatása az anyaggal PTE ÁOK Biofizikai Intézet, Orbán József Összefoglaló radioaktivitás alapok Nukleononkénti kötési energia (MeV) Egy
Sugárzás mérés. PTE Pollack Mihály Műszaki és Informatikai Kar DR. GYURCSEK ISTVÁN
PTE Pollack Mihály Műszaki és Informatikai Kar DR. GYURCSEK ISTVÁN Sugárzás mérés Forrás és irodalom: Lambert Miklós: Szenzorok elmélet (ISBN 978-963-874001-1-3) Bp. 2009 1 2015.04.14.. Sugárzás érzékelők
Sugárvédelem kurzus fogorvostanhallgatók számra. Töltött részecskék elnyelődése. Sugárzások és anyag kölcsönhatása. A sugárzások elnyelődése
Sugárvédelem kurzus fogorvostanhallgatók számra 2. Az ionizáló sugárzás és az anyag kölcsönhatása. Fizikai dózisfogalmak és az ionizáló sugárzás mérése Sugárzások és anyag kölcsönhatása. A sugárzások elnyelődése
FÉLVEZETŐ ESZKÖZÖK, MINT SUGÁRZÁSÉRZÉKELŐ DETEKTOROK
Nagy Gábor1 1 - Vincze Árpád 2 FÉLVEZETŐ ESZKÖZÖK, MINT SUGÁRZÁSÉRZÉKELŐ DETEKTOROK Absztrakt Mindennapi életünkben igen gyakori feladat a radioaktív sugárzások mérése, pl. laboratóriumokban, üzemekben,
Röntgen. W. C. Röntgen. Fizika-Biofizika
Röntgen Fizika-Biofizika 2014. 11. 11. Thomas Edison (1847-1931, USA) Első működő fluoroszkóp (röntgen-készülék) feltalálása, 1896 Sugárvédelem hiánya égési sérülések Clarence Madison Dally (Edison aszisztense):
Képrekonstrukció 2. előadás
Képrekonstrukció 2. előadás Balázs Péter Képfeldolgozás és Számítógépes Grafika tanszék Szegedi Tudományegyetem Az atomszerkezet Atommag (nukleusz): {protonok (poz. töltés) és neutronok} = nukleonok Keringő
Sugárzás kölcsönhatása az anyaggal 1. Fény kölcsönhatása az anyaggal. 2. Ionizáló sugárzás kölcsönhatása az anyaggal KAD
Sugárzás kölcsönhatása az anyaggal 1. Fény kölcsönhatása az anyaggal 2. Ionizáló sugárzás kölcsönhatása az anyaggal KAD 2012.10.03 1976 2 1. 3 4 n 1 >n 2 5 6 7 8 9 10 11 12 13 14 2. Az ionizáló sugárzások
A terhelés megoszlása a források között. A becsült átlagos évi dózis természetes és mesterséges forrásokból 3.6 msv.
A becsült átlagos évi dózis természetes és mesterséges forrásokból 3.6 msv. A terhelés megoszlása a források között környezeti 238 U Radon Kb. 54% ipari termékek 3% egyéb 1% nukleáris medicina 4% orvosi
Mag- és neutronfizika 5. elıadás
Mag- és neutronfizika 5. elıadás 5. elıadás Szcintillációs detektorok (emlékeztetı) Egyes anyagokban fényfelvillanás (szcintilláció) jön létre, ha energiát kapnak becsapódó részecskéktıl. Anyagát tekintve
Ionizáló sugárzások dozimetriája
Ionizáló sugárzások dozimetriája A becsült átlagos évi dózis természetes és mesterséges forrásokból 3.6 msv. környezeti foglalkozási katonai nukleáris ipari orvosi A terhelés megoszlása a források között
Dozimetriai alapfogalmak. Az ionizáló sugárzás mérése
Dozimetriai alapfogalmak. Az ionizáló sugárzás mérése A DÓZISFOGALOM FEJLŐDÉSE A sugárzás mértékét számszerűen jellemző mennyiségek ERYTHEMA DÓZIS: meghatározott sugárminőséggel (180 kv, 1 mm Al szűrés),
A Nukleáris Medicina alapjai
A Nukleáris Medicina alapjai Szegedi Tudományegyetem Nukleáris Medicina Intézet Történet 1. 1896 Henri Becquerel titokzatos sugár (Urán) 1897 Marie and Pierre Curie - radioaktivitás 1901-1914 Rádium terápia
Részecske azonosítás kísérleti módszerei
Részecske azonosítás kísérleti módszerei Galgóczi Gábor Előadás vázlata A részecske azonosítás létjogosultsága Részecske azonosítás: Módszerek Detektorok ALICE-ból példa A részecskeazonosítás létjogosultsága
Compton-effektus ( cos. Szóródás elektronon A foton energiája csökken, iránya változik. Az impulzus és energia megmaradásából: γ = m c.
Compton-effektus Szóródás elektronon A foton energiája csökken, iránya változik. Az impulzus és energia megmaradásából: p 0 = p e + p 1 p e 2 2 2 = p p p 0 1 e p0 p1 p0 p1 = + 2 cos ϕ p c + m c = p c +
Detektorok. Siklér Ferenc MTA KFKI Részecske- és Magfizikai Kutatóintézet Budapest
Detektorok Siklér Ferenc sikler@rmki.kfki.hu MTA KFKI Részecske- és Magfizikai Kutatóintézet Budapest Hungarian Teachers Programme 2008 Genf, 2008. augusztus 19. Detektorok 1970 16 GeV π nyaláb, folyékony
Modern fizika laboratórium
Modern fizika laboratórium Röntgen-fluoreszcencia analízis Készítette: Básti József és Hagymási Imre 1. Bevezetés A röntgen-fluoreszcencia analízis (RFA) egy roncsolásmentes anyagvizsgálati módszer. Rövid
A kvantummechanika kísérleti előzményei A részecske hullám kettősségről
A kvantummechanika kísérleti előzményei A részecske hullám kettősségről Utolsó módosítás: 2016. május 4. 1 Előzmények Franck-Hertz-kísérlet (1) A Franck-Hertz-kísérlet vázlatos elrendezése: http://hyperphysics.phy-astr.gsu.edu/hbase/frhz.html
Jelöljük meg a kérdésnek megfelelő válaszokat! 1, Hullámokról általában: alapösszefüggések a harmonikus hullámra. A Doppler-effektus
Jelöljük meg a kérdésnek megfelelő válaszokat! 1, Hullámokról általában: alapösszefüggések a harmonikus hullámra. A Doppler-effektus Melyik egyenlet nem hullámot ír le? a) y = A sin 2π(ft x/λ) b) y = A
Sugárzásmérés DR. GYURCSEK ISTVÁN
DR. GYURCSEK ISTVÁN Sugárzásmérés Forrás és irodalom Lambert Miklós: Szenzorok elmélet (ISBN 978-963-874001-1-3) Bp. 2009 Jacob Fraden: Handbook of Modern Sensors (ISBN 978-1-4419-6465-6) Springer NY.
Atomfizika. Fizika kurzus Dr. Seres István
Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés J.J. Thomson (1897) Katódsugárcsővel végzett kísérleteket az elektron fajlagos töltésének (e/m) meghatározására. A katódsugarat alkotó részecskét
Félvezető- és gáztöltésű detektorok. Kiss Gábor november 4.
Félvezető- és gáztöltésű detektorok Detektorok Feladat: nyomkövetés (tracking) és részecskeazonosítás (PID) 2 Detektorok II. Szempontok: Az ütközkési ponthoz közel minél jobb helyfelbontás Az áthaladó
PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész
PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész MTA Izotópkutató Intézet Gméling Katalin, 2009. november 16. gmeling@iki.kfki.hu Isle of Skye, UK 1 MAGSPEKTROSZKÓPIAI MÓDSZEREK Gerjesztés:
Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft
Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft Atom- és molekula-spektroszkópiás módszerek Módszer Elv Vizsgált anyag típusa Atom abszorpciós spektrofotometria (AAS) A szervetlen Lángfotometria
Mérés és adatgyűjtés
Mérés és adatgyűjtés 7. óra Mingesz Róbert Szegedi Tudományegyetem 2013. április 11. MA - 7. óra Verzió: 2.2 Utolsó frissítés: 2013. április 10. 1/37 Tartalom I 1 Szenzorok 2 Hőmérséklet mérése 3 Fény
RONCSOLÁSMENTES VIZSGÁLATTECHNIKA
RONCSOLÁSMENTES VIZSGÁLATTECHNIKA NDT TECHNICS FÉMLEMEZEK VASTAGSÁGÁNAK MÉRÉSE RÖNTGENSUGÁRZÁS SEGÍTSÉGÉVEL THICKNESS MEASURING OF METAL SHEETS WITH X-RAY METHODDS BOROMISZA LÁSZLÓ Kulcsszavak: vastagság
Atomfizika. Fizika kurzus Dr. Seres István
Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés 440 BC Democritus, Leucippus, Epicurus 1660 Pierre Gassendi 1803 1897 1904 1911 19 193 John Dalton Joseph John (J.J.) Thomson J.J. Thomson
Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet
Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Utolsó módosítás: 2016. május 4. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum
Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez
A Név... Válassza ki a helyes mértékegységeket! állandó intenzitás abszorbancia moláris extinkciós A) J s -1 - l mol -1 cm B) W g/cm 3 - C) J s -1 m -2 - l mol -1 cm -1 D) J m -2 cm - A Wien-féle eltolódási
LABORATÓRIUMI GYAKORLAT. Alfa-, béta-, gamma-sugárzások mérése
LABORATÓRIUMI GYAKORLAT Alfa-, béta-, gamma-sugárzások mérése (Bódizs Dénes BME Nukleáris Technikai Intézet 2006) 1. BEVEZETÉS Környezetünkben számos radioaktív izotóp fordul elő. Ezek egy része természetes,
Bevezetés a modern fizika fejezeteibe. 4. (a) Kvantummechanika. Utolsó módosítás: november 15. Dr. Márkus Ferenc BME Fizika Tanszék
Bevezetés a modern fizika fejezeteibe 4. (a) Kvantummechanika Utolsó módosítás: 2015. november 15. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum
Pásztázó elektronmikroszkóp. Alapelv. Szinkron pásztázás
Pásztázó elektronmikroszkóp Scanning Electron Microscope (SEM) Rasterelektronenmikroskope (REM) Alapelv Egy elektronágyúval vékony elektronnyalábot állítunk elő. Ezzel pásztázzuk (eltérítő tekercsek segítségével)
Elektromos áram. Vezetési jelenségek
Elektromos áram. Vezetési jelenségek Emlékeztető Elektromos áram: töltéshordozók egyirányú áramlása Áramkör részei: áramforrás, vezető, fogyasztó Áramköri jelek Emlékeztető Elektromos áram hatásai: Kémiai
Tantárgy neve. Környezetfizika. Meghirdetés féléve 6 Kreditpont 2 Összóraszám (elm+gyak) 2+0
Tantárgy neve Környezetfizika Tantárgy kódja FIB2402 Meghirdetés féléve 6 Kreditpont 2 Összóraszám (elm+gyak) 2+0 Számonkérés módja Kollokvium Előfeltétel (tantárgyi kód) - Tantárgyfelelős neve Dr. Varga
RADIOAKTIVITÁS, SUGÁRZÁSMÉRÉS
Az atom felépítése RADIOAKTIVITÁS, SUGÁRZÁSMÉRÉS elektron proton Varga József Debreceni Egyetem Nukleáris Medicina Intézet atommag Atomi részecskék 2 Atomi részecskék mérete Jelmagyarázat: elektron proton
A sugárzás és az anyag kölcsönhatása. A béta-sugárzás és anyag kölcsönhatása
A sugárzás és az anyag kölcsönhatása A béta-sugárzás és anyag kölcsönhatása Cserenkov-sugárzás v>c/n, n törésmutató cos c nv Cserenkov-sugárzás Pl. vízre (n=1,337): 0,26 MeV c 8 m / s 2. 2* 10 A sugárzás
A sötét anyag nyomában. Krasznahorkay Attila MTA Atomki, Debrecen
A sötét anyag nyomában Krasznahorkay Attila MTA Atomki, Debrecen Látható és láthatatlan világunk A levegő Túl kicsi dolgok Mikroszkóp Túl távoli dolgok távcső, teleszkópok Gravitációs vonzás, Mágneses
1. mérési gyakorlat: Radioaktív izotópok sugárzásának vizsgálata
1. mérési gyakorlat: Radioaktív izotópok sugárzásának vizsgálata A méréseknél β-szcintillációs detektorokat alkalmazunk. A β-szcintillációs detektorok alapvetően két fő részre oszthatók, a sugárzás hatására
Fókuszált ionsugaras megmunkálás
FEI Quanta 3D SEM/FIB Dankházi Zoltán 2016. március 1 FIB = Focused Ion Beam (Fókuszált ionnyaláb) Miből áll egy SEM/FIB berendezés? elektron oszlop ion oszlop gáz injektorok detektor CDEM (SE, SI) 2 Dual-Beam
Gamma-röntgen spektrométer és eljárás kifejlesztése anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű elemzésére
Gamma-röntgen spektrométer és eljárás kifejlesztése anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű elemzésére OAH-ABA-16/14-M Dr. Szalóki Imre, egyetemi docens Radócz Gábor, PhD
Sugárzások és anyag kölcsönhatása
Sugárzások és anyag kölcsönhatása Az anyaggal kölcsönhatásba lépő részecskék Töltött részecskék Semleges részecskék Nehéz Könnyű Nehéz Könnyű T D p - + n Radioaktív sugárzás + anyag energia- szóródás abszorpció
GÁZIONIZÁCIÓS DETEKTOROK VIZSGÁLATA. Mérési útmutató. Gyurkócza Csaba
GÁZIONIZÁCIÓS DETEKTOROK VIZSGÁLATA Mérési útmutató Gyurkócza Csaba BME NTI 1997 2 Tartalom 1. BEVEZETÉS... 3 2. ELMÉLETI ÖSSZEFOGLALÁS... 3 2.1. Töltéshordozók keletkezése (ionizáció) töltött részecskéknél...
Modern Fizika Labor Fizika BSC
Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. május 4. A mérés száma és címe: 9. Röntgen-fluoreszencia analízis Értékelés: A beadás dátuma: 2009. május 13. A mérést végezte: Márton Krisztina Zsigmond
A fény korpuszkuláris jellegét tükröző fizikai jelenségek
A fény korpuszkuláris jellegét tükröző fizikai jelenségek A fény elektromágneses sugárzás, amely hullámjelleggel és korpuszkuláris sajátosságokkal is rendelkezik. A fény hullámjellege elsősorban az olyan
Műszeres analitika II. (TKBE0532)
Műszeres analitika II. (TKBE0532) 4. előadás Spektroszkópia alapjai Dr. Andrási Melinda Debreceni Egyetem Természettudományi és Technológiai Kar Szervetlen és Analitikai Kémiai Tanszék A fény elektromágneses
Az expanziós ködkamra
A ködkamra Mi az a ködkamra? Olyan nyomvonaljelző detektor, mely képes ionizáló sugárzások és töltött részecskék útját kimutatni. A kamrában túlhűtött gáz található, mely a részecskék által keltett ionokon
Bevezetés az analóg és digitális elektronikába. V. Félvezető diódák
Bevezetés az analóg és digitális elektronikába V. Félvezető diódák Félvezető dióda Félvezetőknek nevezzük azokat az anyagokat, amelyek fajlagos ellenállása a vezetők és a szigetelők közé esik. (Si, Ge)
OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István
OPTIKA Fénykibocsátás mechanizmusa Dr. Seres István Bohr modell Niels Bohr (19) Rutherford felfedezte az atommagot, és igazolta, hogy negatív töltésű elektronok keringenek körülötte. Niels Bohr Bohr ezt
1. Az ionizáló sugárzások és az anyag kölcsönhatása
Az ionizáló sugárzások és az anyag kölcsönhatása. A sugárzások érése KAD 2018.03.26 1. Az ionizáló sugárzások és az anyag kölcsönhatása Gondolat, 1976 1 2 levegőben (átlagosan) 1 ionpár keltéséhez 34 ev
Röntgen-gamma spektrometria
Röntgen-gamma spektrométer fejlesztése radioaktív anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű meghatározására Szalóki Imre, Gerényi Anita, Radócz Gábor Nukleáris Technikai Intézet
A töltőfolyadék térfogatváltozása alapján, egy viszonyítási skála segítségével határozható meg a hőmérséklet.
1. HŐTÁGULÁSON ALAPULÓ ÁTALAKÍTÓK: HŐMÉRSÉKLET A hőmérséklet változását elmozdulássá alakítják át 1.1 Folyadéktöltésű hőmérők (helyzet változássá) A töltőfolyadék térfogatváltozása alapján, egy viszonyítási
Fókuszált ionsugaras megmunkálás
1 FEI Quanta 3D SEM/FIB Fókuszált ionsugaras megmunkálás Ratter Kitti 2011. január 19-21. 2 FIB = Focused Ion Beam (Fókuszált ionnyaláb) Miből áll egy SEM/FIB berendezés? elektron oszlop ion oszlop gáz
A jövő anyaga: a szilícium. Az atomoktól a csillagokig 2011. február 24.
Az atomoktól a csillagokig 2011. február 24. Pavelka Tibor, Tallián Miklós 2/24/2011 Szilícium: mindennapjaink alapvető anyaga A szilícium-alapú technológiák mindenütt jelen vannak Mikroelektronika Számítástechnika,
Sugárterápia. Ionizáló sugárzások elnyelődésének következményei. Konzultáció: minden hétfőn 15 órakor. 1. Fizikai történések
Sugárterápia 40% 35% 30% 25% 20% 15% % 5% 0% 2014/2015. tanév FOK biofizika kollokvium jegyspektruma 5 4,5 4 3,5 3 2,5 2 1,5 1 Konzultáció: minden hétfőn 15 órakor Ionizáló sugárzások elnyelődésének következményei
Deme Sándor MTA EK. 40. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, 2015. április 21-23.
A neutronok személyi dozimetriája Deme Sándor MTA EK 40. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, 2015. április 21-23. Előzmény, 2011 Jogszabályi háttér A személyi dozimetria jogszabálya (16/2000
FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István
Sugárzunk az elégedettségtől! () Dr. Seres István atommagfizika Atommodellek 440 IE Democritus, Leucippus, Epicurus 1803 1897 John Dalton J.J. Thomson 1911 Ernest Rutherford 19 Niels Bohr 3 Atommodellek
Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III.
Compton-effektus jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Csanád Máté Mérés dátuma: 010. április. Leadás dátuma: 010. május 5. Mérés célja A kvantumelmélet egyik bizonyítékának a Compton-effektusnak
Radiokémia. A) Béta-sugárzás mérése GM csővel
Radiokémia Környezetünkben számos radioaktív izotóp fordul elő. Ezek egy része természetes, más része mesterséges eredetű. Valamely radioaktív izotóp bomlása során az atommagból származó sugárzásnak három
Gamma-röntgen spektrométer és eljárás kifejlesztése anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű elemzésére
Gamma-röntgen spektrométer és eljárás kifejlesztése anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű elemzésére OAH-ABA-23/16-M Dr. Szalóki Imre, fizikus, egyetemi docens Radócz Gábor,
IDTÁLLÓ GONDOLATOK MOTTÓK NAGY TERMÉSZET TUDÓSOK BÖLCS GONDOLATAIBÓL A TUDOMÁNY ÉS A MINDEN NAPI ÉLET VONAKOZÁSÁBAN
! " #! " 154 IDTÁLLÓ GONDOLATOK MOTTÓK NAGY TERMÉSZET TUDÓSOK BÖLCS GONDOLATAIBÓL A TUDOMÁNY ÉS A MINDEN NAPI ÉLET VONAKOZÁSÁBAN (Ludwig Boltzman) (James Clerk Maxwell)!" #!!$ %!" % " " ( Bay Zoltán )
Pro sensors Measurement sensors to IP Thermo Professional network
Pro sensors Measurement sensors to IP Thermo Professional network T-05 Temperature sensor TH-05 Temperature, humidity sensor THP- 05 Temperature, humidity, air pressure, air velocity, wet sensors indoor
Röntgensugárzás 9/21/2014. Röntgen sugárzás keltése: Röntgen katódsugárcső. Röntgensugárzás keletkezése Tulajdonságok Anyaggal való kölcsönhatás
9/1/014 Röntgen Röntgen keletkezése Tulajdonságok Anyaggal való kölcsönhatás Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken on December 1895 and presented
Anyagvizsgálati módszerek Elemanalitika. Anyagvizsgálati módszerek
Anyagvizsgálati módszerek Elemanalitika Anyagvizsgálati módszerek Pannon Egyetem Mérnöki Kar Anyagvizsgálati módszerek Kémiai szenzorok 1/ 18 Elemanalitika Elemek minőségi és mennyiségi meghatározására
NEUTRON-DETEKTOROK VIZSGÁLATA. Mérési útmutató BME NTI 1997
NEUTRON-DETEKTOROK VIZSGÁLATA Mérési útmutató Gyurkócza Csaba, Balázs László BME NTI 1997 Tartalomjegyzék 1. Bevezetés 3. 2. Elméleti összefoglalás 3. 2.1. A neutrondetektoroknál alkalmazható legfontosabb
A hőmérsékleti sugárzás
A hőmérsékleti sugárzás Alapfogalmak 1. A hőmérsékleti sugárzás Értelmezés (hőmérsékleti sugárzás): A testek hőmérsékletével kapcsolatos, a teljes elektromágneses spektrumra kiterjedő sugárzást hőmérsékleti
Abszorpciós spektrometria összefoglaló
Abszorpciós spektrometria összefoglaló smétlés: fény (elektromágneses sugárzás) tulajdonságai, kettős természet fény anyag kölcsönhatás típusok (reflexió, transzmisszió, abszorpció, szórás) Abszorpció
MIKROELEKTRONIKAI ÉRZÉKELŐK I
MIKROELEKTRONIKAI ÉRZÉKELŐK I Dr. Pődör Bálint BMF KVK Mikroelektronikai és Technológia Intézet és MTA Műszaki Fizikai és Anyagtudományi Kutató Intézet 2. ELŐADÁS: LABORMÉRÉSEK 2008/2009 tanév 1. félév
Sugárzások kölcsönhatása az anyaggal
Sugárzások kölcsönhatása az anyaggal Dr. Vincze Árpád vincze@oah.hu Mitől függ a kölcsönhatás? VÁLASZ: Az anyag felépítése A sugárzások típusai, forrásai és főbb tulajdonságai A sugárzások és az anyag
2. Érzékelési elvek, fizikai jelenségek. a. Termikus elvek
2. Érzékelési elvek, fizikai jelenségek a. Termikus elvek Az érzékelés célja Open loop: A felhasználó informálására (mérés) Más felhasználó rendszer informálása Felügyelet Closed loop Visszacsatolás (folyamatszabályzás)
Folyadékszcintillációs spektroszkópia jegyz könyv
Folyadékszcintillációs spektroszkópia jegyz könyv Zsigmond Anna Julia Fizika MSc I. Mérés vezet je: Horváth Ákos Mérés dátuma: 2010. október 21. Leadás dátuma: 2010. november 8. 1 1. Bevezetés A mérés
Energia-diszperzív röntgen elemanalízis
Fókuszált ionsugaras megmunkálás Energia-diszperzív röntgen elemanalízis FEI Quanta 3D SEM/FIB Dankházi Zoltán 2016. március 1 EDS = Energy Dispersive Spectroscopy Hol található a SEM/FIB berendezésen?
Sugárterápia. Ionizáló sugárzások elnyelődésének következményei
Sugárterápia Sugárterápia: ionizáló sugárzások klinikai alkalmazása malignus daganatok eltávolításában. A sugárkezelés során célunk az ionizáló sugárzás terápiás dózisának elérése a kezelt daganatban a
I. DOZIMETRIAI MENNYISÉGEK ÉS MÉRTÉKEGYSÉGEK
1 I. DOZIMETRIAI MENNYISÉGEK ÉS MÉRTÉKEGYSÉGEK 1) Iondózis/Besugárzási dózis (ro: Doza de ioni): A leveg egy adott V térfogatában létrejött ionok Q össztöltésének és az adott térfogatban található anyag
Műszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása
Abrankó László Műszeres analitika Molekulaspektroszkópia Minőségi elemzés Kvalitatív Cél: Meghatározni, hogy egy adott mintában jelen vannak-e bizonyos ismert komponensek. Vagy ismeretlen komponensek azonosítása
Radioaktív sugárzás elnyelődésének vizsgálata
11. fejezet Radioaktív sugárzás elnyelődésének vizsgálata Az ólomtorony és a szcintillációs számláló A természetes radioaktív anyagok esetében háromféle sugárzást lehet megkülönböztetni. Erre egyszerű
Modern fizika vegyes tesztek
Modern fizika vegyes tesztek 1. Egy fotonnak és egy elektronnak ugyanakkora a hullámhossza. Melyik a helyes állítás? a) A foton lendülete (impulzusa) kisebb, mint az elektroné. b) A fotonnak és az elektronnak
Abszolút és relatív aktivitás mérése
Korszerű vizsgálati módszerek labor 8. mérés Abszolút és relatív aktivitás mérése Mérést végezte: Ugi Dávid B4VBAA Szak: Fizika Mérésvezető: Lökös Sándor Mérőtársak: Musza Alexandra Török Mátyás Mérés
Röntgendiagnosztikai alapok
Röntgendiagnosztikai alapok Dr. Voszka István A röntgensugárzás keltésének alternatív lehetőségei (röntgensugárzás keletkezik nagy sebességű, töltéssel rendelkező részecskék lefékeződésekor) Röntgencső:
Az atommag összetétele, radioaktivitás
Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron
Radioaktív sugárzások abszorpciója
Radioaktív sugárzások abszorpciója Bevezetés A gyakorlat során különböző sugárforrásokat két β-sugárzót ( 204 Tl és 90 Sr), egy tiszta γ-forrást ( 60 Co) és egy β- és γ-sugárzást is kibocsátó preparátumot
A sugárzás biológiai hatásai
A sugárzás biológiai hatásai Dózisegységek Besugárzó dózis - C/kg Elnyelt dózis - J/kg=gray (Gy) 1 Gy=100 rad Levegőben átlagos ionizációs energiája 53,9*10-19 J. Az elektron töltése 1,6*10-19 C, tehát
Abszorpció, emlékeztetõ
Hogyan készültek ezek a képek? PÉCI TUDMÁNYEGYETEM ÁLTALÁN RVTUDMÁNYI KAR Fluoreszcencia spektroszkópia (Nyitrai Miklós; február.) Lumineszcencia - elemi lépések Abszorpció, emlékeztetõ Energia elnyelése
Analitikai szenzorok második rész
2010.09.28. Analitikai szenzorok második rész Galbács Gábor A szilícium fizikai tulajdonságai A szenzorok egy igen jelentős része ma a mikrofabrikáció eszközeivel, közvetlenül a mikroelektronikai félvezető
Az elektromágneses hullámok
203. október Az elektromágneses hullámok PTE ÁOK Biofizikai Intézet Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm Ritter Joseph von Fraunhofer Robert
5. Laboratóriumi gyakorlat. A p-n ÁTMENET HŐMÉRSÉKLETFÜGGÉSE
5. Laboratóriumi gyakorlat A p-n ÁTMENET HŐMÉRSÉKLETFÜGGÉSE 1. A gyakorlat célja: A p-n átmenet hőmérsékletfüggésének tanulmányozása egy nyitóirányban polarizált dióda esetében. A hőmérsékletváltozási
1. Az ionizáló sugárzások és az anyag kölcsönhatása (2-34) 2. Fizikai dózisfogalmak. 3. A sugárzás mérése (42-47) Prefixumok
1. Az ionizáló sugárzások és az anyag kölcsönhatása (2-34) 2. Fizikai dózisfogalak (35-41) Gondolat, 1976 3. A sugárzás érése (42-47) KAD 2010.09.15 2 levegőben (átlagosan) 1 ionpár keltéséhez 34 ev 5.4
Gamma-spektrometria HPGe detektorral
Gamma-spektrometria HPGe detektorral 1. Bevezetés A gamma-spektrometria az atommagból valamilyen magfolyamat következtében (radioaktív bomlás, mesterséges vagy természetes magreakció) kilépő gamma sugárzás
-A radioaktivitás a nem stabil (úgynevezett radioaktív) atommagok bomlásának folyamata. -Nagyenergiájú ionizáló sugárzást kelt Az elnevezés: - radio
-A radioaktivitás a nem stabil (úgynevezett radioaktív) atommagok bomlásának folyamata. -Nagyenergiájú ionizáló sugárzást kelt Az elnevezés: - radio (sugároz) - activus (cselekvő) Különféle foszforeszkáló
Abszorpciós fotometria
2013 január Abszorpciós fotometria Elektron-spektroszkópia alapjai Biofizika. szemeszter Orbán József PTE ÁOK Biofizikai ntézet Definíciók, törvények FÉNYTAN ALAPOK SMÉTLÉS - Elektromágneses sugárzás,
Színképelemzés. Romsics Imre 2014. április 11.
Színképelemzés Romsics Imre 2014. április 11. 1 Más néven: Spektrofotometria A színképből kinyert információkból megállapítható: az atomok elektronszerkezete az elektronállapotokat jellemző kvantumszámok