Elemek. A geokémia osztályozás:

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Elemek. A geokémia osztályozás:"

Átírás

1 Elemek A geokémia osztályozás: - Nukleáris tulajdonságok alapján (stabil, radioaktív), - Illékonyságuk (kondezációs képesség) alapján gáz-szilárd egyensúlyban, - Affinitásuk alapján (megjelenésük a földi szférákban) (pl. sziderofil), - Kompatibilitásuk szerint (szilárd/olvadék (oldat) relációban), - Gyakoriságuk alapján (mennyi a kéregben, talajban, folyókban, magban),

2 A Föld kontinentális kérgében ma 90 elem: - Tc és Pm kivételével az első 83 elem stabil nuklid formában is (~30 elemnek radioktív nuklidjai ismertek), - 83 (Bi) Z radioaktív nuklid formájában fordul elő (Np, Pu; kisérleti úton legalább további 1000, különböző stabilitású radionuklidot állítottak elő!), - elemi sokszínűség

3 A hét leggyakoribb elem a Földben Relative atomic abundances of the seven most common elements that comprise 97% of the Earth's mass. An Introduction to Igneous and Metamorphic Petrology, by John Winter, Prentice Hall. The 10 most abundant elements by mass in the earth's crust and in the human body. All are main-group elements except Fe and Ti.

4 H, O, C, N mellett Ca, S, Na, K, Cl, Mg 0,X-0,0X at%, Univerzum (csillagok): H>He>O

5 Az Univerzumban: - H a világegyetem leggyakoribb eleme (~90 atom%), - He a csillagokban kb. a H tizede, - O (az univerzum harmadik helyezettje) a He százada -H-és He-től >Z elemek a H és He magreakciójából jött létre?

6 Az elemek szintézise Ősrobbanás (Big Bang) (nukleoszintézis) Csillagok magjában (nukleoszintézis) Szupernóva robbanás Kozmikus sugárzás Burbidge, Burbidge, Fowler, Hoyle (1957) B 2 FH Alpher, Bethe, Gamow (1948)

7 N B 11 B 10 Be Atommagok stabilitása: a legstabilabbak azok a magok, ahol a legnagyobb a kötési energia/mag érték (MeV), pl: 56 Fe, 4 He <--> 1 H, 3 He, 6 Li, 10 B White, 2003

8 Albarede, 2006 Ahogy nő a nukleonok száma elérjük a vas környékén a kötési energia maximumát. A nagyobb tömegű magok kevésbé stabilak. Energia nyerhető a kis magok fúziójából és a nagy magok hasadásából. Jellemző az alfa-bomlás a nehéz magok esetén.

9 Plot of Z vs. N for nuclides up to calcuim (Z=20) showing the "stable" valley of the nuclides. The Z : N ratio is 1 for the light nuclides and increases towards 1.5 for the heavier nuclides. Increases or decreases in N for given element produces increasingly unstable isotopes (decreasing T½).

10 Magtáblázat Több mint 2300 ismert nuklid Csak 287 izotóp stabil vagy természetben előforduló radioaktív (264 nem-radioaktív) A Tc(Z=43), Pm(Z=61) és a Bi-nál (Z=83) nehezebb elemek mind radioaktívak Magok stabilitásért a neutronok felelnek Mágikus proton- és neutronszámokkal rendelkező magok különösen stabilak (több izotóp, pl. Sn): - proton: 2, 8, 20, 28, 50, 82 - neutron: 2, 8, 20, 28, 50, 82, 126 Radioaktív mag alfa-bomlással [(2p+2n) különösen stabil Számos radioaktív bomlás végtermék magja mágikus p és n szamú

11 Elemek gyakorisága a Naprendszerben Honnan tudjuk? - A Nap (és a többi csillag) spektroszkópos tanulmányozása, - A meteoritok (aszteroida öv, Mars, Hold, kondrit), továbbá földi, holdi és marsi kőzetek elemzése, - Fizika, kémia (elméleti, kisérleti)

12 Kondrit If the Sun and Solar System formed from the same material at the same time, we would expect the raw material of the planets to match the composition of the Sun, minus those elements that would remain as gases. A class of meteorites called chondrites shows such composition, which are thought to be the most primitive remaining solar system material. Chondrites are considered the raw material of the inner Solar System and reflect the bulk composition of the Earth. belső bolygók = Nap gázok = kondrit Normál kondrit (morzsalékos, összetapadt csomók aggregátuma, nincs mátrix), a csomók/cseppek több fázisból állnak. Normál kondritban kondrumok.

13 A kondrit összetétele A kondrit összetétele

14 A Nap összetétele A Nap összetétele

15 H The highly volatile elements H, C, N, O and rare gases (not plotted) are depleted in C1 relative to the Sun photosphere. Li, B is depleted in the Sun.

16 Elemek a Naprendszerben Nap+C1 szenes kondrit Faure, 1998

17 Az elemek relatív gyakorisága az Univerzumban

18 Kozmikus összetétel? A Naprendszer (valójában a Nap) elemi összetétele kozmikus (csillag) elemi gyakoriság (Li, Be, B) A Naprendszer (valójában a Nap) elemi összetétele = szenes kondrit (Naprendszer ősi állapotát tükröző meteorit) Föld (és a többi belső bolygó is) kondritos összetételű (volt?)

19 Ha 7 Li kivételével Li, Be és B nem képződik az Ősrobbanás során, akkor kozmikus sugarak és a csillagközi gáz/por kölcsönhatásával keletkezhetnek: a 1 H és 4 He valamint a C, N, O magok reakciója során. E reakciók nagyobb energiánál fordulnak elő, mint az Ősrobbanas, de a T kicsi (Li, Be és B túléli). Li, Be és B relatív mennyisége sokkal nagyobb a kozmikus sugárban, mint a Naprendszerben. Elemek relatív mennyisége a Naprendszerben és a kozmikus sugárzásban White 1998

20 Elemek gyakorisága az Naprendszerben és az Univerzumban Megfigyelések az elemek gyakoriságával kapcsolatban - A H és He messze a leggyakoribb elem, H/He ~ 12,5, - Az első 50 elem mennyisége exponenciálisan csökken, - Az 50-nél nagyobb rendszámú elemek mennyisége kicsi, nem változik nagymértékben a rendszámmal, - A páros rendszámú elemek sokkal gyakoribbak, mint a páratlanok (Oddo-Harkins-szabály), - A Li, Be és B mennyisége rendellenesen kicsi (megsemmisül), - A Fe és Pb mennyisége rendellenesen nagy, - A Tc és Pm nem fordul elő természetben a Naprendszerben, - A 83-nál nagyobb rendszámú (Bi) elemnek nincs stabil izotópja; ilyen elemek csak azért fordulnak elő a természetben, mert az U és Th hosszú életű izotópjainak bomlástermékei

21 Refrakter (hő-/tűzálló, makacs ) és volatil (illó) elemek (kozmokémiai /kondenzációs ill. illékonyságai/ sajátosság nagy T, kis p) Refrakter elemek: nagy olvadáspontú, szilárd fázisban korai kondezáció a napködből a hűlés során (átmeneti refrakter) Volatil elemek: kis olvadáspontú, illó fázisban kis hőmérsékletű kondenzáció és szublimáció (a napködben nincs folyékony fázis a kis P miatt) (gyengén, erősen)

22 Refrakter Highly >1300 K Anderson, 2007

23 Refrakter (hő-/tűzálló, makacs) és volatil (illó) elemek viselkedése Refrakter litofil Mérsékelten volatil litofil Hold: refrakter 2-3-szorosa, mérsékelten illó elszegényedett Embey-Isztin Dobosi, 2004

24 Primitív köpeny (szilikát Föld) Refrakter litofil elemek 2,8-szoros dúsulása a C1-hoz csak látszólagos nincs a magban, a köpenybeli összetételük a teljes Földet képviselik Mérsékelten és erősen volatil litofil elemek kimerülése 1) Föld gázfrakcionált kondritos anyagból keletkezett olyan hőmérsékleten, ami túl nagy volt a volatil elemek teljes kondenzálódásához (>1000 K), 2) Napszél tevékenység, ami a belső bolygók térségéből kisöpörte a könnyű és illékony elemeket, Mérsékelten sziderofil elemek kimerülése Földnek van vasmagja, Erősen sziderofil elemek mennyisége jelentősebb a primitív köpenyben, mint várt a fém/si megoszlásból, jelenléte egy kései hozzáadódás, késői akkréciós folyamat eredménye (a mag kialakulása után)

25 A Föld A Föld belső övei. A külső merev litoszférát a szilárd, de képlékeny ( gyenge ) asztenoszféra követi, majd a mezoszféra ismét ridegebb. Az alatta lévő külső mag folyékony, majd a belső mag bár kémiai összetétele hasonló a külső magéhoz - az óriási nyomás miatt szilárd. A litoszférán belüli kéreg kontinentális és óceáni kéregre tagolható.

26 Goldschmidt-féle geokémiai csoportosítás Litofil elemek: kőzetkedvelő, szilikátokban és oxidokban kéregben Sziderofil elemek: vaskedvelő, terméselemekben, ötvözetekben magban Kalkofil elemek: kén- (+Se- és As-) kedvelő, szulfidokban kéregben, köpenyben Atmofil elemek: illók hidro- és atmoszférában

27 H Li Na Be Mg Goldschmidts classification of the geochemical affinities of the elements B Al C Si N P O S F Cl He Ne Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Cs Ba Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Ac Th Pa U Lithophile Siderophile Chalcophile Atmophile

28

29 A hét leggyakoribb elem a Földben Mg, Si, Fe és O > 90%-ban a Föld tömegéhez Refrakter? Volatil? Relative atomic abundances of the seven most common elements that comprise 97% of the Earth's mass. An Introduction to Igneous and Metamorphic Petrology, by John Winter, Prentice Hall.

30 A Föld teljes összetétele Teljes Föld Teljes szilikát Föld primitív köpeny Kontinentális & óceáni kéreg Kimerített köpeny Primitív köpeny Mag Mag A kezdet Az első 30 Mév Ma

31 Kompatibilis inkompatibilis elemek Azokat az elemeket, amelynek töltése és mérete a köpenyásványok rácspoziciójáétól eltér és az olvadék fázisba particionálódik olvadás során inkompatibilis elemeknek nevezzük, pl: K, Rb, Sr, Ba, REE, Nb, Ta, Zr, Hf, U, Th, Pb Azokat az elemeket, amelyek inkább a köpenyásványok rácspontjaiban foglalnak helyet és olvadás során a szilárd fázisban tartózkodnak (maradnak) kompatibilis elemeknek nevezzük pl: Ni, Cr, Co, Os, Mg, Sc

32 Megoszlási koefficiens: D = C S / C L ahol C S valamely elem koncentrációja a szilárd fázisban és C L valamely elem koncentrációja a olvadék (folyadék) fázisban inkompatibilis elemek: D «1 kompatibilis elemek: D» 1

33 Table 9-1. Partition Coefficients (CS/CL) for Some Commonly Used Trace Elements in Basaltic and Andesitic Rocks Olivine Opx Cpx Garnet Plag Amph Magnetite Rb Sr Ba Ni Cr La Ce Nd Sm Eu /1.5* Dy Er Yb Lu Data from Rollinson (1993). * Eu 3+ /Eu 2+ Italics are estimated Rare Earth Elements Kompatibilitás függ az ásványtól és olvadéktól (amiben jelen van) Főelemek! Mely elemek kompatibilisek?

34 Elemviselkedés Nyomelemek Petrogenetikai indikátorok Erősen kompatibilis elemek. Ni és Co olivinben, Cr spinellben és klinopiroxénben koncentrálódik nagy koncentráció köpenyforrás. Mindkettő erős frakcionációt mutat Fe-Ti oxidba (ilmenit, Ti-magnetit). Ha eltérően viselkednek, akkor a Ti akcesszórikus ásványaiba frakcionálódik (titanit és rutil). Erősen inkompatibilis elemek, amelyek kőzetalkotó szilikátokban nem helyettesítenek (bár Ti-t helyettesíthetnek titanitban vagy rutilban). Erősen inkompatibilis elemek, amelyek K-t helyettesítenek K-földpátban, csillámban és amfibolban. Rb helyettesítése amfibolban kevésbé kifejezett, mint K-földpátban és csillámban a K/Ba aránnyal e fázisok elkülöníthetők. Ca-t helyettesíti plagioklászban (de nem piroxénben) és kevésbé kiterjedten K-t K-földpátban. Kis nyomáson, ahol plagioklász képződik, kompatibilis elemként viselkedik. Nagy nyomáson, ahol a plagioklász nem stabil, inkompatibilis elemként viselkedik. Nehéz RFF gránátban dúsúlnak sokkal inkább, mint a könnyű RFF, ugyanígy ortopiroxénben és amfibolban, csak csökkenő mértékben. Plagioklász és titanit több könnyű RFF-t fogad be. Eu 2+ erősen a plagioklászba particionálódik. Általában inkompatibilis a nehéz RFF-hez hasonlóan gránátban, ortopiroxénben és amfibolban koncentrálódik. Titanitban és apatitban azonban szintén dúsul, ezért ezeknek a fázisoknak a jelenléte jelentős hatással lehet a mennyiségére. Wilson, 1989

35 Kontinentális kéreg óceáni kéreg

36 Kéreg keletkezése Archaicum Hadeicum Greenland, Canada, Australia, Antarctica Newest oldest rock (greenstone, metamorphized basalt (4,28 By, Nuvvuagittuq, Canada) ultramafikus magma óceán vékony bazaltos kéreg (Mars), gravitációs differenciáció? (Hold) parciális olvadás (meterorit, termális konvekció) savanyú-neutrális kéreg (inkompatibilis elemek, tonalit) parciális olvadás (meterorit, termális konvekció) savanyú kéreg (erősen inkompatibils elemek: K, Zr, gránit) vastagodás, stb. kontinensek magja (kraton) H 2 O kondenzáció a másodlagos légkörből ősóceán oldódás, szedimentáció metamorfózis (cirkon)

37 Kéreg If there was a magma ocean, the crust would have started to form from outlier "rafts" that eventually were enclosed by the first thin solid crust that survived remelting. From knowledge of other terrestrial planets, that crust was almost certainly basalt-rich (a more general term is simatic, which refers to igneous rocks low in Si and high in Fe, Mg, and Ca) in composition (the idea of a thin floated feldspar anorthositic analog to the Moon has been discounted by some planetologists [but remains an alternative]). As the mafic crust thickened, parts of it also were remelted repeatedly by large impacts, and probably also by internal thermal convection currents from the mantle. Elemek kompatibilitása és inkompatibiltása. From knowledge of differentiation mechanisms occurring in the younger Earth, it seems plausible that here and there sialic (high in Si, Al, and Na) crust formed regionally. This newly fromed crust could have compositions described as tonalites and then granites (K!) were produced by remelting of tonalite crust which are a common host of the accessory mineral zircon. Another way to form sialic rocks is by metamorphism of sediments that have been enriched in Si, Al, Na. Regardless of mechanism, the end result was to develop clots of silica-enriched crust that rose above the general crustal elevations - these would form nuclei (analogous to the term craton in the Earth's present geology) that grew mainly by accretion to their boundaries (perhaps by obduction or terrane addition, especially if plate tectonics mechanisms developed early in Earth history.

38

39 A kontinentális kéreg összetétele

40 A kontinentális kéreg összetétele A kont kéreg összetétele

41

42

43

44 Kereg felső köpeny Embey-Isztin Dobosi, 2004

45 Az elemek gyakorisága a felső kontinentális kéregben Abundance (atom fraction) of the chemical elements in Earth s upper continental crust as a function of atomic number. Many of the elements are classified into (partially overlapping) categories: (1) rock-forming elements (major elements in green field and minor elements in light green field); (2) rare earth elements (lanthanides, La Lu, and Y; labeled in blue); (3) major industrial metals (global production >~3x107 kg/year; labeled in bold); (4) precious metals (italic); and (5) the 9 rarest metals the 6 platinum group elements + Au, Re, and Te (a metalloid).

46 Hő és forrása a Földben Radioaktív elem koncentráció és hőtermelés a Földben U (ppm) Th (ppm) K (%) Totál W/m 3 Kontinentális kéreg 1,6 5,8 1,7-3,0 1,0-1,1 Óceáni kéreg 0,9 2,7 0,4 0,5 Köpeny 0,015 0,08 0,1 0,02 (undepl) Brown & Mussett, 1981

47 Nagy mennyiségben előforduló főelemek (major) meghatározzák a(z) -kőzetek ásványos összetételét és rendszertani helyét, - keletkezés (olvadási és kristályosodási folyamatok, olvadék viszkozitás, sűrűség, felhajtóerő) - mállás, átalakulás Kis mennyiségben előforduló főelemek (mikroelemek) (minor) - általában helyettesítenek (Mn Fe; Cr Fe), vagy akcesszóriákat formálnak (P apatit; Ti ilmenit, rutil, titanit; Cr krómit) azonban: cirkon is akcesszória, Zr nem főelem A nyomelemek (trace) koncentrációja túl kevés önálló ásványok formáláshoz (Zr kivétel) -főelemeket helyettesítenek, - mennyiségük és eloszlásuk a magmák és magmás kőzetek fejlődésére, a forrás régió és a magmás folyamatok jellemzésére - metamorf események? Elemek koncentrációjuk szerint

48 Nyomelemek - Definiciók Nem sztöichiometrikusan vannak jelen a fázisokban (más a magmás vagy üledékes kőzetek és más a vizes oldatok nyomelem-tartalma), Nem befolyásolják az adott rendszer (kőzet, oldat, talaj) fizikai és kémiai tulajdonságát, ha a rendszert mint egészet vizsgáljuk egy jelentős kiterjedésben, Henry-törvény szerint viselkednek a rendszerekben (azaz ideálisan oldódnak nagy higítás mellett)

49 Osztályozás a rádiusz és a töltés alapján Fe Ion potenciál: töltés/rádiusz - a mobilitás hozzávetőleges indexe (olhatóság) vizes oldatokban: <3 (kicsi) & >12 (nagy) nagyobb mobilitás 1) Kis térerejű (low field strength - LFS) vagy nagy ionrádiuszú litofil (large ion lithophile LIL) elemek 2) Nagy térerejű (high field strength - HFS) elemek pl. RFF/REE - Y 3) Plantina csoport (platinum group PG) elemek

50 Kéreg fejlődése Nb és U: melyik erősebben inkompatibilis?

51 Nyomelem frakcionáció parciális olvadás során La Lu La és Lu: melyik erősebben inkompatibilis? Nd és Sm? Rb és Sr? Ni? La Ni Rb Nd Region of Partial Melting Sr Sm Melting Residue Co La Lu From:

52 A Föld differenciációja Continental Crust La Lu Rb>Sr Nd>Sm La>Lu Rb>Sr Nd>Sm La>Lu Mantle (After partial melt extraction) Rb<Sr Nd<Sm La<Lu La Lu From:

53 A Föld differenciációja Az olvadék, ami kivonódott a köpenyből a kéregbe emelkedik és magával viszi az inkompatilis elemgazdagságát, így a kontinentális kéreg folyamatosan gazdagodik inkompatibilis elemekben, miközben a felsőköpeny inkompatibilis elemekben pedig elszegényedik

Litoszféra fő-, mikro- és nyomelemgeokémiája

Litoszféra fő-, mikro- és nyomelemgeokémiája Litoszféra fő-, mikro- és nyomelemgeokémiája Elemek >1.0 tömeg%-ban főelemek (főleg litofil, refrakter és illó) 0.1-1.0 tömeg%-ban mikroelemek < 0.1 tömeg% nyomelemek A kontinentális kéreg főelemei, (Winter,

Részletesebben

A Föld kémiája.

A Föld kémiája. A Föld kémiája Szabó Csaba Litoszféra Fluidum Kutató Labor (LRG), Földrajz- és Földtudományi Intézet és TTK Központi Kutató és Műszer Centrum ELTE Pázmány Péter sétány 1/C Budapest, 1117 email: cszabo@elte.hu

Részletesebben

Litoszféra fő-, mikro- és nyomelemgeokémiája

Litoszféra fő-, mikro- és nyomelemgeokémiája Litoszféra fő-, mikro- és nyomelemgeokémiája Elemek csoportosítása (gyakoriságuk szerint) Főelemek (>1 tömeg%), pl. O, Si, Fe, Al, Ca, Mg, Na, K (major) Mikroelemek (kis mennyiségben jelen lévő főelemek)

Részletesebben

Geokémiai összefoglaló

Geokémiai összefoglaló Geokémiai összefoglaló Főelem geokémia A földkéreg leggyakoribb elemei A Föld összetétele/ (Winter, 2001) leggyakoribb (Ringwood, 1975) Elem/Oxid Atom% Tömeg% Elem Atom% O 60,8 Si/SiO 2 21,2 59,3 Al/Al

Részletesebben

XLVI. Irinyi János Középiskolai Kémiaverseny 2014. február 6. * Iskolai forduló I.a, I.b és III. kategória

XLVI. Irinyi János Középiskolai Kémiaverseny 2014. február 6. * Iskolai forduló I.a, I.b és III. kategória Tanuló neve és kategóriája Iskolája Osztálya XLVI. Irinyi János Középiskolai Kémiaverseny 201. február 6. * Iskolai forduló I.a, I.b és III. kategória Munkaidő: 120 perc Összesen 100 pont A periódusos

Részletesebben

Az elemek eredete I.

Az elemek eredete I. Az elemek eredete I. A Föld kontinentális kérgében ma 90 elem (H U), de 112 ismert: - az első 82 (H Pb) stabil nuklid is (Tc és Pm nincs a természetben), - a 83-92 (Bi U) csak radioaktív nuklid ( 209 Bi,

Részletesebben

Név:............................ Helység / iskola:............................ Beküldési határidő: Kémia tanár neve:........................... 2013.feb.18. TAKÁCS CSABA KÉMIA EMLÉKVERSENY, IX. osztály,

Részletesebben

NAA és PGAA módszerek összehasonlítása, jelentőségük a geológiai minták vizsgálatában, Standard referencia anyagok vizsgálata

NAA és PGAA módszerek összehasonlítása, jelentőségük a geológiai minták vizsgálatában, Standard referencia anyagok vizsgálata Korszerű Nukleáris Elemanalitikai Módszerek és Alkalmazásaik II. félév 3. előadás NAA és PGAA módszerek összehasonlítása, jelentőségük a geológiai minták vizsgálatában, Standard referencia anyagok vizsgálata

Részletesebben

Izotópkutató Intézet, MTA

Izotópkutató Intézet, MTA Izotópkutató Intézet, MTA Alapítás: 1959, Országos Atomenergia Bizottság Izotóp Intézete Gazdaváltás: 1967, Magyar Tudományos Akadémia Izotóp Intézete, de hatósági ügyekben OAB felügyelet Névváltás: 1988,

Részletesebben

KLÓR. A Cl geokémiailag: erősen illó, oldható mobilis.

KLÓR. A Cl geokémiailag: erősen illó, oldható mobilis. KLÓR A Cl geokémiailag: erősen illó, oldható mobilis. A geofázisok egyik uralkodó anionja. A természetben a klór közel 100%-át a 35 Cl (75.77%) és 37 Cl (24.23%) stabil izotóp alkotja. A kozmogén radioaktív

Részletesebben

Kémiai fizikai alapok I. Vízminőség, vízvédelem 2009-2010. tavasz

Kémiai fizikai alapok I. Vízminőség, vízvédelem 2009-2010. tavasz Kémiai fizikai alapok I. Vízminőség, vízvédelem 2009-2010. tavasz 1. A vízmolekula szerkezete Elektronegativitás, polaritás, másodlagos kötések 2. Fizikai tulajdonságok a) Szerkezetből adódó különleges

Részletesebben

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez. Radioaktív izotópok Izotópok Egy elem különböző tömegű (tömegszámú - A) formái; Egy elem izotópjainak a magjai azonos számú protont (rendszám - Z) és különböző számú neutront (N) tartalmaznak; Egy elem

Részletesebben

Formation of Earth Big impacts throw out ejecta, trap heat Magma ocean Formation of core early in earth history as iron sinks

Formation of Earth Big impacts throw out ejecta, trap heat Magma ocean Formation of core early in earth history as iron sinks A Föld geokémiája A Föld A Föld belső övei. A külső merev litoszférát a szilárd, de képlékeny ( gyenge ) asztenoszféra követi, majd a mezoszféra ismét ridegebb. Az alatta lévő külső mag folyékony, majd

Részletesebben

Petrotektonika bazaltok petrogenezise a forrástól a felszínig

Petrotektonika bazaltok petrogenezise a forrástól a felszínig Petrotektonika bazaltok petrogenezise a forrástól a felszínig Kiss Balázs Ábrák: Robin Gill Igneous rocks and processes Harangi Szabolcs oktatási segédanyagok, magmás kőzettan, geokémia, magmás petrogenezis

Részletesebben

A Föld kéreg: elemek, ásványok és kőzetek

A Föld kéreg: elemek, ásványok és kőzetek A Föld kéreg: elemek, ásványok és kőzetek A Föld szerkezete: réteges felépítés... Litoszféra: kéreg + felső köpeny legfelső része Kéreg: elemi, ásványos és kőzettani összetétel A Föld különböző elemekből

Részletesebben

Az elektronpályák feltöltődési sorrendje

Az elektronpályák feltöltődési sorrendje 3. előadás 12-09-17 2 12-09-17 Az elektronpályák feltöltődési sorrendje 3 Az elemek rendszerezése, a periódusos rendszer Elsőként Dimitrij Ivanovics Mengyelejev és Lothar Meyer vette észre az elemek halmazában

Részletesebben

I. ANALITIKAI ADATOK MEGADÁSA, KONVERZIÓK

I. ANALITIKAI ADATOK MEGADÁSA, KONVERZIÓK I. ANALITIKAI ADATOK MEGADÁSA, KONVERZIÓK I.2. Konverziók Geokémiai vizsgálatok során gyakran kényszerülünk arra, hogy különböző kémiai koncentrációegységben megadott adatokat hasonlítsunk össze vagy alakítsuk

Részletesebben

Nagyteljesítményű elemanalitikai, nyomelemanalitikai módszerek

Nagyteljesítményű elemanalitikai, nyomelemanalitikai módszerek Nagyteljesítményű elemanalitikai, nyomelemanalitikai módszerek 1. Atomspekroszkópiai módszerek 1.1. Atomabszorpciós módszerek, AAS 1.1.1. Láng-atomabszorpciós módszer, L-AAS 1.1.2. Grafitkemence atomabszorpciós

Részletesebben

O % (atomic %) Si % Al - 6.5% Fe - 1.9% Ca - 1.9% Na - 2.6% K -1.42% Mg %

O % (atomic %) Si % Al - 6.5% Fe - 1.9% Ca - 1.9% Na - 2.6% K -1.42% Mg % A Föld geokémiája A Föld A Föld belső övei. A külső merev litoszférát a szilárd, de képlékeny ( gyenge ) asztenoszféra követi, majd a mezoszféra ismét ridegebb. Az alatta lévő külső mag folyékony, majd

Részletesebben

Magszintézis neutronbefogással

Magszintézis neutronbefogással Magszintézis neutronbefogással Kiss Miklós, Berze Nagy János Gimnázium Gyöngyös Magyar Fizikus Vándorgyűlés Debrecen, 2013. augusztus 21-24. Tartalom 1. A magok táblája 2. Elemgyakoriság 3. Neutrontermelés

Részletesebben

Prompt-gamma aktivációs analitika. Révay Zsolt

Prompt-gamma aktivációs analitika. Révay Zsolt Prompt-gamma aktivációs analitika Révay Zsolt Prompt-gamma aktivációs analízis gerjesztés: neutronnyaláb detektált karakterisztikus sugárzás: gamma sugárzás Panorámaanalízis Elemi összetétel -- elvileg

Részletesebben

A zöld technológiák szennyes titkai: a ritkaföldfémláz és erdélyi vonatkozásai

A zöld technológiák szennyes titkai: a ritkaföldfémláz és erdélyi vonatkozásai Sc Y La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu A zöld technológiák szennyes titkai: a ritkaföldfémláz és erdélyi vonatkozásai Dr. Márton István Genfi Tudományegyetem (Svájc) Babeş-Bolyai Tudományegyetem

Részletesebben

Aktiválódás-számítások a Paksi Atomerőmű leszerelési tervéhez

Aktiválódás-számítások a Paksi Atomerőmű leszerelési tervéhez Aktiválódás-számítások a Paksi Atomerőmű leszerelési tervéhez Vízszintes metszet (részlet) Mi aktiválódik? Reaktor-berendezések (acél szerkezeti elemek I.) Reaktor-berendezések (acél szerkezeti elemek

Részletesebben

RÖNTGEN-FLUORESZCENCIA ANALÍZIS

RÖNTGEN-FLUORESZCENCIA ANALÍZIS RÖNTGEN-FLUORESZCENCIA ANALÍZIS 1. Mire jó a röntgen-fluoreszcencia analízis? A röntgen-fluoreszcencia analízis (RFA vagy angolul XRF) roncsolás-mentes atomfizikai anyagvizsgálati módszer. Rövid idõ alatt

Részletesebben

15/2001. (VI. 6.) KöM rendelet. az atomenergia alkalmazása során a levegbe és vízbe történ radioaktív kibocsátásokról és azok ellenrzésérl

15/2001. (VI. 6.) KöM rendelet. az atomenergia alkalmazása során a levegbe és vízbe történ radioaktív kibocsátásokról és azok ellenrzésérl 1. oldal 15/2001. (VI. 6.) KöM rendelet az atomenergia alkalmazása során a levegbe és vízbe történ radioaktív kibocsátásokról és azok ellenrzésérl Az atomenergiáról szóló 1996. évi CXVI. törvény (a továbbiakban:

Részletesebben

AZ MFGI LABORATÓRIUMÁNAK VIZSGÁLATI ÁRAI

AZ MFGI LABORATÓRIUMÁNAK VIZSGÁLATI ÁRAI 1. ELŐKÉSZÍTÉS Durva törés pofás törővel pofás törő 800 Törés, talaj porló kőzetek törése pofás törő+ Fritsch szinterkorund golyósmalommal max. 20 g +szitálás 1000 0,063 mm-es szitán Törés, kőzet masszív

Részletesebben

Metaszomatózis folyamatának nyomon követése felsőköpeny zárványokban, Persány-hegység

Metaszomatózis folyamatának nyomon követése felsőköpeny zárványokban, Persány-hegység . BUDAPESTINENSIS DE EÖTVÖS NOM. * Metaszomatózis folyamatának nyomon követése felsőköpeny zárványokban, Persány-hegység Szabó Ábel Geológus M.Sc. I. évfolyam Témavezetők: Szabó Csaba, Ph.D. (ELTE TTK,

Részletesebben

Elemanalitika hidegneutronokkal

Elemanalitika hidegneutronokkal Elemanalitika hidegneutronokkal Szentmiklósi László MTA Izotópkutató Intézet, Nukleáris Kutatások Osztálya szentm@iki.kfki.hu http://www.iki.kfki.hu/nuclear/ Mik azok a hideg neutronok? A neutron semleges

Részletesebben

Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens.

Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens. Kémia, BMEVEAAAMM Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens Jegyzet dr. Horváth Viola, KÉMIA I. http://oktatas.ch.bme.hu/oktatas/konyvek/anal/

Részletesebben

SZERVETLEN KÉMIA (Földtudomány BSc)

SZERVETLEN KÉMIA (Földtudomány BSc) SZERVETLEN KÉMIA (Földtudomány BSc) www.theodoregray.com/periodictable Csillagok fejlődése A kémiai elemek keletkezése: nukleoszintézis magreakciók típusai Exoterm reakciók: Hidrogénégés proton-proton

Részletesebben

Atomreaktorok üzemtana. Az üzemelő és leállított reaktor, mint sugárforrás

Atomreaktorok üzemtana. Az üzemelő és leállított reaktor, mint sugárforrás Atomreaktorok üzemtana Az üzemelő és leállított reaktor, mint sugárforrás Atomreaktorban és környezetében keletkező sugárzástípusok és azok forrásai Milyen típusú sugárzások keletkeznek? Melyik ellen milyen

Részletesebben

Kőzettan.

Kőzettan. Kőzettan Szabó Csaba Litoszféra Fluidum Kutató Labor Földrajz- és Földtudományi Intézet és Környezettudományi Kooperációs Kutató Központ ELTE Pázmány Péter sétány 1/C Budapest, 1117 email: cszabo@elte.hu

Részletesebben

9. A felhagyás környezeti következményei (Az atomerőmű leszerelése)

9. A felhagyás környezeti következményei (Az atomerőmű leszerelése) 9. A felhagyás környezeti következményei (Az atomerőmű leszerelése) 9. fejezet 2006.02.20. TARTALOMJEGYZÉK 9. A FELHAGYÁS KÖRNYEZETI KÖVETKEZMÉNYEI (AZ ATOMERŐMŰ LESZERELÉSE)... 1 9.1. A leszerelés szempontjából

Részletesebben

A Föld belső szerkezete

A Föld belső szerkezete A Föld belső szerkezete A Naprendszer A Naprendszer felépítése. A fizikai paraméterek különbsége jelzi a bolygók méreteinek eltérését. A Naprendszer bólygóinak adatai 2877 A Föld mint zárt rendszer Anyagáramlás

Részletesebben

Stabil izotóp geokémia - Bevezetés

Stabil izotóp geokémia - Bevezetés Stabil izotóp geokémia - Bevezetés Izotópok mennyiségének (arányának) és elterjedésének, megoszlásának tanulmányozása geofázisokban. A geokémia tárgya és feladata. Modern fizika, magfizika fejlődése, neutron

Részletesebben

Nagy Sándor: Magkémia

Nagy Sándor: Magkémia Nagy Sándor: Magkémia (kv1c1mg1) 07. Stabilitás & instabilitás, magmodellek, tömegparabolák Nagy Sándor honlapja ismeretterjesztő anyagokkal: http://nagysandor.eu/ A Magkémia tantárgy weboldala: http://nagysandor.eu/magkemia/

Részletesebben

Elemek geokémiai rendszere és csoportosításuk

Elemek geokémiai rendszere és csoportosításuk Elemek geokémiai rendszere és csoportosításuk Az elemek geokémiai eloszlását a Földön számos tényező befolyásolja. Az elemek szerkezeti felépítéséből következő tulajdonságaik alapján jól csoportosíthatók

Részletesebben

Melléklet BAZALT ANYAGÚ CSISZOLT KŐESZKÖZÖK KŐZETTANI ÉS GEOKÉMIAI VIZSGÁLATA (BALATONŐSZÖD - TEMETŐI DŰLŐ LELŐHELY)

Melléklet BAZALT ANYAGÚ CSISZOLT KŐESZKÖZÖK KŐZETTANI ÉS GEOKÉMIAI VIZSGÁLATA (BALATONŐSZÖD - TEMETŐI DŰLŐ LELŐHELY) Archeometriai Műhely 2011/1. Péterdi et al. melléklet 1 Melléklet BAZALT ANYAGÚ CSISZOLT KŐESZKÖZÖK KŐZETTANI ÉS GEOKÉMIAI VIZSGÁLATA (BALATONŐSZÖD - TEMETŐI DŰLŐ LELŐHELY) Appendix PETROGRAPHICAL AND

Részletesebben

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez. Radioaktív izotópok Izotópok Egy elem különböző tömegű (tömegszámú - A) formái; Egy elem izotópjainak a magjai azonos számú protont (rendszám - Z) és különböző számú neutront (N) tartalmaznak; Egy elem

Részletesebben

Kőzettan (ga1c1053)

Kőzettan (ga1c1053) Kőzettan (ga1c1053) Szabó Csaba Litoszféra Fluidum Kutató Labor Földrajz- és Földtudományi Intézet és Központi Kutató és Műszer Centrum ELTE Pázmány Péter sétány 1/C Budapest, 1117 email: cszabo@elte.hu

Részletesebben

1.ábra A kadmium felhasználási területei

1.ábra A kadmium felhasználási területei Kadmium hatása a környezetre és az egészségre Vermesan Horatiu, Vermesan George, Grünwald Ern, Mszaki Egyetem, Kolozsvár Erdélyi Múzeum Egyesület, Kolozsvár (Korróziós Figyel, 2006.46) Bevezetés A fémionok

Részletesebben

Radioanalitika természetes radioaktív izotópok segítségével

Radioanalitika természetes radioaktív izotópok segítségével Radioanalitika természetes radioaktív izotópok segítségével Geokronológia Ásványokból és kőzetekből végzett kormeghatározás: az az idő, ami az utolsó, szilárd fázisban történő kiválás, kikristályosodás,

Részletesebben

Radioaktív izotópok a környezetben

Radioaktív izotópok a környezetben Radioaktív izotópok a környezetben Eredet Természetes bomlási sorok Radioaktív izotópok Anyaelemek: 235 U, 238 U, and 232 Th Hosszabb életű leányelemek és azok leányelemei: 226 Ra, 210 Pb, 210 Bi és 210

Részletesebben

ALPHA spektroszkópiai (ICP és AA) standard oldatok

ALPHA spektroszkópiai (ICP és AA) standard oldatok Jelen kiadvány megjelenése után történõ termékváltozásokról, új standardokról a katalógus internetes oldalán, a www.laboreszközkatalogus.hu-n tájékozódhat. ALPHA Az alábbi standard oldatok fémek, fém-sók

Részletesebben

RÉSZLETEZŐ OKIRAT (3) a NAH / nyilvántartási számú akkreditált státuszhoz

RÉSZLETEZŐ OKIRAT (3) a NAH / nyilvántartási számú akkreditált státuszhoz RÉSZLETEZŐ OKIRAT (3) a NAH-1-1755/2014 1 nyilvántartási számú akkreditált státuszhoz 1) Az akkreditált szervezet neve és címe: ISOTOPTECH Nukleáris és Technológiai Szolgáltató Zrt. Vízanalitikai Laboratórium

Részletesebben

Oxigén és hidrogén stabil izotópjai

Oxigén és hidrogén stabil izotópjai Oxigén és hidrogén stabil izotópjai Stabil: H ( 1 H=99.985; 2 H/D/=0.015) Radioaktív: T= Oxigén és hidrogén stabil izotópjai Jól ismert, széles körben használt T becslésre és a szilárd, folyadék és gáz

Részletesebben

Általános Kémia, BMEVESAA101

Általános Kémia, BMEVESAA101 Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Óravázlatok:

Részletesebben

A Föld kémiai összetétele és differenciációja

A Föld kémiai összetétele és differenciációja 166 Magyar Kémiai Folyóirat - Összefoglaló közlemények A Föld kémiai összetétele és differenciációja EMBEY-ISZTIN Antal a,* és DOBOSI Gábor b a Magyar Természettudományi Múzeum, Ásvány- és Kőzettár, Ludovika

Részletesebben

A köpeny és olvadékai

A köpeny és olvadékai A köpeny és olvadékai A Föld F szerkezete és összetételetele Köpeny: Peridotit (ultrabázisos kőzetk zet) Felső köpeny 410 km-ig (olivin spinell) Felső köpeny felső része (60-220 km) Asztenoszféra Kis sebességű

Részletesebben

Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008.

Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Kiss István,Vértes Attila: Magkémia (Akadémiai Kiadó) Nagy Lajos György,

Részletesebben

11. előadás MAGMÁS KŐZETEK

11. előadás MAGMÁS KŐZETEK 11. előadás MAGMÁS KŐZETEK MAGMÁS KŐZETEK A FÖLDKÉREGBEN A magmából képződnek az elő- és főkristályosodás során. A megszilárdulás helye szerint: Intruzív (mélységi) kőzetek (5-20 km mélységben) Szubvulkáni

Részletesebben

Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár,

Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Facebook,

Részletesebben

Kőzettan.

Kőzettan. Kőzettan Szabó Csaba Litoszféra Fluidum Kutató Labor Földrajz- és Földtudományi Intézet és Környezettudományi Kooperációs Kutató Központ ELTE Pázmány Péter sétány 1/C Budapest, 1117 email: cszabo@elte.hu

Részletesebben

Radioizotópok az üzemanyagban

Radioizotópok az üzemanyagban Tartalomjegyzék Radioizotópok az üzemanyagban 1. Radioizotópok friss üzemanyagban 2. Radioizotópok besugárzott üzemanyagban 2.1. Hasadási termékek 2.2. Transzurán elemek 3. Az üzemanyag szerkezetének alakulása

Részletesebben

A Naprendszer geokémiája

A Naprendszer geokémiája A Naprendszer geokémiája Formation of Universe: 15 billion years Formation of Galaxy: 11 billion Years Formation of Solar System: 4.6 billion years Sun is probably a third generation star Probably takes

Részletesebben

Detektorfejlesztés a késő neutron kibocsájtás jelenségének szisztematikus vizsgálatához. Kiss Gábor MTA Atomki és RIKEN Nishina Center

Detektorfejlesztés a késő neutron kibocsájtás jelenségének szisztematikus vizsgálatához. Kiss Gábor MTA Atomki és RIKEN Nishina Center Detektorfejlesztés a késő neutron kibocsájtás jelenségének szisztematikus vizsgálatához Kiss Gábor MTA Atomki és RIKEN Nishina Center A késő neutron kibocsájtás felfedezése R. B. Roberts, R. C. Meyer és

Részletesebben

A geokémia csoportosítása:

A geokémia csoportosítása: Az elemek eredete A geokémia csoportosítása: - Nukleáris tulajdonságok alapján (stabil, radioaktív); - Illékonyságuk (kondezációs képesség) alapján gáz-szilárd rendszerben (Univerzum); - Affinitásuk alapján

Részletesebben

Az elemeket 3 csoportba osztjuk: Félfémek vagy átmeneti fémek nemfémek. fémek

Az elemeket 3 csoportba osztjuk: Félfémek vagy átmeneti fémek nemfémek. fémek Kémiai kötések Az elemeket 3 csoportba osztjuk: Félfémek vagy átmeneti fémek nemfémek fémek Fémek Szürke színűek, kivétel a színesfémek: arany,réz. Szilárd halmazállapotúak, kivétel a higany. Vezetik az

Részletesebben

Sindely Dániel Sindely László: Atommag modellek és szimmetriáik 325

Sindely Dániel Sindely László: Atommag modellek és szimmetriáik 325 Sindely Dániel Sindely László: Atommag modellek és szimmetriáik 325 MODELLEK ÉS SZIMMETRIÁK BEVEZETÉS Az atomokról alkotott elképzelésünket állandóan módosítják az újabb felfedezések. Az atom modelljének

Részletesebben

Nagy érzékenyégű módszerek hosszú felezési idejű nehéz radioizotópok analitikájában. Vajda N., Molnár Zs., Bokori E., Groska J., Mácsik Zs., Széles É.

Nagy érzékenyégű módszerek hosszú felezési idejű nehéz radioizotópok analitikájában. Vajda N., Molnár Zs., Bokori E., Groska J., Mácsik Zs., Széles É. RADANAL Kft. www.radanal.kfkipark.hu MTA Izotópkutató Intézet www.iki.kfki.hu Nagy érzékenyégű módszerek hosszú felezési idejű nehéz radioizotópok analitikájában Vajda N., Molnár Zs., Bokori E., Groska

Részletesebben

Po, MCS-PC, 209 Bi+n 210 Po; Rn; Ra), - a további 20 ritka elem: radioktív nuklidjai ismertek ( 237 Np /2.14*10 6 a, 209

Po, MCS-PC, 209 Bi+n 210 Po; Rn; Ra), - a további 20 ritka elem: radioktív nuklidjai ismertek ( 237 Np /2.14*10 6 a, 209 Az elemek eredete A Föld kontinentális kérgében ma 90 elem (H U), de 112 ismert: - az első 82 (H Pb) stabil nuklid is (Tc és Pm nincs a természetben), - a 83-92 (Bi U) csak radioaktív nuklid ( 209 Bi,

Részletesebben

KÉMIA TEMATIKUS ÉRTÉKELİ FELADATLAPOK. 9. osztály C változat

KÉMIA TEMATIKUS ÉRTÉKELİ FELADATLAPOK. 9. osztály C változat KÉMIA TEMATIKUS ÉRTÉKELİ FELADATLAPOK 9. osztály C változat Beregszász 2005 A munkafüzet megjelenését a Magyar Köztársaság Oktatási Minisztériuma támogatta A kiadásért felel: Orosz Ildikó Felelıs szerkesztı:

Részletesebben

Az elemek periódusos rendszere (kerekített relatív atomtömegekkel)

Az elemek periódusos rendszere (kerekített relatív atomtömegekkel) Kedves versenyző! A kémia feladatsor megoldására 60 perc áll rendelkezésedre. Nem kell arra törekedned, hogy ennyi idő alatt minden feladatot megoldj, az a fontos, hogy minél több pontot szerezz! A feladatok

Részletesebben

NE FELEJTSÉTEK EL BEÍRNI AZ EREDMÉNYEKET A KIJELÖLT HELYEKRE! A feladatok megoldásához szükséges kerekített értékek a következők:

NE FELEJTSÉTEK EL BEÍRNI AZ EREDMÉNYEKET A KIJELÖLT HELYEKRE! A feladatok megoldásához szükséges kerekített értékek a következők: A Szerb Köztársaság Oktatási Minisztériuma Szerbiai Kémikusok Egyesülete Köztársasági verseny kémiából Kragujevac, 2008. 05. 24.. Teszt a középiskolák I. osztálya számára Név és utónév Helység és iskola

Részletesebben

Li, Be, B stabil izotópjai

Li, Be, B stabil izotópjai Li, Be, B stabil izotópjai Nuklid táblázat könnyű elemekre Stabil izotóp Faure, 1998 Li, Be, B A könnyű elemek közül a Li, B, Be természetes relatív gyakorisága anomálisan kicsi. Oka: csak(?) kozmikus

Részletesebben

A geokémia csoportosítása:

A geokémia csoportosítása: Az elemek eredete A geokémia csoportosítása: - Nukleáris tulajdonságok alapján (stabil, radioaktív); - Illékonyságuk (kondezációs képesség) alapján gáz-szilárd rendszerben (Univerzum); - Affinitásuk alapján

Részletesebben

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 2. Mit nevezünk az atom tömegszámának? a) a protonok számát b) a neutronok számát c) a protonok és neutronok

Részletesebben

Az atommag összetétele, radioaktivitás

Az atommag összetétele, radioaktivitás Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron

Részletesebben

KRISTÁLYOK GEOMETRIAI LEÍRÁSA

KRISTÁLYOK GEOMETRIAI LEÍRÁSA KRISTÁLYOK GEOMETRIAI LEÍRÁSA Kristály Bázis Pontrács Ideális Kristály: hosszútávúan rendezett hibamentes, végtelen szilárd test Kristály Bázis: a kristály legkisebb, ismétlœdœ atomcsoportja Rácspont:

Részletesebben

Az elemek eredete II.

Az elemek eredete II. Az elemek eredete II. Nukleoszintézis a csillagokban Az Ősrobbanást követően (~500 milliomodik évben) az Univerzumban a többé-kevésbé homogén forró H és He gázban az agyagsűrűség megnövekszik (gravitáció

Részletesebben

a NAT-1-1316/2008 számú akkreditálási ügyirathoz

a NAT-1-1316/2008 számú akkreditálási ügyirathoz Nemzeti Akkreditáló Testület RÉSZLETEZÕ OKIRAT a NAT-1-1316/2008 számú akkreditálási ügyirathoz A METALCONTROL Anyagvizsgáló és Minõségellenõrzõ Központ Kft. (3540 Miskolc, Vasgyár u. 43.) akkreditált

Részletesebben

8. AZ ATOMMAG FIZIKÁJA

8. AZ ATOMMAG FIZIKÁJA 8. AZ ATOMMAG FIZIKÁJA Az atommag szerkezete (40-44 oldal) A tömegspektrométer elve Az atommag komponensei Izotópok Tömeghiány, kötési energia, stabilitás Magerők Magmodellek Az atommag stabilitásának

Részletesebben

Az elemek rendszerezése, a periódusos rendszer

Az elemek rendszerezése, a periódusos rendszer Az elemek rendszerezése, a periódusos rendszer 12-09-16 1 A rendszerezés alapja, az elektronszerkezet kiépülése 12-09-16 2 Csoport 1 2 3 II III IA A B 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 IV V VI VII

Részletesebben

Ásványok. Az ásványok a kőzetek építő elemei.

Ásványok. Az ásványok a kőzetek építő elemei. Ásványok Az ásványok a kőzetek építő elemei. Az ásványok örzik a kőzetek keletkezési történetét, továbbá meghatározzák a fizikai és kémiai jellemvonásaikat 1 Minden ásványt jellemez egy sajátos - összetétel

Részletesebben

0,25 NTU Szín MSZ EN ISO 7887:1998; MSZ 448-2:1967 -

0,25 NTU Szín MSZ EN ISO 7887:1998; MSZ 448-2:1967 - Leírás Fizikaikémiai alapparaméterek Módszer, szabvány (* Nem akkreditált) QL ph (potenciometria) MSZ EN ISO 3696:2000; MSZ ISO 10523:2003; MSZ 148422:2009; EPA Method 150.1 Fajlagos elektromos vezetőképesség

Részletesebben

A vulkáni kitöréseket megelőző mélybeli magmás folyamatok

A vulkáni kitöréseket megelőző mélybeli magmás folyamatok A vulkáni kitöréseket megelőző mélybeli magmás folyamatok Jankovics M. Éva MTA-ELTE Vulkanológiai Kutatócsoport SZTE ÁGK Vulcano Kutatócsoport Szeged, 2014.10.09. ábrák, adatok forrása: tudományos publikációk

Részletesebben

A Föld belső szerkezete és összetétele

A Föld belső szerkezete és összetétele A FöldF belső szerkezete és összetételetele Meteoritok k (kémiai összetétel) tel) Földrengéshullámok (fizikai állapot) Primer hullámok: longitudinális, nyomáshullámok, szilárd anyagban és folyékonyban

Részletesebben

Sugárzások kölcsönhatása az anyaggal

Sugárzások kölcsönhatása az anyaggal Radioaktivitás Biofizika előadások 2013 december Sugárzások kölcsönhatása az anyaggal PTE ÁOK Biofizikai Intézet, Orbán József Összefoglaló radioaktivitás alapok Nukleononkénti kötési energia (MeV) Egy

Részletesebben

RADIOAKTÍV HULLADÉKOK MINŐSÍTÉSE A PAKSI ATOMERŐMŰBEN

RADIOAKTÍV HULLADÉKOK MINŐSÍTÉSE A PAKSI ATOMERŐMŰBEN RADIOAKTÍV HULLADÉKOK MINŐSÍTÉSE A PAKSI ATOMERŐMŰBEN Bujtás T., Ranga T., Vass P., Végh G. Hajdúszoboszló, 2012. április 24-26 Tartalom Bevezetés Radioaktív hulladékok csoportosítása, minősítése A minősítő

Részletesebben

Magmás kőzetek kémiai összetétele különböző tektonikai környezetekben

Magmás kőzetek kémiai összetétele különböző tektonikai környezetekben Magmás kőzetek kémiai összetétele különböző tektonikai környezetekben A magmás kőzetek kémiai összetételét a zárt és nyílt rendszerű folyamatokon túl még egy fontos paraméter határozza meg: a megolvadó

Részletesebben

Az ionizáló sugárzások fajtái, forrásai

Az ionizáló sugárzások fajtái, forrásai Az ionizáló sugárzások fajtái, forrásai magsugárzás Magsugárzások Röntgensugárzás Függelék. Intenzitás 2. Spektrum 3. Atom Repetitio est mater studiorum. Röntgen Ionizációnak nevezzük azt a folyamatot,

Részletesebben

Radioaktív elemek környezetünkben: természetes és mesterséges háttérsugárzás. Kovács Krisztina, Alkímia ma

Radioaktív elemek környezetünkben: természetes és mesterséges háttérsugárzás. Kovács Krisztina, Alkímia ma Radioaktív elemek környezetünkben: természetes és mesterséges háttérsugárzás Tartalom bevezetés, alapfogalmak természetes háttérsugárzás mesterséges háttérsugárzás összefoglalás OSJER Bevezetés - a radiokémiai

Részletesebben

Periódusosság. 9-1 Az elemek csoportosítása: a periódusostáblázat

Periódusosság. 9-1 Az elemek csoportosítása: a periódusostáblázat Periódusosság 9-1 Az elemek csoportosítása: aperiódusos táblázat 9-2 Fémek, nemfémek és ionjaik 9-3 Az atomok és ionok mérete 9-4 Ionizációs energia 9-5 Elektron affinitás 9-6 Mágneses 9-7 Az elemek periódikus

Részletesebben

Fogorvosi anyagtan fizikai alapjai 5. Általános anyagszerkezeti ismeretek Fémek, ötvözetek

Fogorvosi anyagtan fizikai alapjai 5. Általános anyagszerkezeti ismeretek Fémek, ötvözetek Fémek törékeny/képlékeny nemesémek magas/alacsony o.p. Fogorvosi anyagtan izikai alapjai 5. Általános anyagszerkezeti ismeretek Fémek, ötvözetek ρ < 5 g cm 3 könnyűémek 5 g cm3 < ρ nehézémek 2 Fémek tulajdonságai

Részletesebben

Találkozz a Tudóssal! A geológus egy napja. A hard rock-tól a környezetgeokémiáig

Találkozz a Tudóssal! A geológus egy napja. A hard rock-tól a környezetgeokémiáig Találkozz a Tudóssal! A geológus egy napja. A hard rock-tól a környezetgeokémiáig www.meetthescientist.hu 1 26 ? ÚTKERESÉS?? Merre menjek? bankár fröccsöntő?? politikus? bogarász?? jogász? tudományos kutató

Részletesebben

Radioaktív izotópok előállítása. Általános módszerek

Radioaktív izotópok előállítása. Általános módszerek Radioaktív izotópok előállítása Általános módszerek Természetes radioaktív izotópok kinyerése U-238 Th-234 Pa-234 U-234 Th-230 Ra-226 Rn-222 4,5e9 év 24,1 nap 1,2 min 2,5e5 év 8e4 év 1620 év 3,825 nap

Részletesebben

Atomszerkezet, kötések

Atomszerkezet, kötések Anyagszerkezettan és anyagvizsgálat 016/17 Atomszerkezet, kötések Dr. Szabó Péter János szpj@eik.bme.hu Az előadás során megismerjük: a két alapvető atommodell alapjait, és a modellek közötti különbségeket;

Részletesebben

Könnyűfém és szuperötvözetek

Könnyűfém és szuperötvözetek Könnyűfém és szuperötvözetek Anyagismeret a gyakorlatban Dr. Orbulov Imre Norbert Anyagtudomány és Technológia Tanszék Az előadás fő pontjai A könnyűfémek definíciója Alumínium és ötvözetei Magnézium és

Részletesebben

Metamorf kőzettan. Magmás (olvadék, kristályosodás, T, p) szerpentinit. zeolit Üledékes (törmelék oldatok kicsapódása; szerves eredetű, T, p)

Metamorf kőzettan. Magmás (olvadék, kristályosodás, T, p) szerpentinit. zeolit Üledékes (törmelék oldatok kicsapódása; szerves eredetű, T, p) Metamorf kőzettan Metamorfózis (átalakulás, átkristályosodás): ha a kőzetek keletkezési körülményeiktől eltérő nyomású és/vagy hőmérsékletű környezetbe kerülve szilárd fázisban átkristályosodnak és/vagy

Részletesebben

Ásványi nyersanyagtelepek képződése térben és időben: Metallogénia

Ásványi nyersanyagtelepek képződése térben és időben: Metallogénia Ásványi nyersanyagtelepek képződése térben és időben: Metallogénia Teleptan II. 1. témakör: Bevezetés, és az Archaikum metallogéniája Dr. Molnár Ferenc ELTE TTK Ásványtani Tanszék A kurzus tartalma 1.

Részletesebben

Kémiai alapismeretek 14. hét

Kémiai alapismeretek 14. hét Kémiai alapismeretek 14. hét Horváth Attila Pécsi Tudományegyetem, Természettudományi Kar, Kémia Intézet, Szervetlen Kémiai Tanszék 2011. december 6. 1/9 2010/2011 I. félév, Horváth Attila c 1785 Cavendish:

Részletesebben

KíSÉRLETI MIKROELEM-VIZSGÁLATOK A MÓRAHALOM KÖRNYÉKI TALAJOKON

KíSÉRLETI MIKROELEM-VIZSGÁLATOK A MÓRAHALOM KÖRNYÉKI TALAJOKON M. ÁLL. FÖLDT. NT. ÉV JEL. 1980-RÓL, pp. 93-102. BUDAPEST, 1982 KíSÉRLET MKROELEM-VZSGÁLATOK A MÓRAHALOM KÖRNYÉK TALAJOKON FÜGED P. UBUL-KuT LÁSZLÓ Az iparszerü mezogazdasági termelés számára egyre fontosabb,

Részletesebben

KÉMIA TEMATIKUS ÉRTÉKELİ FELADATLAPOK. 9. osztály A változat

KÉMIA TEMATIKUS ÉRTÉKELİ FELADATLAPOK. 9. osztály A változat KÉMIA TEMATIKUS ÉRTÉKELİ FELADATLAPOK 9. osztály A változat Beregszász 2005 A munkafüzet megjelenését a Magyar Köztársaság Oktatási Minisztériuma támogatta A kiadásért felel: Orosz Ildikó Felelıs szerkesztı:

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

Elektrokémia. A nemesfém elemek és egymással képzett vegyületeik

Elektrokémia. A nemesfém elemek és egymással képzett vegyületeik Elektrokémia Redoxireakciók: Minden olyan reakciót, amelyben elektron leadás és elektronfelvétel történik, redoxi reakciónak nevezünk. Az elektronleadás és -felvétel egyidejűleg játszódik le. Oxidálószer

Részletesebben

Ércteleptan IV. 4/20/2012. Intermedier és savanyú intrúziók ásványi nyersanyagai. Babeş-Bolyai Tudományegyetem, Geológia Szak, 3.

Ércteleptan IV. 4/20/2012. Intermedier és savanyú intrúziók ásványi nyersanyagai. Babeş-Bolyai Tudományegyetem, Geológia Szak, 3. 4/0/01 Ércteleptan IV. Dr. MÁRTON ISTVÁN Istvan.Marton@stockwork.ro Intermedier és savanyú intrúziók ásványi nyersanyagai Fanerites szövettel rendelkező intrúziók: Pegmatitok Greizen telepek (pneumatolitok)

Részletesebben

10. előadás Kőzettani bevezetés

10. előadás Kőzettani bevezetés 10. előadás Kőzettani bevezetés Mi a kőzet? Döntően nagy földtani folyamatok során képződik. Elsősorban ásványok keveréke. Kőzetalkotó ásványok építik fel. A kőzetalkotó komponensek azonban nemcsak ásványok,

Részletesebben

Kémiai kötések és kristályrácsok ISMÉTLÉS, GYAKORLÁS

Kémiai kötések és kristályrácsok ISMÉTLÉS, GYAKORLÁS Kémiai kötések és kristályrácsok ISMÉTLÉS, GYAKORLÁS Milyen képlet adódik a következő atomok kapcsolódásából? Fe - Fe H - O P - H O - O Na O Al - O Ca - S Cl - Cl C - O Ne N - N C - H Li - Br Pb - Pb N

Részletesebben

A MARSI ÉS HOLDI METEORITOK ÖSSZEHASONLÍTÓ KŐZETTANI FELDOLGOZÁSA

A MARSI ÉS HOLDI METEORITOK ÖSSZEHASONLÍTÓ KŐZETTANI FELDOLGOZÁSA A MARSI ÉS HOLDI METEORITOK ÖSSZEHASONLÍTÓ KŐZETTANI FELDOLGOZÁSA Készítette: Mészáros Marianna Környezettan alapszakos hallgató Témavezető: Dr. Ditrói-Puskás Zuárd Egyetemi docens Mik a meteoritok, és

Részletesebben

A nagy-kopasz hegyi cheralit környezetgeokémiai vizsgálata

A nagy-kopasz hegyi cheralit környezetgeokémiai vizsgálata A nagy-kopasz hegyi cheralit környezetgeokémiai vizsgálata Készítette: Grosch Mariann Környezettan B. Sc. III. Témavezető: Szabó Csaba, Ph. D. Konzulens: Szabó Zsuzsanna, Ph. D. hallgató TDK Budapest,

Részletesebben