Stabil izotóp geokémia - Bevezetés

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Stabil izotóp geokémia - Bevezetés"

Átírás

1 Stabil izotóp geokémia - Bevezetés Izotópok mennyiségének (arányának) és elterjedésének, megoszlásának tanulmányozása geofázisokban. A geokémia tárgya és feladata. Modern fizika, magfizika fejlődése, neutron felfedezése (H. Urey, 1932), és analitikai kémia fejlődése. Izotópok: azonos kémiai tulajdonság, de különböző tömeg - 5% vagy nagyobb - (azonos rendszám atomic number-z, de különböző tömegszám atomic mass-a). Már Mengyelejev (1869) felfigyelt a növekvő atomtömegen alapuló kémiai anomáliára az Ar-K, Co-Ni és Te-I párok esetén. Az izotópok felfedezése (Soddy, radioaktív; Thompson, stabil 22 Ne, de nem hitte el; Aston, 1919 tömegspektrográffal 212 stabil) feloldotta a problémát. Sc-tól nagyobb rendszámú elemek stabil izotóp részarányai: 1/ konstans (vagy inkább még nem mérhető a különbség), a rendszám növekedésével a tömegkülönbség csökken (csökkenő Δm/m detektálása egyre nehezebb), jellemző az ionos kötés és egy oxidációs állapot; 2/ jelentős a különbség (pl. Pb) radioaktív bomlás: 232 Th 208 Pb, 238 U 206 Pb, 235 U 207 Pb (radioaktív és radiogén izotópok).

2 Sc-tól kisebb rendszámú elemek izotópjainak gyakorisága mérhető (tömegspektrométerrel legalább 0,0000X-ben); konstans értékek stabil izotópok. Stabil izotópok: radioaktív bomlás nem figyelhető meg (felezési idő > 15 milliárd év); páros számú proton és neutron stabilabb atommag (nagyobb gyakoriság). Elemenként (könnyű elemek) átlagosan: 3, de 21 elem esetén: 0, Sn: 10 A könnyű elemeknek a stabil izotópjai egyre jelentősebb szerepet játszanak a geokémiai kutatásban. A stabil izotóp geokémia a geokémia egyik területe (köpenygeokémia, hidrogeokémia, környezetgeokémia és kozmokémia egyre erősödik, fejlődik). Tradicionálisan: H (D/H [ 2 H/ 1 H], C ( 13 C/ 12 C), N ( 15 N/ 14 N), O ( 18 O/ 16 O), S ( 34 S/ 32 S): - kis atomtömeg, az izotópok közötti relatív tömegkülönbség (Δm/m) nagy (elemzés!) D a H kétszerese! - nehezebb (általában ritkább) izotópok gyakorisága viszonylag nagy és hasonló eloszlást mutat a könnyebbhez (és gyakoribbhoz) képest: (0,1-5%), kivéve a D (~ ppm pontatlanabb meghatározás) - kovalens kötésben (erőssége tömegfüggő), többféle oxidációs állapotban (C, N, S) és számos vegyületben (O), továbbá természetes szilárd és fluidum anyagokban. Ma: Li - ( 7 Li/ 6 Li), B - ( 11 B/ 10 B), Ne - ( 22 Ne/ 20 Ne), Mg - ( 26 Mg/ 24 Mg), Si - ( 30 Si/ 28 Si), Cl - ( 37 Cl/ 35 Cl), Ar - ( 40 Ar/ 36 Ar), Ca - ( 44 Ca/ 40 Ca), Fe - ( 56 Fe/ 54 Fe), Se - (Se 76 /Se 82 ),

3 The abundances of the isotopes present in solar system matter are plotted as a function of mass number A (the solar system abundances for the heavy elements are those compiled by Palme and Jones (see Chapter 1.03 in Treatise on Geochemistry, 2003). Truran Heger, 2003

4 : A. Nier kifejlesztette a kettős bemenetű gázionforrású tömegspektrométert; izotópos összetételváltozás mérése 1947: H. Urey lefektette az izotóp geokémia elméleti alapjait és geológiai alkalmazását (The Thermodynamics Properties of Isotopic Substances); természetes anyagok kutatása, kisérletek, izotóp frakcionáció T-függő A stabil izotópos összetétel - azaz a relatív mennyiség - változása az izotóp frakcionáció: természetes - fizikai, kémiai (diffúzió, párolgás) és (biológiai) (és nem nukleáris) - folyamat; A könnyű elemekben (Sc-ig) jól detektálható; bár a kissé nehezebb könnyű elemekben (pl. 28 Si- 30 Si, 24 Mg- 26 Mg, 40 Ca- 48 Ca) és a nehéz elemekben (pl. 54 Fe- 56 Fe, 76 Se- 82 Se) is hasonló a mechanizmus, de az elemzés problémás lehet (ionos kötés; kis variabilitás koordinációban; kis relatív tömegkülönbség; kicsi frakcionáció).

5 Stabil izotópok Kozmogén izotópok Természetes radioaktív izotópok Z (rendszám) N (neutron)

6 As Se Ca Ar Ti Cr Fe Plot of Z vs. N for nuclides up to tin (Z=50) showing the "stable" valley of the nuclides. The Z : N ratio is 1 for the light nuclides and increases towards 1.5 for the heavier nuclides. Increases or decreases in N for given element produces increasingly unstable isotopes (decreasing T½).

7 Nuklid táblázat könnyű elemekre Könnyű elemek stabil izotópjai Faure, 1998

8 Tradicionális stabil izotópok gyakorisága és tömege Faure, 1998

9 További könnyű elemek stabil izotópjainak gyakorisága 35 Cl Cl Henderson, 1982

10 Szelektált izotóp mennyiségek Brownlow, 1989

11 Izotóp frakcionáció: Izotóp frakcionáció (azaz a könnyebb és a nehezebb izotópok elkülönülésének) lehetősége: 1) kicserélődéses reakciók, amelyek során az izotópok újra szétosztódnak/megoszlanak, 2) kinetikus folyamatok, ahol a reakció sebesség szabja meg a reagensek és produktumok izotóp arányát (egyirányú és nem befejezett reakciók), 3) fizikokémiai folyamatok (párolgás/kondenzáció, olvadás/kristályosodás, adszorpció/deszorpció, diffúzió, stb.). Izotóp frakcionációt előidézik: 1) egyensúlyi, 2) kinetikus, és 3) nem tömegfüggő folyamatok (jelentéktelen). Frakcionáció alapja: a molekulák és atomok mozgásának a módja, ami az energiájuktól, azaz a tömegüktől függ.

12 Izotóp frakcionáció 1/ Egyensúlyi frakcionáció: egyensúlyi reakcióban molekulák (gáz, folyadék fázisban) és atomok (szilárd fázisban) mozognak: - molekulák, atomok transzlációs, rotációs és vibrációs mozgást végeznek (E=1/2hν, h Plankféle állandó, ν vibrációs frekvencia); - a mozgás energiája tömegfüggő a rendszer a legkisebb energia konfigurációra törekszik izotópok eloszlásának alapja: nehezebb izotópokból álló molekuláknak és atomoknak kisebb az energia állapotuk, mint könnyű párjuknak nehezebb izotópok stabilabb állapotban és kötésben lesznek - szilárd>folyékony>gáz fázis, - kovalens>ionos kötés, koordináció nehezebb általában stabilabb The three modes of motion shown for a diatomic molecule. Rotations can occur about both the y and x axes; only the rotation about the y axis is illustrated. Since radial symmetry exists about the z axis, rotations about that axis are not possible. Three modes of translational motion are possible: in the x, y, and z directions. White, 2003

13 Egyensúlyi frakcionáció: Gáz-folyadék relációban: 16 O és 18 O eloszlása folyadékban (víz) és gázban (gőz) A reakció: (H 2 18 O) l +(H 2 16 O) g < == > (H 2 16 O) l + (H 2 18 O) g A tömeghatás törvénye szerint: (H 2 18 O/H 2 16 O) g / (H 2 18 O/H 2 16 O) l = ( 18 O/ 16 O) g / 18 O/ 16 O) l = α o g/l (T, P) (frakcionációs koefficiens, 1-hoz tart, ha T nő (P-től nem függ) = K (eloszlási koefficiens, ha különböző anyagok) számos izotóp párra meghatározható, pl.: D/H, 13 C/ 12 C, 15 N/ 14 N, 34 S/ 32 S, 37 Cl/ 35 Cl (gáz, oldat, olvadék, szilárd)

14 Egyensúlyi frakcionáció: H 2 O-SiO 2 relációban: 16 O és 18 O eloszlása folyadékban (víz) és szilárdban (kvarc) (H 2 18 O, H 2 17 O, H 2 16 O, D 2 18 O, stb. ill. Si 18 O 2, Si 17 O 2, stb.) A reakció: (Si 18 O 2 ) sz +(2H 2 16 O) l < == > (Si 16 O 2 ) sz + (2H 2 18 O) l ami: (H 2 18 O) 2 (Si 16 O 2 ) * = K 1 egyensúlyi konstans (konstans T-nél) (H 2 16 O) 2 (Si 18 O 2 ) ha T nő, hogyan változik K 1? Ha a nehezebb izotóp az erősebb kémiai kötésű fázisba megy, akkor 1 > K 1 < 1? (K 2 17 O és 18 O eloszlására, stb.)

15 Egyensúlyi frakcionáció: Szilárd-szilárd relációban: 16 O és 18 O eloszlása magnetitben és kvarcban 2Si 16 O 2 + Fe 3 18 O 4 = 2Si 18 O 2 + Fe 3 16 O 4 qtz mt qtz mt kovalens <-> ionos kötés, T-függő reakció, geotermométer! plagioklász (albit-anortit), alkáli földpát (albit-káliföldpát) jó geotermométer? aragonit-kalcit? kristályrács konfiguració és helyettesítés másodlagos szerepet játszik! Az egyensúlyi frakcionáció gyorsabb gázokban és folyadékokban, mint szilárd fázisban (az utóbbiban a diffúziónak van nagy szerepe). Befolyásolja a folyamatot: - szerkezet (pl. az O a felszínen vagy sem), -T és t.

16 25 o C egyensúly tengervízzel α= K 1/n Milyen frakcionáció várható?

17 O izotóp frakcionáció CaCO 3 és H 2 O között Urey (1947): tengeri kalcit képződési T meghatározható a kalcit és a víz izotóp arányából kalcit mérhető víz -? α= K 1/n Brownlow, 1996

18 Alapja: egyensúly az ásványok között a kepződésük alatt és után, de nem jutottak újra egyensúlyba, amikor a rendszer lehült.

19 Izotóp frakcionáció 2/ Kinetikus frakcionáció: gyors, nem teljes, egyirányú reakcióban: pl. párolgás, kicsapódás, diffúzió, disszociáció, stb. és számos biológiailag közvetített reakcióban vagy folyamatban (fotoszintézis, szulfát faló aneorób baktériumok) A gáz molekulák sebessége különböző: - ideális gáz molekulák kinetikus energiája minden molekulára azonos adott T-en, - a tömegben mutatkozó különbséget (könnyű ill. nehéz izotópok) a sebesség kompenzálja; E k = ½*mv 2

20 Kinetikus frakcionáció: CO 2 gáz esetén 12 C 16 O 2, 12 C 17 O 2, 12 C 18 O 2, 13 C 16 O 2, stb. nézzünk meg két molekulát: A: 12 C 16 O 2 (tömeg = *16 = 44) és B: 13 C 16 O 2 (tömeg = *16 = 45) ha az energia azonos ½*m A v A 2 = ½*m B v B2 (ideális gáz esetén) a sebességük aránya: v A /v B = (m B /m A ) 1/2 = (45/44) 1/2 = azaz 12 C 16 O 2 tovább diffundál adott idő alatt ( 12 C 16 O/ 13 C 16 O=1.0177, mi a jelentősége) T-függő, molekulák nehezebb izotópokkal stabilabbak könnyű izotópok gyengébb kötésben a reakció termékekben, távozhatnak a rendszerből nem egyensúlyi reakciók és biológiai folyamatokban, pl. fotoszintézis (kevés 13 C), bakteriális redukció (kevés 34 S)

21

22 Izotóp frakcionáció 3/ Nem tömegfüggő frakcionáció (meteoritokban és az atmoszféra fotokémiai reakcióiban, ahol a molekuláris szimmetriának van szerepe) White, 2003 Meteorites (CAI) of different classes plot in distinct fields on an oxygen isotope diagram, (nucleosynthetic, and then photochemical effect). Thiemens and Heidenreich, 1983; Theimens, 1999 (review) Oxygen isotopic composition in the stratosphere and troposphere show the effects of mass independent fractionation. A few other atmospheric trace gases show similar effects. Essentially all other material from the Earth and Moon plot on the terrestrial fractionation line. (ózon szegény szimmetrikus molekulákban)

23 * SIMS *H mérésének pontossága jobb, mint ±0,5%o; a többi könnyű elemre ±0,05%o. (komplex molekulák)

24 Sztenderdek Standards (NBS, NIST, V, IAEA): H δd átlagos (hipotetikus) tengervíz (SMOW) D/H = 1,557*10-4 O δ 18 O SMOW, PDB 18 O/ 16 O = 2,0052*10-3 O δ 17 O SMOW 17 O/ 16 O = 3,76*10-4 S δ 34 S troilit a Canyon Diablo meteoritból (CDT) 34 S/ 32 S = 4,43*10-2 C δ 13 C PDB 13 C/ 12 C = 1,122*10-2 N δ 15 N levegő (NBS-14 vagy ATM vagy AIR) 15 N/ 14 N = 3,613*10-3 Li δ 7 Li NBS L-SVEC vagy NIST Li/ 6 Li = 12, (Li δ 6 Li NBS L-SVEC vagy NIST Li/ 7 Li = 0,08274) B δ 11 B NBS 951 vagy NIST B/ 10 B = 4,044 Cl δ 37 Cl SMOC 37 Cl/ 35 Cl = 0,324 Br δ 81 Br SMOB 81 Br/ 79 Br = He a mai atmoszféra He-aránya (Ra) 3 He/ 4 He = 1,3841* Sr (term. gyak. 87 Sr = Sr = 9.86) 87 Sr/ 86 Sr = mért arány NBS - National Bureau of Standards (USA) (88-ig) NIST- National Institute of Standards and Technology (USA) (88-tól) IAEA - International Atomic Energy Agency V - Vienna

25 Környezeti stabil izotópok leggyakrabban elemzett fázisai Izotóp Arány Természetes gyakoriság % Referencia (gyakorisági arány) Mérésre használt fázis 2 H 2 H/ 1 H V-SMOW ( ) H 2 O, CH 2 O, CH 4, H 2, OH ásványok 3 He 3 He/ 4 He Atmoszferikus He ( ) He vízben v. gázban, kéreg fluidumok, bazalt 7 Li 7 Li/ 6 Li 92.5 L-SVEC (12,086053) Sós vizek, kőzetek 11 B 11 B/ 10 B 80.1 NBS 951 ( ) Sós vizek, agyagok, borátok, kőzetek 13 C 13 C/ 12 C 1.11 V-PDB ( ) CO 2, karbonát, oldott szervetlen szén, CH 4, szerves anyagok 15 N 15 N/ 14 N AIR N 2 ( ) N 2, NH 4+, NO 3, N-tartalmú szerves anyagok 18 O 18 O/ 16 O V-SMOW ( ) V-PDB ( ) H 2 O, CH 2 O, CO 2, szulfátok, NO 3, karbonátok, szilikátok, OH ásványok 34 S 34 S/ 32 S 4.21 CDT ( ) Szulfátok, szulfidok, H 2 S, S-tartalmú szerves anyagok 37 Cl 37 Cl/ 35 Cl SMOC (0.324) Sós vizek, kőzetek, evaporitok, oldószerek 81 Br 81 Br/ 79 Br SMOB Sós vizek 87 Sr 87 Sr/ 86 Sr 87 Sr = Sr = 9.86 Mért abszolut arány Víz, karbonátok, szulfátok, földpát

Stabil izotóp geokémia - Bevezetés

Stabil izotóp geokémia - Bevezetés Stabil izotóp geokémia - Bevezetés Izotópok mennyiségének (arányának) és elterjedésének, megoszlásának tanulmányozása geofázisokban. A geokémia tárgya és feladata. Modern fizika, magfizika fejlődése, deutérium

Részletesebben

Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens.

Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens. Kémia, BMEVEAAAMM Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens Jegyzet dr. Horváth Viola, KÉMIA I. http://oktatas.ch.bme.hu/oktatas/konyvek/anal/

Részletesebben

Általános Kémia, BMEVESAA101

Általános Kémia, BMEVESAA101 Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Óravázlatok:

Részletesebben

Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár,

Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Facebook,

Részletesebben

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez. Radioaktív izotópok Izotópok Egy elem különböző tömegű (tömegszámú - A) formái; Egy elem izotópjainak a magjai azonos számú protont (rendszám - Z) és különböző számú neutront (N) tartalmaznak; Egy elem

Részletesebben

KLÓR. A Cl geokémiailag: erősen illó, oldható mobilis.

KLÓR. A Cl geokémiailag: erősen illó, oldható mobilis. KLÓR A Cl geokémiailag: erősen illó, oldható mobilis. A geofázisok egyik uralkodó anionja. A természetben a klór közel 100%-át a 35 Cl (75.77%) és 37 Cl (24.23%) stabil izotóp alkotja. A kozmogén radioaktív

Részletesebben

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdasá Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI

Részletesebben

S-izotóp rendszer. S-izotóp rendszer

S-izotóp rendszer. S-izotóp rendszer S-izotóp rendszer 16 32.064 S Sulfur izotóp tömeg arány 32 S 31.972072 95.02 33 S 32.971459 0.75 34 S 33.967868 4.21 36 S 35.967079 0.020 Legalább 9 radioaktív izotópja létezik; az atmoszférában képződik,

Részletesebben

Stabilizotóp-geokémia II. Dr. Fórizs István MTA Geokémiai Kutatóintézet forizs@geokemia.hu

Stabilizotóp-geokémia II. Dr. Fórizs István MTA Geokémiai Kutatóintézet forizs@geokemia.hu Stabilizotóp-geokémia II Dr. Fórizs István MTA Geokémiai Kutatóintézet forizs@geokemia.hu MÉÉSI MÓDSZEEK, HIBÁJUK Stabilizotópok: mérés tömegspektrométerrel Hidrogén: mérés H 2 gázon vízbıl: (1) H 2 O

Részletesebben

Reakciókinetika. Általános Kémia, kinetika Dia: 1 /53

Reakciókinetika. Általános Kémia, kinetika Dia: 1 /53 Reakciókinetika 9-1 A reakciók sebessége 9-2 A reakciósebesség mérése 9-3 A koncentráció hatása: a sebességtörvény 9-4 Nulladrendű reakció 9-5 Elsőrendű reakció 9-6 Másodrendű reakció 9-7 A reakciókinetika

Részletesebben

Oxigén és hidrogén stabil izotópjai

Oxigén és hidrogén stabil izotópjai Oxigén és hidrogén stabil izotópjai Stabil: H ( 1 H=99.985; 2 H/D/=0.015) Radioaktív: T= Oxigén és hidrogén stabil izotópjai Jól ismert, széles körben használt T becslésre és a szilárd, folyadék és gáz

Részletesebben

1. változat. 4. Jelöld meg azt az oxidot, melynek megfelelője a vas(iii)-hidroxid! A FeO; Б Fe 2 O 3 ; В OF 2 ; Г Fe 3 O 4.

1. változat. 4. Jelöld meg azt az oxidot, melynek megfelelője a vas(iii)-hidroxid! A FeO; Б Fe 2 O 3 ; В OF 2 ; Г Fe 3 O 4. 1. változat z 1-től 16-ig terjedő feladatokban négy válaszlehetőség van, amelyek közül csak egy helyes. Válaszd ki a helyes választ és jelöld be a válaszlapon! 1. Melyik sor fejezi be helyesen az állítást:

Részletesebben

8. AZ ATOMMAG FIZIKÁJA

8. AZ ATOMMAG FIZIKÁJA 8. AZ ATOMMAG FIZIKÁJA Az atommag szerkezete (40-44 oldal) A tömegspektrométer elve Az atommag komponensei Izotópok Tömeghiány, kötési energia, stabilitás Magerők Magmodellek Az atommag stabilitásának

Részletesebben

Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27

Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27 Az egyensúly 6'-1 6'-2 6'-3 6'-4 6'-5 Dinamikus egyensúly Az egyensúlyi állandó Az egyensúlyi állandókkal kapcsolatos összefüggések Az egyensúlyi állandó számértékének jelentősége A reakció hányados, Q:

Részletesebben

ÁLTALÁNOS KÉMIA. vetített anyag és egyéb infók helye!!!!!!!

ÁLTALÁNOS KÉMIA. vetített anyag és egyéb infók helye!!!!!!! ÁLTALÁNOS KÉMIA Előadó: Dr. Pasinszki Tibor kémiai épület 647-es szoba tel.: 16-11 e-mail: pasinszki@chem.elte.hu Tantárgy honlapja: http://tpasinszki.web.elte.hu/magyar/altkem.htm vetített anyag és egyéb

Részletesebben

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez. Radioaktív izotópok Izotópok Egy elem különböző tömegű (tömegszámú - A) formái; Egy elem izotópjainak a magjai azonos számú protont (rendszám - Z) és különböző számú neutront (N) tartalmaznak; Egy elem

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

Kinetika. Általános Kémia, kinetika Dia: 1 /53

Kinetika. Általános Kémia, kinetika Dia: 1 /53 Kinetika 15-1 A reakciók sebessége 15-2 Reakciósebesség mérése 15-3 A koncentráció hatása: a sebességtörvény 15-4 Nulladrendű reakció 15-5 Elsőrendű reakció 15-6 Másodrendű reakció 15-7 A reakció kinetika

Részletesebben

Mit tanultunk kémiából?2.

Mit tanultunk kémiából?2. Mit tanultunk kémiából?2. Az anyagok rendkívül kicsi kémiai részecskékből épülnek fel. Több milliárd részecske Mól az anyagmennyiség mértékegysége. 1 mol atom= 6. 10 23 db atom 600.000.000.000.000.000.000.000

Részletesebben

Kémiai kötés. Általános Kémia, szerkezet Slide 1 /39

Kémiai kötés. Általános Kémia, szerkezet Slide 1 /39 Kémiai kötés 12-1 Lewis elmélet 12-2 Kovalens kötés: bevezetés 12-3 Poláros kovalens kötés 12-4 Lewis szerkezetek 12-5 A molekulák alakja 12-6 Kötésrend, kötéstávolság 12-7 Kötésenergiák Általános Kémia,

Részletesebben

Sillabusz orvosi kémia szemináriumokhoz 1. Kémiai kötések

Sillabusz orvosi kémia szemináriumokhoz 1. Kémiai kötések Sillabusz orvosi kémia szemináriumokhoz 1. Kémiai kötések Pécsi Tudományegyetem Általános Orvostudományi Kar 2010-2011. 1 A vegyületekben az atomokat kémiai kötésnek nevezett erők tartják össze. Az elektronok

Részletesebben

Li, Be, B stabil izotópjai

Li, Be, B stabil izotópjai Li, Be, B stabil izotópjai Nuklid táblázat könnyű elemekre Stabil izotóp Faure, 1998 Li, Be, B A könnyű elemek közül a Li, B, Be természetes relatív gyakorisága anomálisan kicsi. Oka: csak(?) kozmikus

Részletesebben

Fluidum-kőzet kölcsönhatás: megváltozik a kőzet és a fluidum összetétele és új egyensúlyi ásványparagenezis jön létre Székyné Fux V k álimetaszo

Fluidum-kőzet kölcsönhatás: megváltozik a kőzet és a fluidum összetétele és új egyensúlyi ásványparagenezis jön létre Székyné Fux V k álimetaszo Hidrotermális képződmények genetikai célú vizsgálata Bevezetés a fluidum-kőzet kölcsönhatás, és a hidrotermális ásványképződési környezet termodinamikai modellezésébe Dr Molnár Ferenc ELTE TTK Ásványtani

Részletesebben

ÁLTALÁNOS KÉMIA. jelszó: altkem2014. kg1c1k06. Előadó: Dr. Vass Gábor kémiai épület 644-es szoba

ÁLTALÁNOS KÉMIA. jelszó: altkem2014. kg1c1k06. Előadó: Dr. Vass Gábor kémiai épület 644-es szoba kg1c1k06 ÁLTALÁNOS KÉMIA Előadó: Dr. Vass Gábor kémiai épület 644-es szoba e-mail: vassg@elte.hu Tantárgy honlapja: http://vassg.web.elte.hu/altkem2014 A jövő héttől: vetített anyag és egyéb infók helye!!!!!!!

Részletesebben

Litoszféra fő-, mikro- és nyomelemgeokémiája

Litoszféra fő-, mikro- és nyomelemgeokémiája Litoszféra fő-, mikro- és nyomelemgeokémiája Elemek csoportosítása (gyakoriságuk szerint) Főelemek (>1 tömeg%), pl. O, Si, Fe, Al, Ca, Mg, Na, K (major) Mikroelemek (kis mennyiségben jelen lévő főelemek)

Részletesebben

6. változat. 3. Jelöld meg a nem molekuláris szerkezetű anyagot! A SO 2 ; Б C 6 H 12 O 6 ; В NaBr; Г CO 2.

6. változat. 3. Jelöld meg a nem molekuláris szerkezetű anyagot! A SO 2 ; Б C 6 H 12 O 6 ; В NaBr; Г CO 2. 6. változat Az 1-től 16-ig terjedő feladatokban négy válaszlehetőség van, amelyek közül csak egy helyes. Válaszd ki a helyes választ és jelöld be a válaszlapon! 1. Jelöld meg azt a sort, amely helyesen

Részletesebben

Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27

Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27 Az egyensúly 10-1 Dinamikus egyensúly 10-2 Az egyensúlyi állandó 10-3 Az egyensúlyi állandókkal kapcsolatos összefüggések 10-4 Az egyensúlyi állandó számértékének jelentősége 10-5 A reakció hányados, Q:

Részletesebben

Litoszféra fő-, mikro- és nyomelemgeokémiája

Litoszféra fő-, mikro- és nyomelemgeokémiája Litoszféra fő-, mikro- és nyomelemgeokémiája Elemek >1.0 tömeg%-ban főelemek (főleg litofil, refrakter és illó) 0.1-1.0 tömeg%-ban mikroelemek < 0.1 tömeg% nyomelemek A kontinentális kéreg főelemei, (Winter,

Részletesebben

Az atommag összetétele, radioaktivitás

Az atommag összetétele, radioaktivitás Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron

Részletesebben

Stabilizotóp-geokémia. Demény Attila MTA CSFK Földtani és Geokémiai Intézet

Stabilizotóp-geokémia. Demény Attila MTA CSFK Földtani és Geokémiai Intézet Stabilizotóp-geokémia Demény Attila MTA CSFK Földtani és Geokémiai Intézet demeny@geochem.hu Az izotóp születése Frederick Soddy Nobel Díj, 1921 "A radioaktív anyagok kémiájáról szerzett ismereteink bővítéséért,

Részletesebben

Kémiai kötés. Általános Kémia, szerkezet Dia 1 /39

Kémiai kötés. Általános Kémia, szerkezet Dia 1 /39 Kémiai kötés 4-1 Lewis elmélet 4-2 Kovalens kötés: bevezetés 4-3 Poláros kovalens kötés 4-4 Lewis szerkezetek 4-5 A molekulák alakja 4-6 Kötésrend, kötéstávolság 4-7 Kötésenergiák Általános Kémia, szerkezet

Részletesebben

Elektrokémia. A nemesfém elemek és egymással képzett vegyületeik

Elektrokémia. A nemesfém elemek és egymással képzett vegyületeik Elektrokémia Redoxireakciók: Minden olyan reakciót, amelyben elektron leadás és elektronfelvétel történik, redoxi reakciónak nevezünk. Az elektronleadás és -felvétel egyidejűleg játszódik le. Oxidálószer

Részletesebben

I. ANALITIKAI ADATOK MEGADÁSA, KONVERZIÓK

I. ANALITIKAI ADATOK MEGADÁSA, KONVERZIÓK I. ANALITIKAI ADATOK MEGADÁSA, KONVERZIÓK I.2. Konverziók Geokémiai vizsgálatok során gyakran kényszerülünk arra, hogy különböző kémiai koncentrációegységben megadott adatokat hasonlítsunk össze vagy alakítsuk

Részletesebben

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet 5-4 A tökéletes gáz egyenlet alkalmazása 5-5 Gáz halmazállapotú reakciók

Részletesebben

4. változat. 2. Jelöld meg azt a részecskét, amely megőrzi az anyag összes kémiai tulajdonságait! A molekula; Б atom; В gyök; Г ion.

4. változat. 2. Jelöld meg azt a részecskét, amely megőrzi az anyag összes kémiai tulajdonságait! A molekula; Б atom; В gyök; Г ion. 4. változat z 1-től 16-ig terjedő feladatokban négy válaszlehetőség van, amelyek közül csak egy helyes. Válaszd ki a helyes választ és jelöld be a válaszlapon! 1. Melyik sor fejezi be helyesen az állítást:

Részletesebben

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 2. Mit nevezünk az atom tömegszámának? a) a protonok számát b) a neutronok számát c) a protonok és neutronok

Részletesebben

Az atom- olvasni. 1. ábra Az atom felépítése 1. Az atomot felépítő elemi részecskék. Proton, Jele: (p+) Neutron, Jele: (n o )

Az atom- olvasni. 1. ábra Az atom felépítése 1. Az atomot felépítő elemi részecskék. Proton, Jele: (p+) Neutron, Jele: (n o ) Az atom- olvasni 2.1. Az atom felépítése Az atom pozitív töltésű atommagból és negatív töltésű elektronokból áll. Az atom atommagból és elektronburokból álló semleges kémiai részecske. Az atommag pozitív

Részletesebben

Kémiai kötések és kristályrácsok ISMÉTLÉS, GYAKORLÁS

Kémiai kötések és kristályrácsok ISMÉTLÉS, GYAKORLÁS Kémiai kötések és kristályrácsok ISMÉTLÉS, GYAKORLÁS Milyen képlet adódik a következő atomok kapcsolódásából? Fe - Fe H - O P - H O - O Na O Al - O Ca - S Cl - Cl C - O Ne N - N C - H Li - Br Pb - Pb N

Részletesebben

Stabilizotóp-geokémia III. Dr. Fórizs István MTA Geokémiai Kutatóintézet

Stabilizotóp-geokémia III. Dr. Fórizs István MTA Geokémiai Kutatóintézet Stabilizotóp-geokémia III Dr. Fórizs István MTA Geokémiai Kutatóintézet forizs@geokemia.hu Vízkörforgás Alapfogalmak Frakcionációk Egyensúlyi frakcionáció: a két fázis között izotópcsere játszódik le,

Részletesebben

Az anyagi rendszerek csoportosítása

Az anyagi rendszerek csoportosítása Kémia 1 A kémiai ismeretekről A modern technológiai folyamatok és a környezet védelmére tett intézkedések alig érthetőek kémiai tájékozottság nélkül. Ma már minden mérnök számára alapvető fontosságú a

Részletesebben

Elektronegativitás. Elektronegativitás

Elektronegativitás. Elektronegativitás Általános és szervetlen kémia 3. hét Elektronaffinitás Az az energiaváltozás, ami akkor következik be, ha 1 mól gáz halmazállapotú atomból 1 mól egyszeresen negatív töltésű anion keletkezik. Mértékegysége:

Részletesebben

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gázegyenlet és általánosított gázegyenlet 5-4 A tökéletes gázegyenlet alkalmazása 5-5 Gáz reakciók 5-6 Gázkeverékek

Részletesebben

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdasá Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI

Részletesebben

Az elemeket 3 csoportba osztjuk: Félfémek vagy átmeneti fémek nemfémek. fémek

Az elemeket 3 csoportba osztjuk: Félfémek vagy átmeneti fémek nemfémek. fémek Kémiai kötések Az elemeket 3 csoportba osztjuk: Félfémek vagy átmeneti fémek nemfémek fémek Fémek Szürke színűek, kivétel a színesfémek: arany,réz. Szilárd halmazállapotúak, kivétel a higany. Vezetik az

Részletesebben

NEM KONSZOLIDÁLT ÜLEDÉKEK

NEM KONSZOLIDÁLT ÜLEDÉKEK NEM KONSZOLIDÁLT ÜLEDÉKEK Fekete-tenger Vörös-tenger Nem konszolidált üledékek Az elsődleges kőzetek a felszínen mállásnak indulnak. Nem konszolidált üledékek: a mállási folyamatok és a kőzettéválás közötti

Részletesebben

Kémiai kötés Lewis elmélet

Kémiai kötés Lewis elmélet Kémiai kötés 10-1 Lewis elmélet 10-2 Kovalens kötés: bevezetés 10-3 Poláros kovalens kötés 10-4 Lewis szerkezetek 10-5 A molekulák alakja 10-6 Kötésrend, kötéstávolság 10-7 Kötésenergiák Általános Kémia,

Részletesebben

I. Atomszerkezeti ismeretek (9. Mozaik Tankönyv:10-30. oldal) 1. Részletezze az atom felépítését!

I. Atomszerkezeti ismeretek (9. Mozaik Tankönyv:10-30. oldal) 1. Részletezze az atom felépítését! I. Atomszerkezeti ismeretek (9. Mozaik Tankönyv:10-30. oldal) 1. Részletezze az atom felépítését! Az atom az anyagok legkisebb, kémiai módszerekkel tovább már nem bontható része. Az atomok atommagból és

Részletesebben

Boldog Új Évet kívánok!

Boldog Új Évet kívánok! Boldog Új Évet kívánok! Név:............................ Helység / iskola:............................ Beküldési határidő: Kémia tanár neve:........................... 2012. feb. 24 TAKÁCS CSABA KÉMIA

Részletesebben

Diffúzió. Diffúzió. Diffúzió. Különféle anyagi részecskék anyagon belüli helyváltoztatása Az anyag lehet gáznemű, folyékony vagy szilárd

Diffúzió. Diffúzió. Diffúzió. Különféle anyagi részecskék anyagon belüli helyváltoztatása Az anyag lehet gáznemű, folyékony vagy szilárd Anyagszerkezettan és anyagvizsgálat 5/6 Diffúzió Dr. Szabó Péter János szpj@eik.bme.hu Diffúzió Különféle anyagi részecskék anyagon belüli helyváltoztatása Az anyag lehet gáznemű, folyékony vagy szilárd

Részletesebben

Az aktív tanulási módszerek alkalmazása felerősíti a fejlesztő értékelés jelentőségét, és új értékelési szempontok bevezetését veti fel a tudás

Az aktív tanulási módszerek alkalmazása felerősíti a fejlesztő értékelés jelentőségét, és új értékelési szempontok bevezetését veti fel a tudás KÉMIA A kémiai alapműveltség az anyagi világ megismerésének és megértésének egyik fontos eszköze. A kémia tanulása olyan folyamat, amely tartalmain és tevékenységein keresztül az alapismeretek elsajátításán,

Részletesebben

Kémiai kötés. Általános Kémia, szerkezet Slide 1 /39

Kémiai kötés. Általános Kémia, szerkezet Slide 1 /39 Kémiai kötés 4-1 Lewis elmélet 4-2 Kovalens kötés: bevezetés 4-3 Poláros kovalens kötés 4-4 Lewis szerkezetek 4-5 A molekulák alakja 4-6 Kötésrend, kötéstávolság 4-7 Kötésenergiák Általános Kémia, szerkezet

Részletesebben

Kémiai kötések. Kémiai kötések kj / mol 0,8 40 kj / mol

Kémiai kötések. Kémiai kötések kj / mol 0,8 40 kj / mol Kémiai kötések A természetben az anyagokat felépítő atomok nem önmagukban, hanem gyakran egymáshoz kapcsolódva léteznek. Ezeket a kötéseket összefoglaló néven kémiai kötéseknek nevezzük. Kémiai kötések

Részletesebben

A réz és a cink orvosi geokémiai vonatkozásai és izotópjaik használata a gyógyászatban HALADÓ GEOKÉMIA SZABÓ PÉTER

A réz és a cink orvosi geokémiai vonatkozásai és izotópjaik használata a gyógyászatban HALADÓ GEOKÉMIA SZABÓ PÉTER A réz és a cink orvosi geokémiai vonatkozásai és izotópjaik használata a gyógyászatban HALADÓ GEOKÉMIA SZABÓ PÉTER 2017.05.09. Mivel foglalkozik az orvosi geokémia? Geokémia célja: Az elemek relatív és

Részletesebben

Sugárzások kölcsönhatása az anyaggal

Sugárzások kölcsönhatása az anyaggal Radioaktivitás Biofizika előadások 2013 december Sugárzások kölcsönhatása az anyaggal PTE ÁOK Biofizikai Intézet, Orbán József Összefoglaló radioaktivitás alapok Nukleononkénti kötési energia (MeV) Egy

Részletesebben

Az anyagi rendszerek csoportosítása

Az anyagi rendszerek csoportosítása Általános és szervetlen kémia 1. hét A kémia az anyagok tulajdonságainak leírásával, átalakulásaival, elıállításának lehetıségeivel és felhasználásával foglalkozik. Az általános kémia vizsgálja az anyagi

Részletesebben

A kémiai kötés magasabb szinten

A kémiai kötés magasabb szinten A kémiai kötés magasabb szinten 11-1 Mit kell tudnia a kötéselméletnek? 11- Vegyérték kötés elmélet 11-3 Atompályák hibridizációja 11-4 Többszörös kovalens kötések 11-5 Molekulapálya elmélet 11-6 Delokalizált

Részletesebben

Stabilizotóp-geokémia. Demény Attila MTA Geokémiai Kutatóintézet

Stabilizotóp-geokémia. Demény Attila MTA Geokémiai Kutatóintézet Stabilizotóp-geokémia Demény Attila MTA Geokémiai Kutatóintézet demeny@geochem.hu Izotóp: isos topos (görög) = azonos hely Hagyományos stabilizotóp-geokémia D/H, 13 C/ 12 C, 15 N/ 14 N, 18 O/ 16 O és 34

Részletesebben

Kémiai egyensúlyok [CH 3 COOC 2 H 5 ].[H 2 O] [CH3 COOH].[C 2 H 5 OH] K = k1/ k2 = K: egyensúlyi állandó. Tömeghatás törvénye

Kémiai egyensúlyok [CH 3 COOC 2 H 5 ].[H 2 O] [CH3 COOH].[C 2 H 5 OH] K = k1/ k2 = K: egyensúlyi állandó. Tömeghatás törvénye Kémiai egyensúlyok CH 3 COOH + C 2 H 5 OH CH 3 COOC 2 H 5 + H 2 O v 1 = k 1 [CH 3 COOH].[C 2 H 5 OH] v 2 = k 2 [CH 3 COOC 2 H 5 ]. [H 2 O] Egyensúlyban: v 1 = v 2 azaz k 1 [CH 3 COOH].[C 2 H 5 OH] = k

Részletesebben

Spontaneitás, entrópia

Spontaneitás, entrópia Spontaneitás, entrópia 6-1 Spontán folyamat 6-2 Entrópia 6-3 Az entrópia kiszámítása 6-4 Spontán folyamat: a termodinamika második főtétele 6-5 Standard szabadentalpia változás, ΔG 6-6 Szabadentalpia változás

Részletesebben

A HETI ÉS ÉVES ÓRASZÁMOK

A HETI ÉS ÉVES ÓRASZÁMOK KÉMIA A kémiai alapműveltség az anyagi világ megismerésének és megértésének egyik fontos eszköze. A kémia tanulása olyan folyamat, amely tartalmain és tevékenységein keresztül az alapismeretek elsajátításán,

Részletesebben

Kormeghatározás gyorsítóval

Kormeghatározás gyorsítóval Beadás határideje 2012. január 31. A megoldásokat a kémia tanárodnak add oda! 1. ESETTANULMÁNY 9. évfolyam Olvassa el figyelmesen az alábbi szöveget és válaszoljon a kérdésekre! Kormeghatározás gyorsítóval

Részletesebben

Röntgen-gamma spektrometria

Röntgen-gamma spektrometria Röntgen-gamma spektrométer fejlesztése radioaktív anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű meghatározására Szalóki Imre, Gerényi Anita, Radócz Gábor Nukleáris Technikai Intézet

Részletesebben

A feladatok megoldásához csak a kiadott periódusos rendszer és számológép használható!

A feladatok megoldásához csak a kiadott periódusos rendszer és számológép használható! 1 MŰVELTSÉGI VERSENY KÉMIA TERMÉSZETTUDOMÁNYI KATEGÓRIA Kedves Versenyző! A versenyen szereplő kérdések egy része általad már tanult tananyaghoz kapcsolódik, ugyanakkor a kérdések másik része olyan ismereteket

Részletesebben

Ipari vizek tisztítási lehetőségei rövid összefoglalás. Székely Edit BME Kémiai és Környezeti Folyamatmérnöki Tanszék

Ipari vizek tisztítási lehetőségei rövid összefoglalás. Székely Edit BME Kémiai és Környezeti Folyamatmérnöki Tanszék Ipari vizek tisztítási lehetőségei rövid összefoglalás Székely Edit BME Kémiai és Környezeti Folyamatmérnöki Tanszék Kezelés Fizikai, fizikai-kémiai Biológiai Kémiai Szennyezők típusai Módszerek Előnyök

Részletesebben

Energiaminimum- elve

Energiaminimum- elve Energiaminimum- elve Minden rendszer arra törekszi, hogy stabil állapotba kerüljön. Milyen kapcsolat van a stabil állapot, és az adott állapot energiája között? Energiaminimum elve Energiaminimum- elve

Részletesebben

Curie Kémia Emlékverseny 2018/2019. Országos Döntő 9. évfolyam

Curie Kémia Emlékverseny 2018/2019. Országos Döntő 9. évfolyam A feladatokat írta: Kódszám: Pócsiné Erdei Irén, Debrecen... Lektorálta: Kálnay Istvánné, Nyíregyháza 2019. május 11. Curie Kémia Emlékverseny 2018/2019. Országos Döntő 9. évfolyam A feladatok megoldásához

Részletesebben

KÉMIAI ALAPISMERETEK (Teszt) Összesen: 150 pont. HCl (1 pont) HCO 3 - (1 pont) Ca 2+ (1 pont) Al 3+ (1 pont) Fe 3+ (1 pont) H 2 O (1 pont)

KÉMIAI ALAPISMERETEK (Teszt) Összesen: 150 pont. HCl (1 pont) HCO 3 - (1 pont) Ca 2+ (1 pont) Al 3+ (1 pont) Fe 3+ (1 pont) H 2 O (1 pont) KÉMIAI ALAPISMERETEK (Teszt) Összesen: 150 pont 1. Adja meg a következő ionok nevét, illetve képletét! (12 pont) Az ion neve Kloridion Az ion képlete Cl - (1 pont) Hidroxidion (1 pont) OH - Nitrátion NO

Részletesebben

Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008.

Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Kiss István,Vértes Attila: Magkémia (Akadémiai Kiadó) Nagy Lajos György,

Részletesebben

Az ásványok rendszerezése Az ásványok osztályokba sorolásának alapelvei: - Összetétel - Kristályszerkezet - Előfordulás Összesen 9 osztályba soroljuk

Az ásványok rendszerezése Az ásványok osztályokba sorolásának alapelvei: - Összetétel - Kristályszerkezet - Előfordulás Összesen 9 osztályba soroljuk Ásványtani alapismeretek 4. előadás Az ásványok rendszerezése Az ásványok osztályokba sorolásának alapelvei: - Összetétel - Kristályszerkezet - Előfordulás Összesen 9 osztályba soroljuk az ásványokat,

Részletesebben

Stabilizotóp-geokémia VIII. Dr. Fórizs István MTA Geokémiai Kutatóintézet forizs@geokemia.hu

Stabilizotóp-geokémia VIII. Dr. Fórizs István MTA Geokémiai Kutatóintézet forizs@geokemia.hu Stabilizotóp-geokémia VIII Dr. Fórizs István MTA Geokémiai Kutatóintézet forizs@geokemia.hu Kén izotópok 32 S=95,1% 33 S=0,74% 34 S=4,2% 36 S=0,016% Sztenderd: Canon Diablo Troilit, CDT Általában: δ 34

Részletesebben

Kémiai alapismeretek 14. hét

Kémiai alapismeretek 14. hét Kémiai alapismeretek 14. hét Horváth Attila Pécsi Tudományegyetem, Természettudományi Kar, Kémia Intézet, Szervetlen Kémiai Tanszék 2011. december 6. 1/9 2010/2011 I. félév, Horváth Attila c 1785 Cavendish:

Részletesebben

KÉMIA TEMATIKUS ÉRTÉKELİ FELADATLAPOK. 9. osztály C változat

KÉMIA TEMATIKUS ÉRTÉKELİ FELADATLAPOK. 9. osztály C változat KÉMIA TEMATIKUS ÉRTÉKELİ FELADATLAPOK 9. osztály C változat Beregszász 2005 A munkafüzet megjelenését a Magyar Köztársaság Oktatási Minisztériuma támogatta A kiadásért felel: Orosz Ildikó Felelıs szerkesztı:

Részletesebben

C (radiogén, elhanyagolható mennyiség, bár a 12 C- 14 C frakcionáció a 12 C- 13 C kétszerese) kormeghatározás

C (radiogén, elhanyagolható mennyiség, bár a 12 C- 14 C frakcionáció a 12 C- 13 C kétszerese) kormeghatározás Szén C- stabil izotópok: 12 C (98.9%), 13 C (1.1%) 14 C (radiogén, elhanyagolható mennyiség, bár a 12 C- 14 C frakcionáció a 12 C- 13 C kétszerese) kormeghatározás szilárd, folyadék, gáz (bio-, lito-,

Részletesebben

Aktiválódás-számítások a Paksi Atomerőmű leszerelési tervéhez

Aktiválódás-számítások a Paksi Atomerőmű leszerelési tervéhez Aktiválódás-számítások a Paksi Atomerőmű leszerelési tervéhez Vízszintes metszet (részlet) Mi aktiválódik? Reaktor-berendezések (acél szerkezeti elemek I.) Reaktor-berendezések (acél szerkezeti elemek

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

7. osztály Hevesy verseny, megyei forduló, 2003.

7. osztály Hevesy verseny, megyei forduló, 2003. Figyelem! A feladatokat ezen a feladatlapon oldd meg! Megoldásod olvasható és áttekinthető legyen! A feladatok megoldásában a gondolatmeneted követhető legyen! A feladatok megoldásához használhatod a periódusos

Részletesebben

Az elektronpályák feltöltődési sorrendje

Az elektronpályák feltöltődési sorrendje 3. előadás 12-09-17 2 12-09-17 Az elektronpályák feltöltődési sorrendje 3 Az elemek rendszerezése, a periódusos rendszer Elsőként Dimitrij Ivanovics Mengyelejev és Lothar Meyer vette észre az elemek halmazában

Részletesebben

2 képzıdése. értelmezze Reakciók tanult nemfémekkel

2 képzıdése. értelmezze Reakciók tanult nemfémekkel Emelt szint: Az s mezı fémei 1. Az alkálifémek és alkáliföldfémek összehasonlító jellemzése (anyagszerkezet, kémiaiés fizikai jellemzık, elıfordulás, elıállítás, élettani hatás). Használja a periódusos

Részletesebben

Vegyületek - vegyületmolekulák

Vegyületek - vegyületmolekulák Vegyületek - vegyületmolekulák 3.Az anyagok csoportosítása összetételük szerint Egyszerű összetett Azonos atomokból állnak különböző atomokból állnak Elemek vegyületek keverékek Fémek Félfémek Nemfémek

Részletesebben

8. Osztály. Kód. Szent-Györgyi Albert kémiavetélkedő

8. Osztály. Kód. Szent-Györgyi Albert kémiavetélkedő 8. Osztály Kedves Versenyző! A jobb felső sarokban található mezőbe írd fel a verseny lebonyolításáért felelős személytől kapott kódot a feladatlap minden oldalára. A feladatokat lehetőleg a feladatlapon

Részletesebben

Speciálkollégium. Dr. Fintor Krisztián Magyary Zoltán Posztdoktori Ösztöndíj TÁMOP 4.2.4.A/2-11-1-2012-0001 Nemzeti Kiválóság Program Szeged 2014

Speciálkollégium. Dr. Fintor Krisztián Magyary Zoltán Posztdoktori Ösztöndíj TÁMOP 4.2.4.A/2-11-1-2012-0001 Nemzeti Kiválóság Program Szeged 2014 Speciálkollégium Dr. Fintor Krisztián Magyary Zoltán Posztdoktori Ösztöndíj TÁMOP 4.2.4.A/2-11-1-2012-0001 Nemzeti Kiválóság Program Szeged 2014 A beton kioldódási folyamata Kioldás, kilúgozás (Leaching):

Részletesebben

Kötések kialakítása - oktett elmélet

Kötések kialakítása - oktett elmélet Kémiai kötések Az elemek és vegyületek halmazai az atomok kapcsolódásával - kémiai kötések kialakításával - jönnek létre szabad atomként csak a nemesgázatomok léteznek elsődleges kémiai kötések Kötések

Részletesebben

Atommagok alapvető tulajdonságai

Atommagok alapvető tulajdonságai Atommagok alapvető tulajdonságai Mag és részecskefizika 5. előadás 017. március 17. Áttekintés Atommagok szerkezete a kvarkképben proton szerkezete, atommagok szerkezete, magerő Atommagok összetétele izotópok,

Részletesebben

Szerves Kémiai Problémamegoldó Verseny

Szerves Kémiai Problémamegoldó Verseny Szerves Kémiai Problémamegoldó Verseny 2015. április 24. Név: E-mail cím: Egyetem: Szak: Képzési szint: Évfolyam: Pontszám: Név: Pontszám: / 3 pont 1. feladat Egy C 4 H 10 O 3 összegképletű vegyület 0,1776

Részletesebben

A kémiai kötés magasabb szinten

A kémiai kötés magasabb szinten A kémiai kötés magasabb szinten 13-1 Mit kell tudnia a kötéselméletnek? 13- Vegyérték kötés elmélet 13-3 Atompályák hibridizációja 13-4 Többszörös kovalens kötések 13-5 Molekulapálya elmélet 13-6 Delokalizált

Részletesebben

Ásványok. Az ásványok a kőzetek építő elemei.

Ásványok. Az ásványok a kőzetek építő elemei. Ásványok Az ásványok a kőzetek építő elemei. Az ásványok örzik a kőzetek keletkezési történetét, továbbá meghatározzák a fizikai és kémiai jellemvonásaikat 1 Minden ásványt jellemez egy sajátos - összetétel

Részletesebben

Minta feladatsor. Az ion neve. Az ion képlete O 4. Szulfátion O 3. Alumíniumion S 2 CHH 3 COO. Króm(III)ion

Minta feladatsor. Az ion neve. Az ion képlete O 4. Szulfátion O 3. Alumíniumion S 2 CHH 3 COO. Króm(III)ion Minta feladatsor A feladatok megoldására 90 perc áll rendelkezésére. A megoldáshoz zsebszámológépet használhat. 1. Adja meg a következő ionok nevét, illetve képletét! (8 pont) Az ion neve.. Szulfátion

Részletesebben

AZ ÉLET KÉMIÁJA... ÉLŐ ANYAG SZERVEZETI ALAPEGYSÉGE

AZ ÉLET KÉMIÁJA... ÉLŐ ANYAG SZERVEZETI ALAPEGYSÉGE AZ ÉLET KÉMIÁJA... ÉLŐ ANYAG SZERVEZETI ALAPEGYSÉGE A biológia az élet tanulmányozásával foglalkozik, az élő szervezetekre viszont vonatkoznak a fizika és kémia törvényei MI ÉPÍTI FEL AZ ÉLŐ ANYAGOT? HOGYAN

Részletesebben

Sav bázis egyensúlyok vizes oldatban

Sav bázis egyensúlyok vizes oldatban Sav bázis egyensúlyok vizes oldatban Disszociációs egyensúlyi állandó HAc H + + Ac - ecetsav disszociációja [H + ] [Ac - ] K sav = [HAc] NH 4 OH NH 4 + + OH - [NH + 4 ] [OH - ] K bázis = [ NH 4 OH] Ammóniumhidroxid

Részletesebben

Atomszerkezet. Atommag protonok, neutronok + elektronok. atompályák, alhéjak, héjak, atomtörzs ---- vegyérték elektronok

Atomszerkezet. Atommag protonok, neutronok + elektronok. atompályák, alhéjak, héjak, atomtörzs ---- vegyérték elektronok Atomszerkezet Atommag protonok, neutronok + elektronok izotópok atompályák, alhéjak, héjak, atomtörzs ---- vegyérték elektronok periódusos rendszer csoportjai Periódusos rendszer A kémiai kötés Kémiai

Részletesebben

A TÖMEGSPEKTROMETRIA ALAPJAI

A TÖMEGSPEKTROMETRIA ALAPJAI A TÖMEGSPEKTROMETRIA ALAPJAI web.inc.bme.hu/csonka/csg/oktat/tomegsp.doc alapján tömeg-töltés arány szerinti szétválasztás a legérzékenyebb módszerek közé tartozik (Nagyon kis anyagmennyiség kimutatására

Részletesebben

Mag- és neutronfizika

Mag- és neutronfizika Mag- és neutronfizika z elıadás célja: : megalapozni az atomenergetikai ismereteket félév során a következı témaköröket ismertetjük: Magfizikai alapfogalmak (atommagok, radioaktivitás) Sugárzás és anyag

Részletesebben

Határfelületi jelenségek. Fogorvosi anyagtan fizikai alapjai 3. Általános anyagszerkezeti ismeretek. N m J 2

Határfelületi jelenségek. Fogorvosi anyagtan fizikai alapjai 3. Általános anyagszerkezeti ismeretek. N m J 2 Határelületi jelenségek 1. Felületi eszültség Fogorvosi anyagtan izikai alapjai 3. Általános anyagszerkezeti ismeretek Határelületi jelenségek Kiemelt témák: elületi eszültség adhézió nedvesítés ázis ázisdiagramm

Részletesebben

1. feladat Összesen 15 pont. 2. feladat Összesen 6 pont. 3. feladat Összesen 6 pont. 4. feladat Összesen 7 pont

1. feladat Összesen 15 pont. 2. feladat Összesen 6 pont. 3. feladat Összesen 6 pont. 4. feladat Összesen 7 pont 1. feladat Összesen 15 pont Egy lombikba 60 g jégecetet és 46 g abszolút etanolt öntöttünk. A) Számítsa ki a kiindulási anyagmennyiségeket! B) Határozza meg az egyensúlyi elegy összetételét móltörtben

Részletesebben

Kémiai kötés. Általános Kémia, szerkezet Dia 1 /39

Kémiai kötés. Általános Kémia, szerkezet Dia 1 /39 Kémiai kötés 4-1 Lewis-elmélet 4-2 Kovalens kötés: bevezetés 4-3 Poláros kovalens kötés 4-4 Lewis szerkezetek 4-5 A molekulák alakja 4-6 Kötésrend, kötéstávolság 4-7 Kötésenergiák Általános Kémia, szerkezet

Részletesebben

Spontaneitás, entrópia

Spontaneitás, entrópia Spontaneitás, entrópia 11-1 Spontán és nem spontán folyamat 11-2 Entrópia 11-3 Az entrópia kiszámítása 11-4 Spontán folyamat: a termodinamika második főtétele 11-5 Standard szabadentalpia változás, ΔG

Részletesebben

1. Terméselemek 2. Szulfidook 3. Oxidok, hidroxidok 4. Szilikátok 5. Foszfátok 6. Szulfátok 7. Karbonátok 8. Halogenidek 9.

1. Terméselemek 2. Szulfidook 3. Oxidok, hidroxidok 4. Szilikátok 5. Foszfátok 6. Szulfátok 7. Karbonátok 8. Halogenidek 9. 1. Terméselemek 2. Szulfidook 3. Oxidok, hidroxidok 4. Szilikátok 5. Foszfátok 6. Szulfátok 7. Karbonátok 8. Halogenidek 9. Szerves ásványok 1. Terméselemek 26 fajta - fémes: Au(szab) arany tisztán található

Részletesebben

Modern fizika vegyes tesztek

Modern fizika vegyes tesztek Modern fizika vegyes tesztek 1. Egy fotonnak és egy elektronnak ugyanakkora a hullámhossza. Melyik a helyes állítás? a) A foton lendülete (impulzusa) kisebb, mint az elektroné. b) A fotonnak és az elektronnak

Részletesebben

Az Analitikai kémia III laboratóriumi gyakorlat (TKBL0504) tematikája a BSc képzés szerint a 2010/2011 tanév I. félévére

Az Analitikai kémia III laboratóriumi gyakorlat (TKBL0504) tematikája a BSc képzés szerint a 2010/2011 tanév I. félévére Az Analitikai kémia III laboratóriumi gyakorlat (TKBL0504) tematikája a BSc képzés szerint a 2010/2011 tanév I. félévére Oktatási segédanyagok (a megfelelő rövidítéseket használjuk a tematikában): P A

Részletesebben

Kémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai

Kémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai Kémiai átalakulások 9. hét A kémiai reakció: kötések felbomlása, új kötések kialakulása - az atomok vegyértékelektronszerkezetében történik változás egyirányú (irreverzibilis) vagy megfordítható (reverzibilis)

Részletesebben