I. TÉTEL AZ ANYAG A SZAKTUDOMÁNYOS ÉS A FILOZÓFIAI REFLEXIÓBAN
|
|
- Domokos Soós
- 8 évvel ezelőtt
- Látták:
Átírás
1 I. TÉTEL AZ ANYAG A SZAKTUDOMÁNYOS ÉS A FILOZÓFIAI REFLEXIÓBAN Az ember szellemiségével messze fölülmúlja az élettelen anyag világát, testisége révén azonban az anyagi világ része. Testi valóságát olyan anyagi részek alkotják, amelyek fellelhetők a tőle különböző létezőkben is. Mi az anyag? Melyek a fő jellemzői? E kérdések tisztázása nélkül aligha értelmezhetnénk az ember valóságát. 1) Az anyag építőkövei a szaktudományok szerint Az újkori anyagkutatás két irányban bontakozott ki: az egyik irány a részecskék világát kutatta, a másik irányzat pedig a nem részecske jellegű (mágnesesség, gravitáció, hullám, elektromosság, erőtér stb.) anyagi jelenségeket vizsgálta. A két irány a 20. század elején fonódott egybe. α) A részecskék A részecskék kutatása az ókori atomisták hipotézisének fölelevenítésével indult. P. Gassendi ( 1655), jezsuita páter azt hirdette, hogy az anyag végső fokon oszthatatlan és egymástól csak mennyiségileg (alak, súly, kiterjedés stb.) különböző atomokból áll. A tudósok egy része úgy vélte, hogy a vegyületekben az atomokat horgok és kampók tartják össze. Az atomokat I. Newton ( 1727) is elnyűhetetlen építőköveknek tartotta, de az ő álláspontja szerint az atomokat a vonzóerő fogja egybe. Az oszthatatlannak vélt atomok minőségi különbségére csak akkor kezdtek ügyelni, amikor A. Lavoisier ( 1794) tisztázta a kémiai elem (atom) fogalmát. Ezeket az elemeket a növekvő atomsúly alapján D. I. Mengyelejev ( 1907) foglalta rendszerbe. A tudósok úgy gondolták, hogy az anyag végső egységei hűségesen engedelmeskednek a newtoni mechanika törvényeinek. E szemléletben az első változás akkor következett be, amikor A. Becquerel ( 1908) fölfedezte a spontán radioaktivitást. A kutatóknak meg kellett barátkozniuk a gondolattal: a kémiai atom felbontható. A naprendszer mintájára készült első jelentősebb atommodellt E. Rutherford ( 1937) alkotta meg (a pozitív töltésű mag körül keringenek az elektronok olyan számban, hogy semlegesítik a mag pozitív töltését). N. Bohr ( 1962) két évvel később alkotta meg atommodelljét. E modellek hiányosságait E. Schrödinger ( 1961) próbálta kiküszöbölni. Az ő felfogásában az elektron nem pontszerű golyócska, hanem elmosódott felhő, amelynek így a régi értelemben vett pályájáról sem beszélhetünk. Az újabb modellek minden szemléletesség nélkül írják le az atomszerkezet matematikailag kifejezhető összefüggéseit. A már korábban is föltételezett neutron fölfedezésével (1932) lehetővé vált az atommag összetételének magyarázata: minden atommag annyi protonból áll, amennyi a kémiai elem rendszáma, és annyi neutronból, amennyi képes kiegészíteni az illető izotópra jellemző atomsúlyt. Eszerint az anyag végső építőkövei: a proton, a neutron, az elektron és a fény esetében a foton. Ez az eredmény azonban nem bizonyult tartósnak, mert közben P. Dirac (1984) az antianyag merész hipotézisével állt elő. Föltételezése szerint elektronjaink és protonjaink csak lyukak egy ellenenergiájú elektron- és protonvilágban. E föltevés helyesnek bizonyult, mert fölfedezték az elektron ellenrészecskéjét, a pozitront, majd később az antiprotont is. A kutatások tovább folytak. A tudósok egyre-másra fedezték fel az újabb részecskéket, amilyenek például a mezonok (müon, kaon, pion), a hiperonok, a barionok, a kvarkok, a leptonok és a hadronok (minden anyag kvarkokból és leptonokból áll, amelyek között négyféle kölcsönhatás lehetséges). A hatvanas évek beköszöntével tömegesen figyeltek meg olyan részecske jellegű összetevőket, amelyek közös tulajdonsága az volt, hogy nagyon rövid ideig éltek, és ezért a rezonancia elnevezést kapták. A század vége felé több mint háromszáz elemi részt, illetve rezonanciát ismert a tudomány, s a fizikusok jól tudták, hogy ez még csak a kezdet ben az Európai Nukleáris Kutatási Szervezet (CERN) jelentette, hogy kimutatták annak a részecskének, illetve mezőnek valóságát, amelynek létezését Peter Higgs, angol fizikus már 1960-ban megjósolta. Ez az úgynevezett Higgs-bozon (amelyet gyakran isteni részecskének is neveznek) biztosítja a tömeget az egyébként tömeg nélküli részecskék számára. β) A nem részecske jellegű anyagi jelenségek A nem részecske jellegű anyagi jelenségek vizsgálata párhuzamosan folyt a részecskék kutatásával. E téren eleve nagyobb nehézségek adódtak, mint a részecskék tanulmányozásában. A részecskéket ugyanis bizonyos határig nyomon lehetett követni, szemléletes képet lehetett róluk alkotni. Ezeknél a jelenségeknél azonban le kellett mondani a közvetlen megfigyelésről és a
2 2 szemléletes képről. A mágneses erővonalak szemléletessé tétele segített ugyan a mágnes tulajdonságainak megértésében, de ez a kép nem tette szemléletessé magát az erőhatást. I. Newton, aki a gravitációs vonzást számviszonyokkal jellemezte, az Optics című művében bevallja, nem foglalkozik azzal a kérdéssel, hogy e vonzás miként megy végbe (Query 31). Az elektromos és mágneses jelenségek számszerű adatokkal történő jellemzése Ch. Coulomb ( 1806) működésével kezdődött. Ezek az adatok azonban keveset mondtak e jelenségek lényegéről, mibenlétéről. Az elektromágneses tér mint fizikai realitás M. Faraday ( 1867) és J. Maxwell ( 1879) munkássága nyomán nyert létjogosultságot. A fizikusok arra kényszerültek, hogy realitást tulajdonítsanak olyasminek is, amit az érzékelő tapasztalathoz csatlakozó mechanikai modellel már nem lehetett szemléletessé tenni. A klasszikus fizika keretein belül két térelmélet született: a gravitációs és az elektromágneses téré. Az erőtér az anyag egyik megjelenési formája, amely ha nem is rendelkezik minden olyan tulajdonsággal, mint a korpuszkuláris anyag (például keménység vagy határfelület), van energiája, impulzusa és tehetetlen tömege, és ezeket át tudja adni más anyagoknak. A nem részecske jellegű anyagi jelenségek tanulmányozását M. Planck ( 1947) forradalmasította. Fölfedezte, hogy a sugárzó test az energiát nem folyamatosan, hanem szakaszosan, E = hv kvantumokban bocsátja ki és ezzel lerakta a kvantumelmélet alapjait. Az erőterek és az energiák kutatása az elemi részek szintjére is kiterjedt. A kvantumfizika igazolta, hogy a klasszikus erőtereken kívül létezik még az atommag építőköveinek összetartozását biztosító magerőtér (mezontér), és a bomlási folyamatokért felelős, gyenge kölcsönhatásokat közvetítő elektronneutrinotér. γ) Az anyag kettős természete A kétirányú anyagkutatás a 20. század elején összekapcsolódott. A. Einstein 1905-ben azzal a merész feltevéssel állt elő, hogy a fény hullám-természete mellett részecske tulajdonságokat is mutat. E merész és paradox felfogást L. de Broglie ( 1981) az elektronra és így általánosságban az anyagra is kiterjesztette. Föltevésének helyes voltát a kísérletek igazolták. A Bohr-féle komplementaritás elv értelmében az anyag csak komplementer (egymást kizáró, de egymást kölcsönösen kiegészítő) képekkel írható le, mert az anyag a megfigyelési típustól függően kétféleképpen nyilvánul meg. A kvantummechanika koppenhágai értelmezésének egyik iránya M. Born ( 1970) vezetésével csak a részecskéket tartotta valósnak, és a hullámot vagy mezőt csak olyan matematikai szimbólumnak tekintette, amely lehetővé teszi a részecske jellegű jelenségek valószínűségének kiszámítását, megjóslását. A másik irány E. Schrödinger vezetésével a hullámjelenségeket tekintette alapnak: az egész fizikai valóság folyamatos hullám-mező, meghatározatlan módon szétömlő energia. Az elemi részek, az atomok, a molekulák és a makroszkopikus testek e mezőben levő energia-sűrítmények, hullám-csomagok: olyanok, mint a hullámtaréjok az óceán felszínén. W. Heisenberg ( 1976) így jellemezte ezt a felfogást: az összes elemi részecskék ugyanabból az anyagból vannak, amelyet energiának vagy univerzális anyagnak nevezhetünk, ezek csupán különböző formák, amelyekben az anyag megjelenhet Az energia mint anyagi lehetőség jelenik meg a forma által, ha egy elemi rész keletkezik. (Válogatott tanulmányok 169. o.). A tudósoknak egyelőre nem sikerült fölfedni az anyag titkát. A komplementaritás ugyanis azt jelenti, hogy a fény és az anyag sem nem hullám, sem nem részecske, azonban a méréskor mégis vagy az egyik, vagy a másik oldala mutatkozik meg. Hogy melyik oldal realizálódik, az attól függ, hogyan kérdezünk, azaz milyen a mérőberendezésünk (Természettudományi kisenciklopédia, 610. o.). A Schrödinger macskája néven ismert, vagyis az Erwin Schrödinger Nobel-díjas osztrák fizikus ( 1961) nevéhez fűződő gondolatkísérlet jól szemlélteti az anyagi mikrovilágra vonatkozó ismereteink ellentmondásos jellegét. A probléma gyökere: a szuperpozíció elve A kvantummechanikában szuperpozíciónak nevezzük, ha egy részecske (vagy hullám) úgynevezett kevert állapotban van, azaz bizonyos tulajdonságait nem tudjuk egyértelműen megállapítani. A részecske addig marad ebben, amíg valamilyen módon meg nem állapítjuk, hogy valójában hol és milyen állapotban van. A probléma ott kezdődik, hogy mérés (pontosabban a tudatos megfigyelés) hatására a szuperpozíció összeroppan, és a részecske egyértelműen a lehetséges állapotok egyikébe kerül.
3 3 A gondolatkísérlet leírása: Tegyük fel, hogy a macskámat beteszem egy ketrecbe, és a ketrec mellé odateszek egy radioaktív készítményt, amely percenként 50%-os valószínűséggel bocsát ki egy alfa-részecskét. Egy számlálót is odateszek, amely egy percre bekapcsol. Ha ez alatt a perc alatt jön egy alfa-részecske, akkor a számláló megindul, kinyit egy kis ajtót, bejön egy kémiai méreg, amelytől a macska elpusztul. Ha pedig nem jött alfa-részecske ebben a percben, a macska életben marad. Én ezt nem figyelem. A kísérlet végén a macska állapotfüggvénye olyan, hogy a macska egy fél valószínűséggel él, és egy fél valószínűséggel döglött. Heisenberg ( 1976) szerint mondja Schrödinger ha most hirtelen ránézek a macskára, attól a tekintettől a macska tényleg meghal, vagy a macska tényleg életben marad. Schrödinger macskája tehát az élet és a halál kvantummechanikai szuperpozíciójában lebeg, mivel sorsa összefonódott egy potenciálisan macskagyilkos α-részecskéével. Amíg nem nyitják ki a dobozt, addig mindkét lehetőség (élet és halál is) igaz. Másként fogalmazva: az ember teremti meg azt a dolgot, amit megvizsgál, vagyis ismeretelméleti szempontból mi teremtjük meg világunkat A tudomány nem lényegileg határozza meg az anyagot, hanem operatív meghatározásokat ad róla. Az operatív definíció nem azt mondja meg, hogy micsoda az anyag, hanem azt, hogy mit tud csinálni, és milyen tulajdonságokat mutat. A tudomány természetesen tovább folytatja munkáját. Adatai egyre jobban segítenek bennünket az anyagi események kiszámításában, megjóslásában és hasznosításában (technika!). Ennek ellenére azt kell mondanunk, hogy az anyag működésének egyoldalú leírása és eseményeinek előrejelzése még nem egyenlő az anyag teljes megértésével. 2) Az anyag filozófiai leírása A skolasztikus bölcselet az empirikus anyagot Arisztotelész nyomán a forma (vagy minta ) és az anyag filozófiai fogalmaival jellemzi. Metafizikai szempontból valamennyi empirikus anyagi létező forma és anyag egysége. A forma (gör. morphé, lat. forma = érthető minta, érthető szerkezet) nem a dolgok külalakját, körvonalait jelenti, hanem az anyagi létező érthető szerkezetére utaló kifejezés. Arisztotelész a dolgok mivoltát vagy mibenlétét nevezte formának (Metaphüszika 1032 b). A forma a dolgok érzékelhető adataiban értelmileg belátott rend, illetve az a minta, amelynek alapján a dolgok érzékelhető adatai elrendeződnek. A központi forma Aquinói Szent Tamás ( 1274) szerint a létező lényegét meghatározó elv, s mint érthető szerkezet a szellemi megismerés eszményi határpontja. A forma fogalmának a megvalósultság (gör. energeia, lat. actus) fogalma felel meg, mert valamennyi forma valóság, illetve valós érthető szerkezetet jelöl. Az anyag (gör. hülé, lat. materia) a forma kiegészítő lételve. A lehetőséget, a képességi létet, a meghatározatlanságot és a homályt jelenti. Önmagában véve az első anyag (gör. próté hülé, lat. materia prima) a semmi és a valami közé eső lételv (Metaphüszika a) mondja Arisztotelész. Az anyag olyan határozatlan alap, amely kész a megformálódásra és a forma viszi megvalósultságba. A dolgokban a forma rendezte anyagot érzékeljük és a
4 4 formát megértjük. A filozófiai értelemben vett anyag fogalmának a lehetőségi vagy képességi lét (gör. dünamisz, lat. potentia) fogalma felel meg. Az arisztotelészi forma és anyag fogalma nem sérti a tudományos takarékosság kánonját, amely tiltja a létező magyarázó elveinek szükségtelen sokszorozását. E két heurisztikus fogalom elsősorban azt jelenti, hogy a megértés más, mint az érzékelés vagy az elképzelés: a formát megértjük, az anyagot érzékeljük. Az anyag nem önállón létező, hanem a konkrét létező egyik alkotója: az, amit tapintunk, látunk, hallunk stb. Ám amit ezekben az adatokban megértünk, az nem anyag, hanem a konkrét létező másik alkotója, a forma (más néven: minta). Amit a szaktudomány az anyagról mond, az tulajdonképpen mindig a formára vonatkozik. A tömeg például nem elképzelhető valami, hanem érthető összefüggés, azaz forma. Hasonlóképpen: a gravitációs vonzóerőt sem tudjuk elképzelni, de meg tudjuk érteni, mint két fizikai test közötti érthető összefüggést. Az atomfizikusnak csak kevés érzékelhető adat áll rendelkezésére, és amit ezekből kikövetkeztet, az nem érzékelhető, hanem érthető szerkezet. Ezért írja W. Heisenberg: egészen bizonyos, hogy a legmodernebb fizikában az anyag legkisebb végén (a legkisebb dimenziók világában) matematikai formák állnak (Válogatott tanulmányok, 237. o.). Az, hogy a szaktudós mennyire tudja megközelíteni az anyagi létezők formáját, módszertani korlátaitól függ. P. Teilhard szavai szerint: Az Anyag nem szilárd alapja a Világnak: az Anyag olyan irány, ahol a dolgok egyre inkább eltűnnek, amint apránként veszítenek egységükből. Egészen az atomokig kellett leszállnunk, hogy megértsük ezt az igazságot; de most már soha többé nem szabad elfelejtenünk: az analízis során kifolyt ujjunk közül éppen az, ami a létező értéke és szilárdsága; a dolgok egyetlen szilárdságát szintetikus elemük adja meg, vagyis az, ami többé-kevésbé tökéletes fokon a lelkük, szellemük (Science et Christ, Oeuvres, 9. k. 55. o.). A lélek vagy szellem itt az arisztotelészi formát jelöli. A filozófiai értelemben vett anyag sem felesleges fogalom. A fizikai anyag valóságában ugyanis mind ismeretelméleti, mind lételméleti szempontból van valami meghatározatlanság és homály, azaz olyasmi, ami a lehetőségek világába tartozik. Az anyag kimarad a megértésből, mert legfeljebb csak érzékelhető. P. Teilhard írja: Ha jól megnézzük azt a végső anyagi maradékot, ahol jelenleg megállt analízisünk, el kell ismernünk, hogy csak valami alsórendű köd gomolygása: valami határozatlan Minden tudományos kísérletünk arra figyelmeztet, hogy az elektron alatt, az energia alatt még tovább analizálható az Anyag, határtalanul tovább bontható természetes elemekre, időben és térben egyaránt, s hogy a szó etimológiai értelmében nincsenek is atomok Az Anyag lényegében határtalan sokaság, por: tehát lehetetlen építeni rá; s aki véges-végig az Anyagot akarná követni anyagi útján, az a semmibe tartana (i. m o.). A szaktudományok csak közvetve beszélnek az anyagról, azaz arról a valamiről, amit a forma meghatároz, mert kijelentéseik mindig a formára vonatkoznak. A klasszikus természetfilozófia az anyagi testek három alapvető tulajdonságát említi: a kiterjedést, a mozgást és a tevékenységet. Egy-egy tulajdonság alapja mindig valamilyen járulékos forma (lat. forma accidentalis), amely az anyaggal együtt alkotja a tulajdonságot. Ebben az esetben is érvényes: a járulékos formát megértjük, az anyagot érzékeljük. A kiterjedés (lat. extensio) képzetének transzcendentális alapja a mennyiségi lét. A mennyiséget szoros értelemben nem tudjuk meghatározni, ezért már Arisztotelész is a kategóriák közé sorolta. Szerinte mennyiségnek nevezzük azt, ami úgy osztható alkotórészeire, hogy közülük mindegyik természete szerint egységes és egyedi valami (Metaphüszika 1020 a). Főbb jellemzői: az oszthatóság, a részekből állás és a határoltság. A testek kiterjedésével együtt együttes kiterjedésük (lat. coextensivitas) is adott: a testek kölcsönösen határolják egymást. Ez az adottság térképzetünk alapja. A mozgás (lat. motus) képzetének transzcendentális alapját az adja, hogy valamennyi test megvalósultság és lehetőség keveréke. Arisztotelész a mozgást a változás tág értelmében vette, és ezt írta róla: a mozgás a lehetőségnek mint lehetőségnek a megvalósulása (Phüszika 201 a). A testek mozognak és mozgathatók, változnak és változtathatók. Ez a mozgás alkotja időképzetünk objektív alapját. A tevékenység (lat. activitas, operatio) másodlagos megvalósulás (lat. actus secundus) az anyagi létező létéhez képest, amelyet első megvalósultságnak (lat. actus primus) tekintünk (I. q a. 5.). Az anyagi létezők tevékenysége átható tevékenység (lat. actio transiens). Ez azt jelenti, hogy az élettelen anyagi létezők tevékenysége elsősorban nem önmagukra, hanem másra irányul: a mágnes vonzza a vasat, a tűz melegíti környezetét stb. A bennható tevékenységnek, az önépítésnek nagyon távoli hasonlóságát legfeljebb a kristályképződésben találjuk meg.
5 5 Ha a filozófust megkísérti a szaktudományos absztrakció szelleme, látása beszűkül, anyagleírása egyoldalúvá, hiányossá válik. Egyoldalúan szemléli az anyagot a mechanisztikus felfogású, az energetizmust valló és a dialektikus materializmust képviselő filozófus. A mechanisztikus (gör. mékhané = gép) szemlélet főbb jellemzői: az anyagi létezőkben csak a mennyiségi szempontokat veszi figyelembe (tagadja a formák szerepét és így a dolgok minőségi, lényegi különbségét); csak a kiterjedt és önmagukban változatlan anyagi egységeket tekinti valósnak; az anyag változásait a helyváltoztató mozgásra redukálja; az anyagi létezőket és aktivitásukat a gép felépítésének és működésének hasonlóságára fogja fel stb. E felfogásnak Démokritosztól kezdődően sokféle változatát ismerjük. R. Descartes az anyag egyik tulajdonságával, a kiterjedéssel azonosította az anyagot, s fő jellemzőinek a matematikai oszthatóságot és a helyváltoztató mozgást tekintette. Az úgynevezett másodlagos minőségek (J. Locke) a szín, a hang, az íz stb. csak szubjektív érzetek, amelyeket az egymástól csak mennyiségileg különböző testek térbeli mozgása vált ki bennünk. Úgy gondolta, hogy csak a kiterjedésről lehet világos és határozott fogalmunk, s ezért elutasította a skolasztikus lényegi (szubsztanciális) forma tanát. A racionalista filozófus összekeverte az érzékelést és a megértést, a kiterjedés képzetét és a kiterjedés objektív alapját. Nem vette észre, hogy a kiterjedés objektív alapját nem érzékeljük, hanem megértjük, és éppúgy megérthetjük az anyag más belső szükségszerű összefüggéseit is. Abban is tévedett, hogy a másodlagos minőségeket nem lehet matematikailag leírni. E minőségek objektív alapja ugyanis éppúgy érthető, mint a kiterjedésé. A mechanisztikus szemlélet csődjét jól mutatja W. Thomson ( 1907) vallomása: Sohasem vagyok elégedett mindaddig, amíg csak nem tudok egy dologról mechanikai modellt készíteni. Ha sikerül ilyen modellt készítenem, megértem azt. Amennyiben azonban nem tudok teljes értékű mechanikai modellt alkotni, nem is értem; és éppen ez az, ami miatt agyam nem veszi be az elektromágneses térelméletet. Az energetizmus a mechanisztikus szemlélet ellenhatásaként született meg. Képviselői harcoltak a mechanisztikus modellek ellen, tagadták az atomok valóságát, és csak az energia realitását fogadták el. Szemléletük hátterében E. Mach ( 1916) pozitivista filozófiája állt. A pozitivizmus szerint száműzni kell az emberi gondolkodásból a szubsztancia, a forma, az ok stb. fogalmát, mert ezek ellenőrizhetetlen metafizikai valóságokra utalnak. A tudós csak a pozitív, azaz a közvetlenül érzékelt adatok matematikai leírására szorítkozhat anélkül, hogy a jelenségek rejtett szerkezetére vonatkozó megállapításokat tenne. Szaktudományos területen főleg W. Ostwald ( 1932) szállt síkra az energetizmus mellett. Machhal együtt küzdött a mechanisztikus szemlélet ellen, tagadta az atomok létét, és elutasította az arisztotelészi forma fogalmát is. Becsületükre legyen, hogy az atomkutatás eredményei láttán mindketten elismerték szemléletük egyoldalúságát, és elfogadták az atomok valóságát. A dialektikus materializmus tud a különféle anyagfajták lényegi (minőségi) különbségéről, tehát elutasítja a mechanisztikus szemléletet; ugyanígy elutasítja az energetizmus egyoldalú valóságfelfogását is. V. I. Lenin ( 1924) szavai szerint az anyag filozófiai kategória az objektív valóság megjelölésére, amely az ember előtt érzeteiben feltárul, amelyet érzeteink lemásolnak, lefényképeznek, visszatükröznek, és amely az érzetektől függetlenül létezik (Polnoje Szobranyije Szocsinyenyij, 18. k o.). Ez a körülírás az empiriokriticizmussal szemben csak azt fogalmazza meg, hogy az anyag tudatunktól függetlenül is létezik, s hogy érzékelhető. E két jellemzőt azonban a történelem folyamán csak nagyon kevesen vonták kétségbe. A dialektikus materialista anyagfelfogás egyik hiányossága az, hogy az érthetőt belemossa az érzékelhetőbe. Jóllehet képviselői beszélnek a fizikai anyag mennyiségi és minőségi meghatározottságáról, nem emelik ki, hogy ezek a meghatározók nem az érzékelés, hanem a megértés határpontjai, azaz elfeledik, hogy a fizikai anyagnak az érzékelhetőn kívül érthető összetevője (formája) is van.
1. Név szerinti meghatározás
TURAY ALFRÉD KOZMOLÓGIAI ANTROPOLÓGIA 1996. Szeged BEVEZETÉS: A KOZMOLÓGIAI ANTROPOLÓGIA FOGALMA A filozófiai antropológia az ember önértelmezése. A kozmológiai antropológia ennek az önértelmezésnek az
AZ EMBER ÉS A KOZMOSZ
AZ EMBER ÉS A KOZMOSZ Turay Alfréd Lektorálta: Bajzák M. Eszter és dr. Tarnay Brúnó A kötetet szerkesztette: Török Beáta BEVEZETÉS: A KOZMOLÓGIAI ANTROPOLÓGIA FOGALMA...2 1. Név szerinti meghatározás...2
Atommodellek. Ha nem tudod egy pincérnőnek elmagyarázni a fizikádat, az valószínűleg nem nagyon jó fizika. Rausch Péter kémia-környezettan tanár
Atommodellek Ha nem tudod egy pincérnőnek elmagyarázni a fizikádat, az valószínűleg nem nagyon jó fizika. Ernest Rutherford Rausch Péter kémia-környezettan tanár Modellalkotás A modell a valóság nagyított
ELEMI RÉSZECSKÉK ATOMMODELLEK
ELEMI RÉSZECSKÉK ATOMMODELLEK Az atomok felépítése Készítette: Horváthné Vlasics Zsuzsanna Mi van az atomok belsejében? DÉMOKRITOSZ (Kr.e. 460-370) az anyag nem folytonos parányi, tovább nem bontható,
Atomfizika I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag?
Atomfizika I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? Platón (i.e. 427-347), Arisztotelész (=i.e. 387-322): Végtelenségig
a Bohr-féle atommodell (1913) Niels Hendrik David Bohr ( )
a Bohr-féle atommodell (1913) Niels Hendrik David Bohr (1885-1962) atomok gerjesztése és ionizációja elektronnal való bombázással (1913-1914) James Franck (1882-1964) Gustav Ludwig Hertz (1887-1975) Nobel-díj
Az atommag összetétele, radioaktivitás
Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron
Thomson-modell (puding-modell)
Atommodellek Thomson-modell (puding-modell) A XX. század elejére világossá vált, hogy az atomban található elektronok ugyanazok, mint a katódsugárzás részecskéi. Magyarázatra várt azonban, hogy mi tartja
KVANTUMMECHANIKA. a11.b-nek
KVANTUMMECHANIKA a11.b-nek HŐMÉRSÉKLETI SUGÁRZÁS 1 Hősugárzás: elektromágneses hullám A sugárzás által szállított energia: intenzitás I, T és λkapcsolata? Példa: Nap (6000 K): sárga (látható) Föld (300
Atomfizika. Fizika kurzus Dr. Seres István
Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés 440 BC Democritus, Leucippus, Epicurus 1660 Pierre Gassendi 1803 1897 1904 1911 19 193 John Dalton Joseph John (J.J.) Thomson J.J. Thomson
A testek részecskéinek szerkezete
A testek részecskéinek szerkezete Minden test részecskékből, atomokból vagy több atomból álló molekulákból épül fel. Az atomok is összetettek: elektronok, protonok és neutronok találhatók bennük. Az elektronok
Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék
Bevezetés a modern fizika fejezeteibe 4. (e) Kvantummechanika Utolsó módosítás: 2014. december 3. 1 A Klein-Gordon-egyenlet (1) A relativisztikus dinamikából a tömegnövekedésre és impulzusra vonatkozó
Atommodellek. Az atom szerkezete. Atommodellek. Atommodellek. Atommodellek, A Rutherford-kísérlet. Atommodellek
Démokritosz: a világot homogén szubsztanciájú oszthatatlan részecskék, atomok és a közöttük lévı őr alkotja. Az atom szerkezete Egy atommodellt akkor fogadunk el érvényesnek, ha megmagyarázza a tapasztalati
Hadronok, atommagok, kvarkok
Zétényi Miklós Hadronok, atommagok, kvarkok Teleki Blanka Gimnázium Székesfehérvár, 2012. február 21. www.meetthescientist.hu 1 26 Atomok Démokritosz: atom = legkisebb, oszthatatlan részecske Rutherford
A FIZIKA KÖZÉPSZINTŰ SZÓBELI ÉRETTSÉGI VIZSGA TÉTELEINEK TÉMAKÖREI 2015. MÁJUSI VIZSGAIDŐSZAK
- 1 - A FIZIKA KÖZÉPSZINTŰ SZÓBELI ÉRETTSÉGI VIZSGA TÉTELEINEK TÉMAKÖREI 2015. MÁJUSI VIZSGAIDŐSZAK 1. Newton törvényei Newton I. törvénye Kölcsönhatás, mozgásállapot, mozgásállapot-változás, tehetetlenség,
Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós
Atomfizika. Az atommag szerkezete. Radioaktivitás. 2010. 10. 12. Biofizika, Nyitrai Miklós Miért hiszi mindenki azt, hogy az atomfizika egyszerű, szép és szerethető? A korábbiakban tárgyaltuk Az atom szerkezete
Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008.
Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Kiss István,Vértes Attila: Magkémia (Akadémiai Kiadó) Nagy Lajos György,
Atomfizika. Fizika kurzus Dr. Seres István
Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés J.J. Thomson (1897) Katódsugárcsővel végzett kísérleteket az elektron fajlagos töltésének (e/m) meghatározására. A katódsugarat alkotó részecskét
Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz
Atomfizika A hidrogén lámpa színképei - Elektronok H atom emisszió Fényképlemez V + H 2 gáz Az atom és kvantumfizika fejlődésének fontos szakasza volt a hidrogén lámpa színképeinek leírása, és a vonalas
Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei
Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdasá Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI
9. évfolyam. Osztályozóvizsga tananyaga FIZIKA
9. évfolyam Osztályozóvizsga tananyaga A testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás: gyorsulás fogalma, szabadon eső test mozgása 3. Bolygók mozgása: Kepler törvények A Newtoni
CERN: a szubatomi részecskék kutatásának európai központja
CERN: a szubatomi részecskék kutatásának európai központja 1954-ben alapította 12 ország Ma 20 tagország 2007-ben több mint 9000 felhasználó (9133 user ) ~1 GCHF éves költségvetés (0,85%-a magyar Ft) Az
8. AZ ATOMMAG FIZIKÁJA
8. AZ ATOMMAG FIZIKÁJA Az atommag szerkezete (40-44 oldal) A tömegspektrométer elve Az atommag komponensei Izotópok Tömeghiány, kötési energia, stabilitás Magerők Magmodellek Az atommag stabilitásának
Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem
1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 2. Mit nevezünk az atom tömegszámának? a) a protonok számát b) a neutronok számát c) a protonok és neutronok
http://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja
Az elektromágneses hullámok
203. október Az elektromágneses hullámok PTE ÁOK Biofizikai Intézet Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm Ritter Joseph von Fraunhofer Robert
Bevezetés a részecske fizikába
Bevezetés a részecske fizikába Kölcsönhatások és azok jellemzése Kölcsönhatás Erősség Erős 1 Elektromágnes 1 / 137 10-2 Gyenge 10-12 Gravitációs 10-44 Erős kölcsönhatás Közvetítő részecske: gluonok Hatótávolság:
Bevezetés a részecskefizikába
Bevezetés a részecskefizikába Kölcsönhatások Az atommag felépítése Az atommag pozitív töltésű protonokból (p) és semleges neutronokból (n) áll. A protonok és neutronok kvarkokból + gluonokból állnak. A
Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
Kémia I. Műszaki menedzser hallgatók számára
Kémia I, Műszaki menedzser hallgatók számára Novák Csaba BME, Általános és Analitikai Kémia Tanszék, 2005. Kémia I. Műszaki menedzser hallgatók számára Kémia I. Műszaki menedzser hallgatók számára Novák
Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
Atommodellek. Készítette: Sellei László
Atommodellek Készítette: Sellei László Démokritosz Kr. e. V. sz. Az egyik legnehezebb kérdés, amire már az ókori görög tudomány is megpróbált választ adni: miből áll a világ? A világot homogén szubsztanciájú
FIZIKA KÖZÉPSZINTŐ SZÓBELI FIZIKA ÉRETTSÉGI TÉTELEK Premontrei Szent Norbert Gimnázium, Gödöllı, 2012. május-június
1. Egyenes vonalú mozgások kinematikája mozgásokra jellemzı fizikai mennyiségek és mértékegységeik. átlagsebesség egyenes vonalú egyenletes mozgás egyenes vonalú egyenletesen változó mozgás mozgásokra
Az atom felépítése, fénykibocsátás (tankönyv 68.o.- 86.o.)
Az atom felépítése, fénykibocsátás (tankönyv 68.o.- 86.o.) Atomok, atommodellek (tankönyv 82.o.-84.o.) Már az ókorban Démokritosz (i. e. 500) úgy gondolta, hogy minden anyag tovább nem osztható alapegységekből,
Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet
Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Utolsó módosítás: 2016. május 4. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum
JÁTSSZUNK RÉSZECSKEFIZIKÁT!
JÁTSSZUNK RÉSZECSKEFIZIKÁT! Dr. Oláh Éva Mária Bálint Márton Általános Iskola és Középiskola, Törökbálint MTA Wigner FK, RMI, NFO ELTE, Fizikatanári Doktori Iskola, Fizika Tanítása Program PhD olaheva@hotmail.com
Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós
Atomfizika. Az atommag szerkezete. Radioaktivitás. 2010. 10. 13. Biofizika, Nyitrai Miklós Összefoglalás Atommag alkotói, szerkezete; Erős vagy magkölcsönhatás; Tömegdefektus. A kölcsönhatások világképe
Az atom felépítése Alapfogalmak
Anyagszerkezeti vizsgálatok 2017/2018. 1. félév Az atom felépítése Alapfogalmak Csordás Anita E-mail: csordasani@almos.uni-pannon.hu Tel:+36-88/624-924 Pannon Egyetem Radiokémiai és Radioökológiai Intézet
Az elektron hullámtermészete. Készítette Kiss László
Az elektron hullámtermészete Készítette Kiss László Az elektron részecske jellemzői Az elektront Joseph John Thomson fedezte fel 1897-ben. 1906-ban Nobel díj! Az elektronoknak, az elektromos és mágneses
FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István
Sugárzunk az elégedettségtől! () Dr. Seres István atommagfizika Atommodellek 440 IE Democritus, Leucippus, Epicurus 1803 1897 John Dalton J.J. Thomson 1911 Ernest Rutherford 19 Niels Bohr 3 Atommodellek
A világtörvény keresése
A világtörvény keresése Kopernikusz, Kepler, Galilei után is sokan kételkedtek a heliocent. elméletben Ennek okai: vallási politikai Új elméletek: mozgásformák (egyenletes, gyorsuló, egyenes, görbe vonalú,...)
A sötét anyag nyomában. Krasznahorkay Attila MTA Atomki, Debrecen
A sötét anyag nyomában Krasznahorkay Attila MTA Atomki, Debrecen Látható és láthatatlan világunk A levegő Túl kicsi dolgok Mikroszkóp Túl távoli dolgok távcső, teleszkópok Gravitációs vonzás, Mágneses
A legkisebb részecskék a világ legnagyobb gyorsítójában
A legkisebb részecskék a világ legnagyobb gyorsítójában Varga Dezső, ELTE Fiz. Int. Komplex Rendszerek Fizikája Tanszék AtomCsill 2010 november 18. Az ismert világ építőkövei: az elemi részecskék Elemi
Mag- és neutronfizika
Mag- és neutronfizika z elıadás célja: : megalapozni az atomenergetikai ismereteket félév során a következı témaköröket ismertetjük: Magfizikai alapfogalmak (atommagok, radioaktivitás) Sugárzás és anyag
Az atommag összetétele, radioaktivitás
Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron
III. TÉTEL A MOZGÁSBÓL VETT ISTENÉRV
III. TÉTEL A MOZGÁSBÓL VETT ISTENÉRV A mozgásból vagy változásból kiinduló istenérvet az ókortól kezdve ismerték. Az istenérv egyik középkori változatát Aquinói Szent Tamás ( 1274) Summa theologica című
Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola
Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola 1047 Budapest, Langlet Valdemár utca 3-5. www.brody-bp.sulinet.hu e-mail: titkar@big.sulinet.hu Telefon: (1) 369 4917 OM: 034866 Osztályozóvizsga részletes
A modern fizika születése
MODERN FIZIKA A modern fizika születése Eddig: Olyan törvényekkel ismerkedtünk meg melyekhez tapasztalatokat a mindennapi életből is szerezhettünk. Klasszikus fizika: mechanika, hőtan, elektromosságtan,
ATOMFIZIKA. óravázlatok
ATOMFIZIKA óravázlatok A fizika felosztása 1. Klasszikus fizika Olyan jelenségekkel és törvényekkel foglalkozik, amelyekről a mindennapi életben is szerezhetünk tapasztalatokat. 2. Modern fizika A fizikának
Axion sötét anyag. Katz Sándor. ELTE Elméleti Fizikai Tanszék
Az axion mint sötét anyag ELTE Elméleti Fizikai Tanszék Borsányi Sz., Fodor Z., J. Günther, K-H. Kampert, T. Kawanai, Kovács T., S.W. Mages, Pásztor A., Pittler F., J. Redondo, A. Ringwald, Szabó K. Nature
az Aharonov-Bohm effektus a vektorpotenciál problémája E = - 1/c A/ t - φ és B = x A csak egy mértéktranszformáció erejéig meghatározott nincs fizikai
az Aharonov-Bohm effektus a vektorpotenciál problémája E = - 1/c A/ t - φ és B = x A csak egy mértéktranszformáció erejéig meghatározott nincs fizikai jelentése? a kvantummechanikában ih m» a hullámfüggvény
Biofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése
Mi a biofizika tárgya? Biofizika Csik Gabriella Biológiai jelenségek fizikai leírása/értelmezése Pl. szívműködés, membránok szerkezete és működése, érzékelés stb. csik.gabriella@med.semmelweis-univ.hu
egyetemi állások a relativitáselmélet általánosítása (1915) napfogyatkozás (1919) az Einstein-mítosz (1920-tól) emigráció 1935: Einstein-Podolsky-
egyetemi állások a relativitáselmélet általánosítása (1915) napfogyatkozás (1919) az Einstein-mítosz (1920-tól) emigráció 1935: Einstein-Podolsky- Rosen cikk törekvés az egységes térelmélet létrehozására
Az atommag szerkezete
Az atommag szerkezete Biofizika előadások 2013 november Orbán József PTE ÁOK Biofzikai Intézet Filozófusok / tudósok Történelem Aristoteles Dalton J.J.Thomson Bohr Schrödinger Pauli Curie házaspár Teller
Filozófia. Az elemi részecskéktől a világegyetemig 2 / 55. Morva Tamás. Az elemi részecskéktől a világegyetemig
25.szám 1 / 55 2 / 55 Filozófia Az elemi részecskéktől a világegyetemig Morva Tamás Recenzió Hawking-Mlodinow: A nagy terv című könyvéről Az elemi részecskéktől a világegyetemig Hawking-Mlodinow: A nagy
Az atombomba története
Az atombomba története Szegedi Péter TTK Tudománytörténet és Tudományfilozófia Tanszék Déli Tömb 1-111-es szoba 372-2990 vagy 6670-es mellék pszegedi@caesar.elte.hu és http://hps.elte.hu Tematika 1. A
Kémiai alapismeretek 2. hét
Kémiai alapismeretek 2. hét Horváth Attila Pécsi Tudományegyetem, Természettudományi Kar, Kémia Intézet, Szervetlen Kémiai Tanszék 2012. február 14. 1/15 2011/2012 II. félév, Horváth Attila c XIX sz. vége,
Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.
Radioaktív izotópok Izotópok Egy elem különböző tömegű (tömegszámú - A) formái; Egy elem izotópjainak a magjai azonos számú protont (rendszám - Z) és különböző számú neutront (N) tartalmaznak; Egy elem
Atomok és molekulák elektronszerkezete
Atomok és molekulák elektronszerkezete Szabad atomok és molekulák Schrödinger egyenlete Tekintsünk egy kvantummechanikai rendszert amely N n magból és N e elektronból áll. Koordinátáikat jelölje rendre
Sugárzások kölcsönhatása az anyaggal
Radioaktivitás Biofizika előadások 2013 december Sugárzások kölcsönhatása az anyaggal PTE ÁOK Biofizikai Intézet, Orbán József Összefoglaló radioaktivitás alapok Nukleononkénti kötési energia (MeV) Egy
indeterminizmus a fizikában
indeterminizmus a fizikában Epikuroszt még nem vették komolyan a brit empirizmus (pl. Hume) még nem volt elég határozott a pozitivizmus hatása jelentős a kinetikus gázelmélet Maxwell a gázmolekulák véletlen
Modern fizika vegyes tesztek
Modern fizika vegyes tesztek 1. Egy fotonnak és egy elektronnak ugyanakkora a hullámhossza. Melyik a helyes állítás? a) A foton lendülete (impulzusa) kisebb, mint az elektroné. b) A fotonnak és az elektronnak
Fizika tételek. 11. osztály
Fizika tételek 11. osztály 1. Mágneses mező és annak jellemzése.szemléltetése Hogyan hozható létre mágneses mező? Milyen mennyiségekkel jellemezhetjük a mágneses mezőt? Hogyan szemléltethetjük a szerkezetét?
Mit tanultunk kémiából?2.
Mit tanultunk kémiából?2. Az anyagok rendkívül kicsi kémiai részecskékből épülnek fel. Több milliárd részecske Mól az anyagmennyiség mértékegysége. 1 mol atom= 6. 10 23 db atom 600.000.000.000.000.000.000.000
Jelöljük meg a kérdésnek megfelelő válaszokat! 1, Hullámokról általában: alapösszefüggések a harmonikus hullámra. A Doppler-effektus
Jelöljük meg a kérdésnek megfelelő válaszokat! 1, Hullámokról általában: alapösszefüggések a harmonikus hullámra. A Doppler-effektus Melyik egyenlet nem hullámot ír le? a) y = A sin 2π(ft x/λ) b) y = A
Radioaktivitás. 9.2 fejezet
Radioaktivitás 9.2 fejezet A bomlási törvény Bomlási folyamat alapjai: Értelmezés (bomlás): Azt a magfizikai folyamatot, amely során nagy tömegszámú atommagok spontán módon, azaz véletlenszerűen (statisztikailag)
Kant és a transzcendentális filozófia. Filozófia ös tanév VI. előadás
Kant és a transzcendentális filozófia Filozófia 2014-2015-ös tanév VI. előadás Kant és a transzcendentális filozófia A 18. század derekára mind az empirista, mind a racionalista hagyomány válságba jutott.
Az atom felépítése Alapfogalmak
Anyagszerkezeti vizsgálatok 2018/2019. 1. félév Az atom felépítése Alapfogalmak Csordás Anita E-mail: csordasani@almos.uni-pannon.hu Tel:+36-88/624-924 Pannon Egyetem Radiokémiai és Radioökológiai Intézet
. T É M A K Ö R Ö K É S K Í S É R L E T E K
T É M A K Ö R Ö K ÉS K Í S É R L E T E K Fizika 2018. Egyenes vonalú mozgások A Mikola-csőben lévő buborék mozgását tanulmányozva igazolja az egyenes vonalú egyenletes mozgásra vonatkozó összefüggést!
Az atomhéj (atommag körüli elektronok) fizikáját a kvantumfizika írja le teljes körűen.
MGFIZIK z atomhéj (atommag körüli elektronok) fizikáját a kvantumfizika írja le teljes körűen. Z TOMMG SZERKEZETE, RDIOKTIVITÁS PTE ÁOK Biofizikai Intézet Futó Kinga magfizika azonban még nem lezárt tudomány,
Részecskefizika kérdések
Részecskefizika kérdések Hogyan ad a Higgs- tér tömeget a Higgs- bozonnak? Milyen távla= következménye lesznek annak, ha bebizonyosodik a Higgs- bozon létezése? Egyszerre létezhet- e a H- bozon és a H-
FIZIKA ÓRA. Tanít: Nagy Gusztávné
F FIZIKA ÓRA Tanít: Nagy Gusztávné Iskolánk 8.-os tanulói az Esze Tamás Gimnázium európai színvonalon felszerelt természettudományos laboratóriumában fizika órán vettek részt. Az óra témája: a testek elektromos
ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK. Kalocsai Angéla, Kozma Enikő
ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK Kalocsai Angéla, Kozma Enikő RUTHERFORD-FÉLE ATOMMODELL HIBÁI Elektromágneses sugárzáselmélettel ellentmondásban van Mivel: a keringő elektronok gyorsulnak Energiamegmaradás
Az anyagi rendszerek csoportosítása
Kémia 1 A kémiai ismeretekről A modern technológiai folyamatok és a környezet védelmére tett intézkedések alig érthetőek kémiai tájékozottság nélkül. Ma már minden mérnök számára alapvető fontosságú a
Bevezetés a részecskefizikába
Horváth Dezső: Bevezetés a részecskefizikába I CERN, 2009. augusztus 18. 1. fólia p. 1 Bevezetés a részecskefizikába Előadássorozat fizikatanárok részére (CERN, 2009. aug. 17-21.) Horváth Dezső horvath@rmki.kfki.hu
Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens.
Kémia, BMEVEAAAMM Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens Jegyzet dr. Horváth Viola, KÉMIA I. http://oktatas.ch.bme.hu/oktatas/konyvek/anal/
FILOZÓFIA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Filozófia középszint 1112 ÉRETTSÉGI VIZSGA 2014. május 21. FILOZÓFIA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA A rész (30 pont) 1. Írja a megfelelő
Úton az elemi részecskék felé. Atommag és részecskefizika 2. előadás február 16.
Úton az elemi részecskék felé Atommag és részecskefizika 2. előadás 2010. február 16. A neutron létének következményei I. 1. Az atommag alkotórészei Z db proton + N db neutron, A=N+Z az atommag tömege
I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag?
I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? Platón (i.e. 427-347), Arisztotelész (=i.e. 387-322): Végtelenségig
Elemi részecskék, kölcsönhatások. Atommag és részecskefizika 4. előadás március 2.
Elemi részecskék, kölcsönhatások Atommag és részecskefizika 4. előadás 2010. március 2. Az elektron proton szóródás E=1MeVλ=hc/(sqrt(E 2 -mc 2 )) 200fm Rutherford-szórás relativisztikusan Mott-szórás E=10MeVλ
Az atom szerkezete. Az eltérülés ritka de nagymértékű. Thomson puding atom-modellje nem lehet helyes.
Az atom szerkezete Rutherford kísérlet (1911): Az atom pozitív töltése és a tömeg nagy része egy nagyon kis helyre összpontosul. Ezt nevezte el atommagnak. Az eltérülés ritka de nagymértékű. Thomson puding
TestLine - Fizika 8. évfolyam elektromosság alapok Minta feladatsor
Mi az áramerősség fogalma? (1 helyes válasz) 1. 1:56 Normál Egységnyi idő alatt áthaladó töltések száma. Egységnyi idő alatt áthaladó feszültségek száma. Egységnyi idő alatt áthaladó áramerősségek száma.
KÉMIA. Kémia a gimnáziumok 9 10. évfolyama számára
KÉMIA Kémia a gimnáziumok 9 10. évfolyama számára A kémia tanításának célja és feladatai Az iskolai tanulmányok célja a gyakorlatban hasznosítható ismeretek megszerzése, valamint az általános képességek
A SZOCIOLÓGIA ALAPÍTÓJA. AugustE Comte
A SZOCIOLÓGIA ALAPÍTÓJA AugustE Comte A szociológia önálló tudománnyá válása a 19.század közepén TUDOMÁNYTÖRTÉNET: a felvilágosodás eszméi: Szabadság, egyenlőség, testvériség. Az elképzelt tökéletes társadalom
ENERGETIKAI AXIÓMARENDSZEREN NYUGVÓ RENDSZERELMÉLET I. KÖTET.
Dr. Takáts Ágoston ENERGETIKAI AXIÓMARENDSZEREN NYUGVÓ RENDSZERELMÉLET I. KÖTET. A TUDOMÁNYOS GONDOLKODÁSRÓL ÉS A MEGISMERÉS HÁRMAS ABSZTRAKCIÓS SZINTJÉRŐL 2007. Tartalom 1. AZ ENERGETIKAI AXIÓMARENDSZER
FIZIKA I. RÉSZLETES VIZSGAKÖVETELMÉNYEK
FIZIKA KOMPETENCIÁK A vizsgázónak a követelményrendszerben és a vizsgaleírásban meghatározott módon az alábbi kompetenciák meglétét kell bizonyítania: - ismeretei összekapcsolása a mindennapokban tapasztalt
Reál osztály. Kémia a gimnáziumok 9 11. évfolyama számára. B változat
Reál osztály Kémia a gimnáziumok 9 11. évfolyama számára B változat A kémia tanításának célja és feladatai Az iskolai tanulmányok célja a gyakorlatban hasznosítható ismeretek megszerzése, valamint az általános
Elektrosztatikai alapismeretek
Elektrosztatikai alapismeretek THALÉSZ: a borostyánt (élektron) megdörzsölve az a könnyebb testeket magához vonzza. Az egymással szorosan érintkező anyagok elektromosan feltöltődnek, elektromos állapotba
Kémia a gimnáziumok 9 10. évfolyama számára. B változat
Kémia a gimnáziumok 9 10. évfolyama számára B változat A kémia tanításának célja és feladatai Az iskolai tanulmányok célja a gyakorlatban hasznosítható ismeretek megszerzése, valamint az általános képességek
1. Cartesius-búvár. 1. tétel
1. tétel 1. Cartesius-búvár Feladat: A rendelkezésre álló eszközök segítségével készítsen el egy Cartesius-búvárt! A búvár vízben való mozgásával mutassa be az úszás, a lebegés és az elmerülés jelenségét!
1. A gyorsulás Kísérlet: Eszközök Számítsa ki
1. A gyorsulás Gyakorlati példákra alapozva ismertesse a változó és az egyenletesen változó mozgást! Általánosítsa a sebesség fogalmát úgy, hogy azzal a változó mozgásokat is jellemezni lehessen! Ismertesse
Megmérjük a láthatatlant
Megmérjük a láthatatlant (részecskefizikai detektorok) Hamar Gergő MTA Wigner FK 1 Tartalom Mik azok a részecskék? mennyi van belőlük? miben különböznek? Részecskegyorsítók, CERN mire jó a gyorsító? hogy
1. SI mértékegységrendszer
I. ALAPFOGALMAK 1. SI mértékegységrendszer Alapegységek 1 Hosszúság (l): méter (m) 2 Tömeg (m): kilogramm (kg) 3 Idő (t): másodperc (s) 4 Áramerősség (I): amper (A) 5 Hőmérséklet (T): kelvin (K) 6 Anyagmennyiség
Általános Kémia, BMEVESAA101
Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Óravázlatok:
Pósfay Péter. ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G.
Pósfay Péter ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G. A Naphoz hasonló tömegű csillagok A Napnál 4-8-szor nagyobb tömegű csillagok 8 naptömegnél nagyobb csillagok Vörös óriás Szupernóva
Magszerkezet modellek. Folyadékcsepp modell
Magszerkezet modellek Folyadékcsepp modell Az atommag összetevői (emlékeztető) atommag Z proton + (A-Z) neutron (nukleonok) szorosan kötve Állapot leírása: kvantummechanika + kölcsönhatások Nem relativisztikus
Emelt óraszámú kémia helyi tanterve
Kerettantervi ajánlás a helyi tanterv készítéséhez az EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 3. sz. melléklet 3.2.09.2 (B) változatához Emelt óraszámú kémia helyi tanterve Tantárgyi struktúra
Részecske- és magfizika vizsgakérdések
Részecske- és magfizika vizsgakérdések Az alábbi kérdések (vagy ezek kombinációi) fognak az írásbeli és szóbeli vizsgán is szerepelni. A vastag betűs kérdések egyszerűbb, beugró-kérdések, ezeknek kb. 90%-át
Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár,
Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Facebook,
A fizikaoktatás jövője a felsőfokú alapképzésben
A fizikaoktatás jövője a felsőfokú alapképzésben Radnóti Katalin ELTE TTK Fizikai Intézet Főiskolai tanár rad8012@helka.iif.hu http://members.iif.hu/rad8012/ Békéscsaba 2010. augusztus 26. Az előadásban