Fizikai kémia és radiokémia félév 2. zárthelyi megoldások
|
|
- Ágoston Fodor
- 8 évvel ezelőtt
- Látták:
Átírás
1 A csoport Fizikai kémia és radiokémia félév 2. zárthelyi megoldások 1. Mit értünk a magok kötési energiáján és hogyan tudná azt meghatározni. Mekkora a legstabilisabb magok egy nukleonra jutó kötési energiája? A magok kötési energiája a tömegdefektusból adódó energiával egyenlő. A legstabilisabb magok egy nukleonra jutó kötési energiája 9-10 MeV/nukleon. 2. Hasonlítsa össze az elektron, a pozitron és az alfa-sugárzás lineáris energiaátadási tulajdonságait. A linear energy transfer (LET) értékeket kell összehasonlítanunk. Azonos energiával bíró részecskék LET értékét összehasonlítva látható, hogy az alfa-részecske nagyobb tömege miatt sokkal nagyobb energiát ad le egységnyi úthosszon, mint az elektron vagy a pozitron. Ez utóbbi kettő között nincsen különbség A plutónium év felezési idejű 94Pu izotópja alfa-bomlással stabilizálódik. A keletkező alfa-sugárzás energiája 5,157 MeV. a) Mi lesz a keletkező termék? b) Mekkora energia szabadul fel ily módon 24 mg 239 Pu-ból egy év alatt? t = 1 év 1 év alatt elbomlott mennyiség: 1 részecske energiája: 5,157 MeV 1 év alatt keletkező energia: db
2 1 év alatt 24 mg -ból energia szabadul fel. 4. Hasonlítsa össze keletkezés és tulajdonságok szempontjából a fékezési és a karakterisztikus röntgensugárzást. karakterisztikus röntgen: Akkor jön létre, ha egy atom belső elektronhéjáról hiányoznak elektronok (pl. fotoeffektus kölcsönhatás révén vagy elektronbefogás következtében) és az elektronok kaszkádátrendeződésével a belső héj(ak) a külsőbbekről feltöltődnek. Az elektronhéjak közti energiakülönbség elektromágneses fotonok formájában jelenik meg, melynek hullámhossza a röntgen-tartományba esik. Mivel az elektronhéjak energiája kvantált, a kilépő foton energiája is az, azaz a spektruma vonalas és jellemző a kibocsátó mag anyagi minőségére. fékezési röntgen Ha egy töltött részecske (pl.: elektron, pozitron, alfa-részecske) elektromos erőtérben mozog, fizikai értelemben gyorsuló mozgást végez, sebessége csökken. Az energia elektromágneses sugárzás (röntgensugárzás) formájában jelenik meg. Az így kilépő elektromágneses sugárzást hívjuk fékeződési röntgensugárzásnak. A fékeződési röntgen színképe folytonos. 5. Mi a zeta-potenciál? Hogyan függ a részecske méretétől és a közeg tulajdonságaitól? Egy töltött részecske felületén kialakuló kettős és diffúz ionréteg eredő töltése. Elektromos erőtérben ezt a töltést mutatja kifele a részecske. Nagysága: q 4 r ahol q: a részecske töltése, : a közeg permittivitása, r: a részecske sugara (nyírási sugár, azaz az ionréteggel megnövelt sugár) 6. A benzo(a)pirén (ld. ábra) a kipufogógázokkal, fosszilis tüzelőanyagok tökéletlen égése során kerül a levegőbe, de kimutatható a grillezett ételekben is. Egy gáztisztításra használatos aktív szén fajlagos felülete 1000 m2/g. Hány g benzo(a)pirént képes megkötni az a szűrőberendezés, amely 500 g aktív szenet tartalmaz? A benzo(a)pirén egy molekulájának helyigénye 0.65 nm2 és a szén fajlagos felülete 1200 m2/g. A benzopirén számára a szén felületének 50%-a hozzáférhető. Feltételezzük, hogy a szorpció egyrétegű. SBET= 1200 m2/g vagy 1000 m2/g Mindkét adattal történő helyes számolást elfogadjuk! m= 500 g as= 0,65 nm2 tehát tehát tehát 1200 m /g-al számolva az eredmény 193,85 gramm 2 Tehát a szűrőberendezés 161 vagy 193 gramm benzopirént képes megkötni!
3 B csoport 1. Rajzolja fel, hogyan függ egy nukleonra jutó kötési energia a tömegszámtól. A görbe segítségével magyarázza el, miért termelnek energiát a hasadási elven működő reaktorok. A nagy össznukleonszámú magok hasadása során közepes tömegszámú magok keletkeznek, melyek egy nukleonra jutó kötési energiája kisebb. A nagy és a közepes magok kötési energiája közti különbség szabadul fel, amikor maghasadás következik be. 2. Ismertesse az alfa-bomlás jelenségét. Mely magoknál tipikus? Jellemezze az alfa-sugárzást. Adjon legalább egy példát (tömegszámmal együtt) a környezeti szempontból is lényeges is tipikus alfa-sugárzó izotópra. Nagy össznukleonszámú magokra jellemző, új kémiai tulajdonságú mag keletkezik. Vonalas spektrumú, a mag nagy sebességgel visszalökődik kémiai kötések felszakadhatnak! Az alfa sugárzás nagy energiájú (4-9 MeV), melynek hatótávolsága az alfa részecske nagy nyugalmi tömege miatt rövid.. Kísérheti gamma sugárzás. Pl.: 226Ra(szilárd) 222Rn(nemesgáz) 3. A korszerű eljárások az uránt UF6 gáz centrifugális elválasztásával dúsítják. a) Mekkora a 235U-tól származó aktivitása 500 m3 normál állapotú UF6 gáznak, ha az uránmagok 3 % 235U? vagy Vm=22,41 dm3/mol N=22017 mol * 6*1023 db/mol = 1,32*1028 ennek csak 3 %-a radioaktív: 3,96*1026 A=λ*N=1,24 *1010 Bq b) A 235U felezési ideje 7, év. Mennyi idő alatt csökken az aktivitás 10 %-kal?
4 t= 1,07*10 8 év 4. Melyek a gamma-sugárzás és az anyag ionizációs kölcsönhatásának leggyakoribb mechanizmusai? Hogyan függenek ezek a sugárzás (energia) ill. az anyag (rendszám) tulajdonságaitól? 1. Compton szórás: A rendszámtól nem nagyon függ a végbemeneteli valószínűség. A gamma-foton energiája befolyásolja: Ha a 0, csak szórás van egyébként energiatátadás is. 2. Fotoeffektus: Kis E-jú fotonok és nagy rendszámú magok esetén jellemző. 3. Párképzés Nagy energiájú gamma-fotonoknál tipikus. A gamma-foton a mag erőterével lép kölcsönhatásba, a gamma-foton megszűnik, helyette egy elektron-pozitron pár keletkezik, melyek iránya 180 -ot zár be. Küszöbenergiája van, mely az elektron és a pozitron nyugalmi tömegének (egyenként 0,51 MeV) összege. 5. Rajzolja fel a kettősréteg kialakulását egy pozitív töltésű felülettel érintkező vizes sóoldat esetén. Magyarázza el a jelenséget.
5 A pozitív töltésű felület elektrosztaikusan vonzza a negatív töltésű részecskéket, így a felület borított lesz negatív töltésű részecskékkel, és így az új felület polaritása megváltozik. Ez a Stern réteg. A negatívan töltött részecskékhez pozitív töltésűek fognak rendeződni. A vonzás a felülettől távolodva egyre gyengébbé válik, végül a réteg diffúzzá válik. Ennek oka az ionok termikus energiája és az oldószermolekulák töltésárnyékoló hatása. 6. A perfluoro-oktánsav (PFOA, ld. képlet) egy hosszú ideig az egészségre ártalmatlannak tartott élelmiszer-adalék. Kémiailag igen stabilis, ezért a környezetbe jutva sem bomlik. Vízoldhatósága 25 C-on 3,4 g/l. A német hatóságok ivóvízben 0,3 µg/l-ben maximálták a megengedett koncentrációját. Kísérletek alapján egy aktív szén minden m 2 -re maximálisan 950 g PFOA-t képes megkötni. Hány g 1000 m 2 /g felületű aktív szénnel lehetne a tipikusan 0,519 µg/l PFOA koncentrációjú ivóvíz 1 m 3 -ének PFOA koncentrációját a megengedett érték alá csökkenteni? A fluor relatív molekulatömege 19. c = 0,519 µg/l c határérték =0,3 µg/l eltávolítandó: c- c határérték =0,219 µg/l V víz = 1 m 3 = 1000 l, tehát összesen m PFOA = V*c = 0,219*1000=219 µg-ot kell megkötnie a szénnek. 1 m 2 szénfelület 950 µg PFOA-t tud megkötni Szükséges szénfelület = 0,23 m 2. Szükséges szénmennyiség: 2,3*10-4 g szén szükséges 1 m 3 0,519 µg/l PFOA tartalmú szennyvíz PFOA tartalmának határérték alá csökkentéséhez.
6 C csoport 1. Rajzolja fel, hogyan függ egy nukleonra jutó kötési energia a tömegszámtól. A görbe segítségével magyarázza el, a fúziós energiatermelés magfizikai alapját. Fúziós energiatermelés: ha a kis tömegszámú magokból nagyobbakat állítunk elő, stabilitásuk nő (egy nukleonra jutó kötési energia nő), a különbség felszabadul. Pl. 2H 4He Ez jóval nagyobb energiájú, mint a hasadási energia, technikailag napjainkban még nem igazán kontrollálható. 2. Sorolja fel a leggyakoribb spontán magátalakulási módokat. β-bomlások, α-bomlás, izomer átalakulás 3. A terápiás célokra is használt 60Co izotóp felezési ideje 1925 nap. a) Mekkora volt annak a 60Co forrásnak az aktivitása 2 évvel ezelőtt, mely most 5 MBq aktivitású? b) Mennyi ideig használható még ez a sugárforrás, ha legalább 100 impulzus/perc-et szeretnénk vele mérni és a mérési hatásfok 75 %? b) 100 impulzus/perc=100cpm=1,67 cps Ha 75 %-ot mér, akkor
7 4. Definiálja a lineáris gyengülési együtthatót. Milyen tényezőket tartalmaz, mitől függ és mi a dimenziója? a dimenziója 1/hosszúság - atomi sűrűség (a sugárzással kölcsönhatásba lépő anyag anyagi minőségére jellemző), hatáskeresztmetszet, mely a sugárzás energiájától függ 5. Definiálja az ionerősséget. Mi a mértékegysége? Hogyan függ az elektromos kettősréteg vastagsága a közeg ionerősségétől? Egy ionokat tartalmazó oldatban az ionerőssége az ionok töltésnégyzetének és koncentrációjának szorzatából képzett összeg fele:, mértékegysége tipikusan mol/liter ahol I az ionerősség; z az ion töltése, c az ion mólkoncentrációja. Minél nagyobb az ionerősség annál vékonyabb az elektromos kettősréteg 6. Hány %-ban használjuk ki víztisztításnál annak az aktív szénnek a felületét, melynek 1 grammja 180 mg anilint köt meg. A szén nitrogén-adszorpcióval mért (teljes) fajlagos felülete 1450 m 2 /g. Egy anilin-molekula helyigénye 0,35 nm 2. m anilin =180 mg M anilin = 6* = 93 g/mol n anilin = 1,94 mmol Anilin adszorpciója esetén a szénminta felületének csupán 28,1%-át tudjuk kihasználni.
8 D csoport 1. Mit értünk a magok kötési energiáján és hogyan tudná azt meghatározni. Mekkora a legstabilisabb magok egy nukleonra jutó kötési energiája? A magok kötési energiája a tömegdefektusból adódó energiával egyenlő., ahol c a fény sebessége vákuumban A legstabilisabb magok egy nukleonra jutó kötési energiája 9 MeV/nukleon. 2. Ismertesse a béta-bomlások sajátságait. A keletkező elektron ill. pozitron spektruma folytonos, mert az antineutrinóval ill. a neutrinóval osztoznak a magátalakulás kvantált energiáján. 3. Mekkora 1 tonna uránszurokérc (U3O8) aktivitása, ha a 238U felezési ideje 4,5 109 év? Mekkora a mért intenzitása az uránszurokérc 750 mg-jának, ha a detektor a kibocsátott részecskék 8 %-át érzékeli? Mennyi idő alatt csökken az aktivitás 30 %-kal? mol szurokérc, ebből 3x ennyi mól 238U keletkezik: 3562,45 mol 1/sec Tehát 1 t uránszurokérc aktivitása ~1010 Bq. Tehát 750 mg érc intenzitása 614 1/sec. Az aktivitás ~ , év alatt csökken 30%-kal!
9 4. Milyen kölcsönhatási mechanizmusok érvényesülnek a negatív béta-sugárzás és az anyag kölcsönhatása során? Miért nem célszerű a béta-sugárzások ellen nagy rendszámú anyaggal védekezni? És mivel a negatív béta-sugárzás hordozója töltött részecske (elektron, egységnyi negatív töltés), fékezési röntgensugárzás is keletkezik. A fékezési mechanizmussal és szórással egységnyi úthosszon leadott energiák aránya: rtg-sugárzás.. Tehát ha nagy Z-knél nagyobb a fékezési 5. Mi a kritikus micella-koncentráció? Hogyan változik az oldat ill. a határfelület szerkezete, ha egy vizes oldathoz egyre növekvő koncentrációban anionos felületaktív anyagot adagol? C.M:C.: Az a c M tenzid-koncentráció, aminél nagyobb koncentrációk esetében a tenzid-molekulák asszociálódnak, és micellákat képeznek. A felületi feszültség nem nő tovább. Miután a micellák képződése megindul a határfelületi borítottság állandó lesz. 6. A nonil-fenol ösztrogén hatású szennyezőanyag, mely az etoxilált felületaktív anyagok gyártásának következményeként ill. a fogamzásgátlók gyártása és használata révén kerül az élővizekbe. Különböző tulajdonságú aktív szeneken vizsgálták a nonil-fenol megkötésének hatékonyságát (ld. ábra). Az N jelű szén fajlagos felülete nitrogén-adszorpciós mérésből 1516 m 2 /g. Hány mg nonilfenolt képes megkötni ennek a szénnek 1 g-ja, ha az első lépcső az egymolekulás borítottsághoz tartozik és a diagram alapján a szén minden négyzetmétere 0,6 mol nonilfenolt köt meg. Hány %-a hasznosul a szénfelületnek az adszorpcióban, ha a nonilfenol helyigénye 0,23 nm 2? Ha 1 m 2 felület 0,6 µmol nonil-fenolt képes megkötni, akkor 1516 m 2 -nyi felület (ez tartozik 1 g szénhez) nonil-fenolt köt meg. n megkötött nonilfenol = 909,6 µmol M nonil-fenol = 15* = 220 g/mol
10 m megkötött nonilfenol = 4,13 µg = 0,00413 mg 4,13*10-3 mg nonilfenolt képes megkötni a szén 1 grammja. A szén felületének mindössze 8,25%-a hasznosul.
Az atommag összetétele, radioaktivitás
Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron
Az ionizáló sugárzások fajtái, forrásai
Az ionizáló sugárzások fajtái, forrásai magsugárzás Magsugárzások Röntgensugárzás Függelék. Intenzitás 2. Spektrum 3. Atom Repetitio est mater studiorum. Röntgen Ionizációnak nevezzük azt a folyamatot,
Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem
1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 2. Mit nevezünk az atom tömegszámának? a) a protonok számát b) a neutronok számát c) a protonok és neutronok
Az atom felépítése Alapfogalmak
Anyagszerkezeti vizsgálatok 2017/2018. 1. félév Az atom felépítése Alapfogalmak Csordás Anita E-mail: csordasani@almos.uni-pannon.hu Tel:+36-88/624-924 Pannon Egyetem Radiokémiai és Radioökológiai Intézet
FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István
Sugárzunk az elégedettségtől! () Dr. Seres István atommagfizika Atommodellek 440 IE Democritus, Leucippus, Epicurus 1803 1897 John Dalton J.J. Thomson 1911 Ernest Rutherford 19 Niels Bohr 3 Atommodellek
Sugárzások kölcsönhatása az anyaggal
Radioaktivitás Biofizika előadások 2013 december Sugárzások kölcsönhatása az anyaggal PTE ÁOK Biofizikai Intézet, Orbán József Összefoglaló radioaktivitás alapok Nukleononkénti kötési energia (MeV) Egy
Modern fizika vegyes tesztek
Modern fizika vegyes tesztek 1. Egy fotonnak és egy elektronnak ugyanakkora a hullámhossza. Melyik a helyes állítás? a) A foton lendülete (impulzusa) kisebb, mint az elektroné. b) A fotonnak és az elektronnak
Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT)
Röntgensugárzás az orvostudományban Röntgen kép és Komputer tomográf (CT) Orbán József, Biofizikai Intézet, 2008 Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken
8. AZ ATOMMAG FIZIKÁJA
8. AZ ATOMMAG FIZIKÁJA Az atommag szerkezete (40-44 oldal) A tömegspektrométer elve Az atommag komponensei Izotópok Tömeghiány, kötési energia, stabilitás Magerők Magmodellek Az atommag stabilitásának
Az atommag összetétele, radioaktivitás
Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron
A sugárzás és az anyag kölcsönhatása. A béta-sugárzás és anyag kölcsönhatása
A sugárzás és az anyag kölcsönhatása A béta-sugárzás és anyag kölcsönhatása Cserenkov-sugárzás v>c/n, n törésmutató cos c nv Cserenkov-sugárzás Pl. vízre (n=1,337): 0,26 MeV c 8 m / s 2. 2* 10 A sugárzás
Röntgensugárzás. Röntgensugárzás
Röntgensugárzás 2012.11.21. Röntgensugárzás Elektromágneses sugárzás (f=10 16 10 19 Hz, E=120eV 120keV (1.9*10-17 10-14 J), λ
Sugárzások kölcsönhatása az anyaggal
Sugárzások kölcsönhatása az anyaggal Dr. Vincze Árpád vincze@oah.hu Mitől függ a kölcsönhatás? VÁLASZ: Az anyag felépítése A sugárzások típusai, forrásai és főbb tulajdonságai A sugárzások és az anyag
RADIOKÉMIA SZÁMOLÁSI FELADATOK. 2005. Szilárdtest- és Radiokémiai Tanszék
RADIOKÉMIA SZÁMOLÁSI FELADATOK 2005. Szilárdtest- és Radiokémiai Tanszék 1. Az atommag kötési energiája Az atommag kötési energiája az ún. tömegdefektusból ( m) számítható ki. m = [Z M p + N M n ] - M
Sugárzások és anyag kölcsönhatása
Sugárzások és anyag kölcsönhatása Az anyaggal kölcsönhatásba lépő részecskék Töltött részecskék Semleges részecskék Nehéz Könnyű Nehéz Könnyű T D p - + n Radioaktív sugárzás + anyag energia- szóródás abszorpció
Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.
Különböző sugárzások tulajdonságai Típus töltés Energia hordozó E spektrum Radioaktí sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktí sugárzások detektálása. α-sugárzás pozití
Jelöljük meg a kérdésnek megfelelő válaszokat! 1, Hullámokról általában: alapösszefüggések a harmonikus hullámra. A Doppler-effektus
Jelöljük meg a kérdésnek megfelelő válaszokat! 1, Hullámokról általában: alapösszefüggések a harmonikus hullámra. A Doppler-effektus Melyik egyenlet nem hullámot ír le? a) y = A sin 2π(ft x/λ) b) y = A
Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens.
Kémia, BMEVEAAAMM Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens Jegyzet dr. Horváth Viola, KÉMIA I. http://oktatas.ch.bme.hu/oktatas/konyvek/anal/
Sugárzás kölcsönhatása az anyaggal 1. Fény kölcsönhatása az anyaggal. 2. Ionizáló sugárzás kölcsönhatása az anyaggal KAD
Sugárzás kölcsönhatása az anyaggal 1. Fény kölcsönhatása az anyaggal 2. Ionizáló sugárzás kölcsönhatása az anyaggal KAD 2012.10.03 1976 2 1. 3 4 n 1 >n 2 5 6 7 8 9 10 11 12 13 14 2. Az ionizáló sugárzások
Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár,
Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Facebook,
Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.
Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása. Magsugárzások (α, β, γ) kölcsönhatása atomi rendszerekkel (170-174, 540-545 o.) Direkt és
A gamma-sugárzás kölcsönhatásai
Ref. [3] A gamma-sugárzás kölcsönhatásai Az anyaggal való kölcsönhatás kis valószínűségű hatótávolság nagy A sugárzás gyengülését 3 féle kölcsönhatás okozza. fotoeffektus Compton-szórás párkeltés A gamma-fotonok
Általános Kémia, BMEVESAA101
Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Óravázlatok:
PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész
PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész MTA Izotópkutató Intézet Gméling Katalin, 2009. november 16. gmeling@iki.kfki.hu Isle of Skye, UK 1 MAGSPEKTROSZKÓPIAI MÓDSZEREK Gerjesztés:
Az atom szerkezete. Az eltérülés ritka de nagymértékű. Thomson puding atom-modellje nem lehet helyes.
Az atom szerkezete Rutherford kísérlet (1911): Az atom pozitív töltése és a tömeg nagy része egy nagyon kis helyre összpontosul. Ezt nevezte el atommagnak. Az eltérülés ritka de nagymértékű. Thomson puding
Atomfizika. Fizika kurzus Dr. Seres István
Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés J.J. Thomson (1897) Katódsugárcsővel végzett kísérleteket az elektron fajlagos töltésének (e/m) meghatározására. A katódsugarat alkotó részecskét
Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008.
Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Kiss István,Vértes Attila: Magkémia (Akadémiai Kiadó) Nagy Lajos György,
FIZIKA. Radioaktív sugárzás
Radioaktív sugárzás Atommag összetétele: Hélium atommag : 2 proton + 2 neutron 4 He 2 A He Z 4 2 A- tömegszám proton neutron együttesszáma Z- rendszám protonok száma 2 Atommag összetétele: Izotópok: azonos
Sugárterápia. Ionizáló sugárzások elnyelődésének következményei. Konzultáció: minden hétfőn 15 órakor. 1. Fizikai történések
Sugárterápia 40% 35% 30% 25% 20% 15% % 5% 0% 2014/2015. tanév FOK biofizika kollokvium jegyspektruma 5 4,5 4 3,5 3 2,5 2 1,5 1 Konzultáció: minden hétfőn 15 órakor Ionizáló sugárzások elnyelődésének következményei
Sugárterápia. Ionizáló sugárzások elnyelődésének következményei
Sugárterápia Sugárterápia: ionizáló sugárzások klinikai alkalmazása malignus daganatok eltávolításában. A sugárkezelés során célunk az ionizáló sugárzás terápiás dózisának elérése a kezelt daganatban a
A radioaktív bomlás típusai
A radioaktív bomlás típusai Párhuzamos negatív és pozitív bétabomlás/elektronbefogás 40 19 K kb.89% 0.001%, kb.11% EX 40 40 Ca Ar Felszabaduló energia Ca-40: 1311 kev Ar-40: 1505 kev Felezési idő P-40
A sugárzások a rajz síkjára merőleges mágneses téren haladnak át γ α
Radioaktivitás, α-, β- és γ-bomlás, radioaktív bomlástörvény, bomlási sorok. röntgen sugárzás (fékezési és karakterisztikus), a Moseley-törvény, az uger folyamat Radioaktivitás: 1896 Becquerel uránérc
Bővített fokozatú SUGÁRVÉDELMI TANFOLYAM
Bővített fokozatú SUGÁRVÉDELMI TANFOLYAM Sugárfizikai alapismeretek. A röntgen sugárzás keletkezése és tulajdonságai. Salik Ádám, sugárvédelmi szakértő salik.adam@osski.hu, 30-349-9300 ORSZÁGOS SUGÁRBIOLÓGIAI
Mit értünk a termikus neutronok fogalma alatt? Becsüljük meg a sebességüket 27 o C hőmérsékleten!
Országos Szilárd Leó fizikaverseny Elődöntő 04. Minden feladat helyes megoldása 5 pontot ér. A feladatokat tetszőleges sorrenen lehet megoldani. A megoldáshoz bármilyen segédeszköz használható. Rendelkezésre
Radiometrikus kutatómódszer. Összeállította: dr. Pethő Gábor, dr. Vass Péter
Radiometrikus kutatómódszer Összeállította: dr. Pethő Gábor, dr. Vass Péter Ionizáló sugárzások különböző áthatoló képessége Alfa-sugárzást egy papírlap is elnyeli. hélium atommagokból áll (2 proton +
RADIOKÉMIA. László Krisztina, F ép. I. lh., I. emelet, 135
RADIOKÉMIA László Krisztina, F ép. I. lh., I. emelet, 135 klaszlo@mail.bme.hu Nagy Lajos György és LK: Radiokémia és izotóptechnika Műegyetemi Kiadó 1997 Antoine Henri Becquerel (1852-1908) Maria Skłodowska-Curie
Röntgendiagnosztikai alapok
Röntgendiagnosztikai alapok Dr. Voszka István A röntgensugárzás keltésének alternatív lehetőségei (röntgensugárzás keletkezik nagy sebességű, töltéssel rendelkező részecskék lefékeződésekor) Röntgencső:
Atomfizika. Fizika kurzus Dr. Seres István
Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés 440 BC Democritus, Leucippus, Epicurus 1660 Pierre Gassendi 1803 1897 1904 1911 19 193 John Dalton Joseph John (J.J.) Thomson J.J. Thomson
Modern Fizika Labor Fizika BSC
Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. május 4. A mérés száma és címe: 9. Röntgen-fluoreszencia analízis Értékelés: A beadás dátuma: 2009. május 13. A mérést végezte: Márton Krisztina Zsigmond
Az ionizáló sugárzások előállítása és alkalmazása
Az ionizáló sugárzások előállítása és alkalmazása Dr. Voszka István Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Wilhelm Conrad Röntgen 1845-1923 Antoine Henri Becquerel 1852-1908 Ionizáló sugárzások
Kormeghatározás gyorsítóval
Beadás határideje 2012. január 31. A megoldásokat a kémia tanárodnak add oda! 1. ESETTANULMÁNY 9. évfolyam Olvassa el figyelmesen az alábbi szöveget és válaszoljon a kérdésekre! Kormeghatározás gyorsítóval
http://www.flickr.com Az atommag állapotait kvantummechanikai állapotfüggvénnyel írjuk le. A mag paritását ezen fv. paritása adja meg. Paritás: egy állapot tértükrözéssel szemben mutatott viselkedését
Atomerőművi dekontamináló berendezés gépész. Atomerőművi gépész
A 10/07 (II. 27.) SzMM rendelettel módosított 1/06 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,
Az atommagtól a konnektorig
Az atommagtól a konnektorig (Az atomenergetika alapjai) Dr. Aszódi Attila, Boros Ildikó BME Nukleáris Technikai Intézet Pázmándi Tamás KFKI Atomenergia Kutatóintézet Szervező: 1 Az atom felépítése kb.
MAGFIZIKA. a 11.B-nek
MAGFIZIKA a 11.B-nek ATOMMAG Pozitív töltésű, rendkívül kicsi ATOMMAG Töltése Z e, ahol Z a rendszám 10 átmérő Tömege az atom 99,9%-a Sűrűsége: 10 rendkívül nagy! PROTON Jelentése: első (ld. prototípus,
Az elektromos kettősréteg. Az elektromos potenciálkülönbség eredete, értéke és az azt befolyásoló tényezők. Kolloidok stabilitása.
Az elektromos kettősréteg. Az elektromos potenciálkülönbség eredete, értéke és az azt befolyásoló tényezők. Kolloidok stabilitása. Adszorpció oldatból szilárd felületre Adszorpció oldatból Nem-elektrolitok
Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez
A Név... Válassza ki a helyes mértékegységeket! állandó intenzitás abszorbancia moláris extinkciós A) J s -1 - l mol -1 cm B) W g/cm 3 - C) J s -1 m -2 - l mol -1 cm -1 D) J m -2 cm - A Wien-féle eltolódási
A Nukleáris Medicina alapjai
A Nukleáris Medicina alapjai Szegedi Tudományegyetem Nukleáris Medicina Intézet Történet 1. 1896 Henri Becquerel titokzatos sugár (Urán) 1897 Marie and Pierre Curie - radioaktivitás 1901-1914 Rádium terápia
Radioaktív nyomjelzés
Radioaktív nyomjelzés A radioaktív nyomjelzés alapelve Kémiai indikátorok: ugyanazoknak a követelményeknek kell eleget tenniük, mint az indikátoroknak általában: jelezniük kell valamely elemnek ill. vegyületnek
Mit tanultunk kémiából?2.
Mit tanultunk kémiából?2. Az anyagok rendkívül kicsi kémiai részecskékből épülnek fel. Több milliárd részecske Mól az anyagmennyiség mértékegysége. 1 mol atom= 6. 10 23 db atom 600.000.000.000.000.000.000.000
Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei
Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdasá Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI
Biofizika tesztkérdések
Biofizika tesztkérdések Egyszerű választás E kérdéstípusban A, B,...-vel jelölt lehetőségek szerepelnek, melyek közül az egyetlen megfelelőt kell kiválasztani. A választ írja a kérdés előtt lévő kockába!
KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II.
KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II. 12 A MODERN FIZIKa ELEMEI XII. MAGfIZIkA ÉS RADIOAkTIVITÁS 1. AZ ATOmmAG Rutherford (1911) arra a következtetésre jutott, hogy az atom pozitív töltését hordozó anyag
Az atom- olvasni. 1. ábra Az atom felépítése 1. Az atomot felépítő elemi részecskék. Proton, Jele: (p+) Neutron, Jele: (n o )
Az atom- olvasni 2.1. Az atom felépítése Az atom pozitív töltésű atommagból és negatív töltésű elektronokból áll. Az atom atommagból és elektronburokból álló semleges kémiai részecske. Az atommag pozitív
Az atom felépítése Alapfogalmak
Anyagszerkezeti vizsgálatok 2018/2019. 1. félév Az atom felépítése Alapfogalmak Csordás Anita E-mail: csordasani@almos.uni-pannon.hu Tel:+36-88/624-924 Pannon Egyetem Radiokémiai és Radioökológiai Intézet
Biofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése
Mi a biofizika tárgya? Biofizika Csik Gabriella Biológiai jelenségek fizikai leírása/értelmezése Pl. szívműködés, membránok szerkezete és működése, érzékelés stb. csik.gabriella@med.semmelweis-univ.hu
Magsugárzások. Előadásvázlat. Készítette: Dr. Blaskó Katalin
Magsugárzások Előadásvázlat. Készítette: Dr. Blaskó Katalin Az Orvosbiologia Mérnökképzés "Radiológiai Technikák" cimű tantárgyának egy részlete. A további részeket : Dr. Makó Ernő (SOTE), Dr. Sükösd Csaba,
A kvantummechanika kísérleti előzményei A részecske hullám kettősségről
A kvantummechanika kísérleti előzményei A részecske hullám kettősségről Utolsó módosítás: 2016. május 4. 1 Előzmények Franck-Hertz-kísérlet (1) A Franck-Hertz-kísérlet vázlatos elrendezése: http://hyperphysics.phy-astr.gsu.edu/hbase/frhz.html
FIZIKA. Atommag fizika
Atommag összetétele Fajlagos kötési energia Fúzió, bomlás, hasadás Atomerőmű működése Radioaktív bomlástörvény Dozimetria 2 Atommag összetétele: Hélium atommag : 2 proton + 2 neutron 4 He 2 He Z A 4 2
Magsugárzások, Radioaktív izotópok. Az atom alkotórészei. Az atom felépítése. A radioaktivitás : energia kibocsátása
Magsugárzások, Radioaktív izotópok radioaktivitás : energia kibocsátása az atommagból részecskék vagy elektromágneses sugárzás formájában z atom felépítése z atom alkotórészei protonok neutronok nukleonok
Az ionizáló sugárzások el állítása és alkalmazása
Az ionizáló sugárzások elállítása és alkalmazása Dr. Voszka István Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Wilhelm Conrad Röntgen 1845-1923 Antoine Henri Becquerel 1852-1908 Ionizáló sugárzások
-A radioaktivitás a nem stabil (úgynevezett radioaktív) atommagok bomlásának folyamata. -Nagyenergiájú ionizáló sugárzást kelt Az elnevezés: - radio
-A radioaktivitás a nem stabil (úgynevezett radioaktív) atommagok bomlásának folyamata. -Nagyenergiájú ionizáló sugárzást kelt Az elnevezés: - radio (sugároz) - activus (cselekvő) Különféle foszforeszkáló
Miért érdekes? Magsugárzások. Az atommag felépítése. Az atom felépítése
Miért érdekes? Magsugárzások Dr Smeller László egyetemi taár Semmelweis Egyetem Biofizikai és Sugárbiológiai Itézet Radioaktív izotóok ill. sugárzások orvosi felhaszálása: - diagosztika (izotódiagosztika)
Abszorpciós fotometria
A fény Abszorpciós fotometria Ujfalusi Zoltán PTE ÁOK Biofizikai ntézet 2011. szeptember 15. E B x x Transzverzális hullám A fény elektromos térerősségvektor hullámhossz Az elektromos a mágneses térerősség
Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm.
Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján: Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,
Sugárvédelem kurzus fogorvostanhallgatók számra. Töltött részecskék elnyelődése. Sugárzások és anyag kölcsönhatása. A sugárzások elnyelődése
Sugárvédelem kurzus fogorvostanhallgatók számra 2. Az ionizáló sugárzás és az anyag kölcsönhatása. Fizikai dózisfogalmak és az ionizáló sugárzás mérése Sugárzások és anyag kölcsönhatása. A sugárzások elnyelődése
http://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja
Radioaktív sugárzás elnyelődésének vizsgálata
11. fejezet Radioaktív sugárzás elnyelődésének vizsgálata Az ólomtorony és a szcintillációs számláló A természetes radioaktív anyagok esetében háromféle sugárzást lehet megkülönböztetni. Erre egyszerű
Bevezetés a modern fizika fejezeteibe. 4. (a) Kvantummechanika. Utolsó módosítás: november 15. Dr. Márkus Ferenc BME Fizika Tanszék
Bevezetés a modern fizika fejezeteibe 4. (a) Kvantummechanika Utolsó módosítás: 2015. november 15. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum
T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyző jeligéje:... Megye:...
T I T - M T T Hevesy György Kémiaverseny A megyei forduló feladatlapja 7. osztály A versenyző jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:... pont 4. feladat:...
IDTÁLLÓ GONDOLATOK MOTTÓK NAGY TERMÉSZET TUDÓSOK BÖLCS GONDOLATAIBÓL A TUDOMÁNY ÉS A MINDEN NAPI ÉLET VONAKOZÁSÁBAN
! " #! " 154 IDTÁLLÓ GONDOLATOK MOTTÓK NAGY TERMÉSZET TUDÓSOK BÖLCS GONDOLATAIBÓL A TUDOMÁNY ÉS A MINDEN NAPI ÉLET VONAKOZÁSÁBAN (Ludwig Boltzman) (James Clerk Maxwell)!" #!!$ %!" % " " ( Bay Zoltán )
Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós
Atomfizika. Az atommag szerkezete. Radioaktivitás. 2010. 10. 13. Biofizika, Nyitrai Miklós Összefoglalás Atommag alkotói, szerkezete; Erős vagy magkölcsönhatás; Tömegdefektus. A kölcsönhatások világképe
1. Az ionizáló sugárzások és az anyag kölcsönhatása (2-34) 2. Fizikai dózisfogalmak. 3. A sugárzás mérése (42-47) Prefixumok
1. Az ionizáló sugárzások és az anyag kölcsönhatása (2-34) 2. Fizikai dózisfogalak (35-41) Gondolat, 1976 3. A sugárzás érése (42-47) KAD 2010.09.15 2 levegőben (átlagosan) 1 ionpár keltéséhez 34 ev 5.4
FELADATMEGOLDÁS. Tesztfeladat: Válaszd ki a helyes megoldást!
FELADATMEGOLDÁS Tesztfeladat: Válaszd ki a helyes megoldást! 1. Melyik sorozatban található jelölések fejeznek ki 4-4 g anyagot? a) 2 H 2 ; 0,25 C b) O; 4 H; 4 H 2 c) 0,25 O; 4 H; 2 H 2 ; 1/3 C d) 2 H;
Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.
Radioaktív izotópok Izotópok Egy elem különböző tömegű (tömegszámú - A) formái; Egy elem izotópjainak a magjai azonos számú protont (rendszám - Z) és különböző számú neutront (N) tartalmaznak; Egy elem
KÉMIA FELVÉTELI DOLGOZAT
KÉMIA FELVÉTELI DOLGOZAT I. Egyszerű választásos teszt Karikázza be az egyetlen helyes, vagy egyetlen helytelen választ! 1. Hány neutront tartalmaz a 127-es tömegszámú, 53-as rendszámú jód izotóp? A) 74
A tudós neve: Mit tudsz róla:
8. osztály Kedves Versenyző! A jobb felső sarokban található mezőbe a verseny lebonyolításáért felelős személy írja be a kódot a feladatlap minden oldalára a verseny végén. A feladatokat lehetőleg a feladatlapon
Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád vincze@oah.hu
Sugárzások kölcsönhatása az anyaggal Dr. Vincze Árpád vincze@oah.hu Mitől függ a kölcsönhatás? VÁLASZ: Az anyag felépítése A sugárzások típusai, forrásai és főbb tulajdonságai A sugárzások és az anyag
Elektronegativitás. Elektronegativitás
Általános és szervetlen kémia 3. hét Elektronaffinitás Az az energiaváltozás, ami akkor következik be, ha 1 mól gáz halmazállapotú atomból 1 mól egyszeresen negatív töltésű anion keletkezik. Mértékegysége:
Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III.
Compton-effektus jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Csanád Máté Mérés dátuma: 010. április. Leadás dátuma: 010. május 5. Mérés célja A kvantumelmélet egyik bizonyítékának a Compton-effektusnak
A feladatok megoldásához csak a kiadott periódusos rendszer és számológép használható!
1 MŰVELTSÉGI VERSENY KÉMIA TERMÉSZETTUDOMÁNYI KATEGÓRIA Kedves Versenyző! A versenyen szereplő kérdések egy része általad már tanult tananyaghoz kapcsolódik, ugyanakkor a kérdések másik része olyan ismereteket
Maghasadás (fisszió)
http://www.etsy.com Maghasadás (fisszió) 1939. Hahn, Strassmann, Meitner neutronbesugárzásos kísérletei U magon új reakciótípus (maghasadás) Azóta U, Th, Pu (7 izotópja) hasadási sajátságait vizsgálták
Elektromos áram. Vezetési jelenségek
Elektromos áram. Vezetési jelenségek Emlékeztető Elektromos áram: töltéshordozók egyirányú áramlása Áramkör részei: áramforrás, vezető, fogyasztó Áramköri jelek Emlékeztető Elektromos áram hatásai: Kémiai
I. DOZIMETRIAI MENNYISÉGEK ÉS MÉRTÉKEGYSÉGEK
1 I. DOZIMETRIAI MENNYISÉGEK ÉS MÉRTÉKEGYSÉGEK 1) Iondózis/Besugárzási dózis (ro: Doza de ioni): A leveg egy adott V térfogatában létrejött ionok Q össztöltésének és az adott térfogatban található anyag
Abszorpciós spektrometria összefoglaló
Abszorpciós spektrometria összefoglaló smétlés: fény (elektromágneses sugárzás) tulajdonságai, kettős természet fény anyag kölcsönhatás típusok (reflexió, transzmisszió, abszorpció, szórás) Abszorpció
Az elektromágneses hullámok
203. október Az elektromágneses hullámok PTE ÁOK Biofizikai Intézet Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm Ritter Joseph von Fraunhofer Robert
Radioaktív nyomjelzés
Radioaktív nyomjelzés A radioaktív nyomjelzés alapelve Kémiai indikátorok: ugyanazoknak a követelményeknek kell eleget tenniük, mint az indikátoroknak általában: jelezniük kell valamely elemnek ill. vegyületnek
rzások a Dr. Fröhlich Georgina ELTE TTK, Budapest Országos Onkológiai Intézet Sugárterápiás Központ Budapest
Ionizáló sugárz rzások a gyógy gyításban Dr. Fröhlich Georgina Országos Onkológiai Intézet Sugárterápiás Központ Budapest ELTE TTK, Budapest chopin.web.elte.hu Bevezetés 1. A radioaktivitás alapjai (atomszerkezet,
Magkémia-Biokémia Orvosi Laboratóriumi és Képalkotó Diagnosztikai Analitikus alapképzés (BSc)
Magkémia-Biokémia Orvosi Laboratóriumi és Képalkotó Diagnosztikai Analitikus alapképzés (BSc) Tantárgyi kommunikációs dosszié (TKD) Miskolci Egyetem Egészségügyi Főiskolai Kar Klinikai Radiológiai Tanszék
Az ionizáló sugárzások előállítása és alkalmazása
Az ionizáló sugárzások előállítása és alkalmazása Dr. Voszka István Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Wilhelm Conrad Röntgen 1845-1923 Antoine Henri Becquerel 1852-1908 Ionizáló sugárzások
Röntgendiagnosztika és CT
Röntgendiagnosztika és CT 2013.04.09. Röntgensugárzás Elektromágneses sugárzás (f=10 16 10 19 Hz, E=120eV 120keV (1.9*10-17 10-14 J), λ
a. 35-ös tömegszámú izotópjában 18 neutron található. b. A 3. elektronhéján két vegyértékelektront tartalmaz. c. 2 mól atomjának tömege 32 g.
MAGYAR TANNYELVŰ KÖZÉPISKOLÁK IX. ORSZÁGOS VETÉLKEDŐJE AL IX.-LEA CONCURS PE ŢARĂ AL LICEELOR CU LIMBĂ DE PREDARE MAGHIARĂ FABINYI RUDOLF KÉMIA VERSENY - SZERVETLEN KÉMIA Marosvásárhely, Bolyai Farkas
Tantárgy neve. Környezetfizika. Meghirdetés féléve 6 Kreditpont 2 Összóraszám (elm+gyak) 2+0
Tantárgy neve Környezetfizika Tantárgy kódja FIB2402 Meghirdetés féléve 6 Kreditpont 2 Összóraszám (elm+gyak) 2+0 Számonkérés módja Kollokvium Előfeltétel (tantárgyi kód) - Tantárgyfelelős neve Dr. Varga
Hevesy György Kémiaverseny. 8. osztály. megyei döntő 2003.
Hevesy György Kémiaverseny 8. osztály megyei döntő 2003. Figyelem! A feladatokat ezen a feladatlapon oldd meg! Megoldásod olvasható és áttekinthető legyen! A feladatok megoldásában a gondolatmeneted követhető
Atommagok alapvető tulajdonságai
Atommagok alapvető tulajdonságai Mag és részecskefizika 5. előadás 017. március 17. Áttekintés Atommagok szerkezete a kvarkképben proton szerkezete, atommagok szerkezete, magerő Atommagok összetétele izotópok,
(A Scientific American újság 1993. augusztusi számában megjelent cikk alapján)
Országos Szilárd Leó Fizikaverseny Döntő 2014. I. kategória Minden feladat helyes megoldása 5 pontot ér. A feladatokat tetszőleges sorrendben, feladatonként külön lapon kell megoldani. A megoldáshoz bármilyen
RADIOAKTIVITÁS, SUGÁRZÁSMÉRÉS
Az atom felépítése RADIOAKTIVITÁS, SUGÁRZÁSMÉRÉS elektron proton Varga József Debreceni Egyetem Nukleáris Medicina Intézet atommag Atomi részecskék 2 Atomi részecskék mérete Jelmagyarázat: elektron proton
3. GAMMA-SUGÁRZÁS ENERGIÁJÁNAK MÉRÉSE GAMMA-SPEKTROMETRIAI MÓDSZERREL
3. GAMMA-SUGÁRZÁS ENERGIÁJÁNAK MÉRÉSE GAMMA-SPEKTROMETRIAI MÓDSZERREL A gamma-sugárzás elektromágneses sugárzás, amely vákuumban fénysebességgel terjed. Anyagba ütközve kölcsönhatásba lép az anyag alkotóelemeivel,
Miért érdekes? Magsugárzások. Az atommag felépítése. Az atom felépítése
Miért érdekes? Magsugárzások Dr Smeller László egyetemi doces Semmelweis Egyetem Biofizikai és Sugárbiológiai Itézet Radioaktív izotóok ill. sugárzások orvosi felhaszálása: - diagosztika (izotódiagosztika)
1. Az ionizáló sugárzások és az anyag kölcsönhatása
Az ionizáló sugárzások és az anyag kölcsönhatása. A sugárzások érése KAD 2018.03.26 1. Az ionizáló sugárzások és az anyag kölcsönhatása Gondolat, 1976 1 2 levegőben (átlagosan) 1 ionpár keltéséhez 34 ev