A sugárzások a rajz síkjára merőleges mágneses téren haladnak át γ α
|
|
- Emma Szabóné
- 8 évvel ezelőtt
- Látták:
Átírás
1 Radioaktivitás, α-, β- és γ-bomlás, radioaktív bomlástörvény, bomlási sorok. röntgen sugárzás (fékezési és karakterisztikus), a Moseley-törvény, az uger folyamat Radioaktivitás: 1896 Becquerel uránérc a fotopapírt megfeketíti (előhívás után persze), még ha az vastag papírba is van csomagolva. Később az urán sugárzását (vákuumban és mágneses térben) sikerült összetevőkre bontani (Rutherford, Villard). sugárzások a rajz síkjára merőleges mágneses téren haladnak át γ α F = qv B Ha B = 0 Ha B 0 β Tapasztalat: Lesznek olyan sugárzások, amik nem veszik figyelembe a mágneses mezőt, felfelé tartanak (γ), lesz, ami kicsit vagy nagyon eltérül (α, β, γ nevet kaptak aszerint, hogy hogyan térülnek el. α-sugárzás: + e töltésű nehéz részecskékből áll, kicsi áthatoló képesség (még egy papírlap is megfogja). Később kiderítették, hogy az α sugárzás nem más, mint He atommag. Ha az α sugárzást elnyeletik, akkor ott He keletkezik. Úgy gondolják, a Földön megtalálható He jelentős részben az α sugárzásból származik. β-sugárzás: -e töltése, könnyű részecskékből áll. Közepes az áthatoló képessége (üveglap megfogja). β-sugárzás tehát nagy sebességű elektronokból áll. γ-sugárzás: ez az elektromágneses sugárzás. Nagy áthatoló képessége van (fémlapon is áthatol, csak vastag ólomlap fogja fel, de az sem teljesen). Nagy frekvenciájú. z α, β, γ a leggyakoribb sugárzások, de másfajta (itt nem részletezett) sugárzások is léteznek a természetben. sugárzások kibocsátása bomlási folyamatban történik (ma már tudjuk, hogy a bomlás az atommagon belül történik): α - bomlás: 4 4 X Y+ He X: vegyjel, : tömegszám, : rendszám
2 z α-bomlás során kémiai átalakulás történik. Példa: Egy fémből két nemesgáz keletkezik Ra 86 Rn+ He Megjegyzés: Tehát a kémiai elemek mégis egymásba alakíthatók (kémiai Nobel-díj egy fizikusnak, Rutherfordnak 1911-ben). kár aranyat is lehetne így csinálni, de a bányászata sokkal olcsóbb. β - bomlás: X Y+ e + υ Elektron antineutrínó: ~ ν e + 1 ( ~ e ) β - bomlás is kémia átalakulással jár (a rendszám eggyel növekszik). zt, hogy a béta bomláskor neutrínók is keletkeznek csak egy fél évszázaddal később (1956) sikerült bizonyítani. neutrínók az anyaggal alig hatnak kölcsön, szinte kölcsönhatás nélkül eltűnnek előlünk, ezért tesszük zárójelbe őket. 3 3 Példa: 1 H He+ e + υ ~ e Hidrogénből lesz egy nemesgáz ez β - bomlás. (Kezdetben csak ezt a fajta béta bomlást ismerték. Később (a pozitron felfedezése után) kiderült, hogy van másfajta béta bomlás is: X 1 Y e + + ( + υe) Itt a rendszám eggyel csökken, pozitron (az elektron antirészecskéje) és elektron neutrínó keletkezik. Ez a pozitív béta bomlás (β + ) nevet kapta, a fenti pedig értelemszerűen β -. pozitív béta bomlás alternatívája (tulajdonképpen a 3. féle béta bomlás) az elektron befogás. Itt a mag egy atomi belső héjon lévő (a magba szinte belógó) elektront fog be: X + e 1 Y( + υe) γ - bomlás: X X+γ Itt nem történik kémiai átalakulás. Legerjesztődéssel jár. Általában követi az α- vagy β- bomlást. Radioaktív bomlástörvény z aktivitás az időegység alatt bekövetkező radioaktív bomlások száma: = =, ahol N az adott fajta radioaktív atommagok száma z aktivitás mértékegysége: []=Bq (becquerel), 1 Bq=1 bomlás/sec Korábbi egysége: 1Ci (curie), 1Ci = 37, Bq( = 1g Ra radioaktivitása)
3 Kísérleti tapasztalat: z aktivitás az idő függvényében = 0 e -λt fv. szerint változik. radioaktivitása minden anyagnak exponenciálisan csökken. z időegység a μs és a milliárd év között van. Magyarázat: z időegység alatt bekövetkező bomlások száma arányos a még meglévők számával: = λ N λ : bomlási állandó: annak a valószínűsége, hogy az adott atommag a következő másodpercben elbomlik (1/s) λ független attól, hogy a radioaktív anyag mikor keletkezett, továbbá független minden külső körülménytől is. λ tehát csak az anyagi minőségtől függ. = λ N ln N= -λt+c N=e -λt+c =N 0 e -λt (kezdőfeltétel: N (t=0)=n 0 ) ktivitás: t t = = N0λe λ = 0e λ Kezdőfeltétel az aktivitásra: (t=0)= 0 0 =λn 0 =λn t Felezési idő: T ½ z az idő, ami alatt a radioaktív anyag fele elbomlik. = 0 e -λt ; N=N 0 e -λt -λ T½ N 0 /=N 0 e -ln=-λ T ½ Radioaktív bomlástörvény λ=ln/t ½ radioaktív bomlás statisztikus jellege
4 fentiek csak nagy aktivitású anyagra igazak. Kis aktivitásoknál kidomborodik a bomlás statisztikus jellege, amiről ez a tárgyalás nem ad számot. fenti módon számított aktivitás valójában a mérés várható értékét jelenti, amitől a konkrét mérési eredmények eltérhetnek. Nagy elemszámnál (nagy aktivitásnál) a konkrét mérési eredmény és annak várható értéke gyakorlatilag egyezik, de kis aktivitásnál jelentős eltérések adódhatnak. mért kis aktivitás az idő függvényében tehát ingadozik. t bomlások egymástól független események, ezért használható a POISSON eloszlás. Bomlási sorok α - bomlás : β - bomlás : γ - bomlás : = 4 = = elvben 4db bomlási sor lehet (a 4-gyel való osztás madékosztályainak megfelelően) radioaktív anyagok tehát 4 osztályba sorolhatók (radioaktív bomlással nem lehet egyik osztályból a másikba átlépni. = 4n tórium sor = 4n+1 (a természetben már nem létezik) = 4n+ Urán rádium sor = 4n+3 ktínium sor, ebből is kevés van, de az 35 9 U bomlása miatt fontos 1, Tórium-sor 3 = 4n, anyaelem: 90 Th, gyakori a természetben, T 1/ = 1, év, Neptúnium-sor 37 = 4 n +1, anyaelem: 93 Np, a természetben már nem létezik, mert az anyaelem felezési ideje nem elég hosszú (T 1/ =, év)
5 3, Urán-rádium-sor 38 = 4 n +, anyaelem: 9 U, T 1/ = 4, év 4, ktínium-sor 35 = 4 n + 3, anyaelem: 9 U, T 1/ = 7, év, a végállapot minden esetben egy-egy ólom izotóp Példaként nézzük az urán-rádium sort (8 db α-bomlás (38-06=3=8 4) és 6 db β-bomlás (9-8=10= 8-6) α 34 β 34 β 34 α 30 α 6 α α U Th Pa U Th Ra Rn α 14 β 14 β 14 α 10 α Po Pb Bi Po Pb Pb röntgensugárzás (1895, C. Röntgen) : világon sok helyen X-sugárzásnak is nevezik. Előállítása: izzó katód vákuum anód 0-00kV 1.) katódból kilépő elektronok az anód felé gyorsulnak..) z anódba becsapódó elektronok váltják ki az anódból a röntgensugárzást. 3.) z elektronok energiájának csak 1%-a lesz a röntgensugárzás energiája, a többi az anódban nyelődik el. Emiatt szükséges, hogy az anód nagy darab, nehezen olvadó fém (pl.: wolfram) legyen, lehetőleg vízzel hűtött vagy forgatott. 4.) röntgensugárzás nagyenergiájú elektromágneses sugárzás (hasonlóan a γ-sugárzáshoz). röntgensugárzás spektrális eloszlása:
6 a.) folytonos rész: fékezési röntgensugárzás. z elektron lefékeződik az anód anyagában, és fékezés során bocsát ki 1 vagy több fotont. W = U e U a gyorsító feszültség U e h ν max = U e ν max = h b.) diszkrét vonalak: karakterisztikus röntgensugárzás (mert jellemző az anód anyagára). karakterisztikus vonalak helye független a gyorsító feszültségtől. Moseley-törvény:(1913) K α -vonalra vonatkozik (a legnagyobb energiájú sorozat legintenzívebb vonala). 3 E ν = ( 1) K α, ahol E =,18aJ 4 h : az anód anyagának rendszáma hυ 1 = E E 1 Ismert, hogy az egyelektronos (hidrogén) atom energiája: = ; n = 1,,3,... db elektron esetén az energia: E E n = n ( ) E n E n ezt behelyettesítve a fenti képletbe
7 1 E E υ 1 = ( ) + ( ) h 1 E = = h ( ) E 1 4 h ( ) υ 1 1 minden -re, erre az átmenetre. 3 4 Nem biztos, hogy az 1. lépés után rögtön a. következik, lehetséges alternatív folyamat a. lépésre: a végállapot lyukat tartalmaz kétszeres pozitív ion lesz. uger elektron rendszámtól függ, hogy a röntgen sugárzás vagy az uger elektron lesz domináns. Ha értéke nagy akkor a röntgen sugár lesz a domináns ha kicsi akkor az uger elektron. karakterisztikus röntgensugárzás kémiai analízisre használható. Egyik legjobb roncsolásmentes vizsgálat. Elektron bombázás: elektron mikroszonda. Röntgen bombázás: RF - röntgen fluoresszencia analízis. Proton bombázás: PIXE - proton induced X-ray emission.
Az atom szerkezete. Az eltérülés ritka de nagymértékű. Thomson puding atom-modellje nem lehet helyes.
Az atom szerkezete Rutherford kísérlet (1911): Az atom pozitív töltése és a tömeg nagy része egy nagyon kis helyre összpontosul. Ezt nevezte el atommagnak. Az eltérülés ritka de nagymértékű. Thomson puding
Az ionizáló sugárzások fajtái, forrásai
Az ionizáló sugárzások fajtái, forrásai magsugárzás Magsugárzások Röntgensugárzás Függelék. Intenzitás 2. Spektrum 3. Atom Repetitio est mater studiorum. Röntgen Ionizációnak nevezzük azt a folyamatot,
Az atommag összetétele, radioaktivitás
Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron
8. AZ ATOMMAG FIZIKÁJA
8. AZ ATOMMAG FIZIKÁJA Az atommag szerkezete (40-44 oldal) A tömegspektrométer elve Az atommag komponensei Izotópok Tömeghiány, kötési energia, stabilitás Magerők Magmodellek Az atommag stabilitásának
Bővített fokozatú SUGÁRVÉDELMI TANFOLYAM
Bővített fokozatú SUGÁRVÉDELMI TANFOLYAM Sugárfizikai alapismeretek. A röntgen sugárzás keletkezése és tulajdonságai. Salik Ádám, sugárvédelmi szakértő salik.adam@osski.hu, 30-349-9300 ORSZÁGOS SUGÁRBIOLÓGIAI
Az atommag összetétele, radioaktivitás
Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron
Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.
Radioaktív izotópok Izotópok Egy elem különböző tömegű (tömegszámú - A) formái; Egy elem izotópjainak a magjai azonos számú protont (rendszám - Z) és különböző számú neutront (N) tartalmaznak; Egy elem
Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT)
Röntgensugárzás az orvostudományban Röntgen kép és Komputer tomográf (CT) Orbán József, Biofizikai Intézet, 2008 Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken
Magsugárzások, Radioaktív izotópok. Az atom alkotórészei. Az atom felépítése. A radioaktivitás : energia kibocsátása
Magsugárzások, Radioaktív izotópok radioaktivitás : energia kibocsátása az atommagból részecskék vagy elektromágneses sugárzás formájában z atom felépítése z atom alkotórészei protonok neutronok nukleonok
Sugárzások kölcsönhatása az anyaggal
Radioaktivitás Biofizika előadások 2013 december Sugárzások kölcsönhatása az anyaggal PTE ÁOK Biofizikai Intézet, Orbán József Összefoglaló radioaktivitás alapok Nukleononkénti kötési energia (MeV) Egy
Sugárzások kölcsönhatása az anyaggal
Sugárzások kölcsönhatása az anyaggal Dr. Vincze Árpád vincze@oah.hu Mitől függ a kölcsönhatás? VÁLASZ: Az anyag felépítése A sugárzások típusai, forrásai és főbb tulajdonságai A sugárzások és az anyag
Az atommagtól a konnektorig
Az atommagtól a konnektorig (Az atomenergetika alapjai) Dr. Aszódi Attila, Boros Ildikó BME Nukleáris Technikai Intézet Pázmándi Tamás KFKI Atomenergia Kutatóintézet Szervező: 1 Az atom felépítése kb.
Jelöljük meg a kérdésnek megfelelő válaszokat! 1, Hullámokról általában: alapösszefüggések a harmonikus hullámra. A Doppler-effektus
Jelöljük meg a kérdésnek megfelelő válaszokat! 1, Hullámokról általában: alapösszefüggések a harmonikus hullámra. A Doppler-effektus Melyik egyenlet nem hullámot ír le? a) y = A sin 2π(ft x/λ) b) y = A
Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem
1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 2. Mit nevezünk az atom tömegszámának? a) a protonok számát b) a neutronok számát c) a protonok és neutronok
Röntgensugárzás. Röntgensugárzás
Röntgensugárzás 2012.11.21. Röntgensugárzás Elektromágneses sugárzás (f=10 16 10 19 Hz, E=120eV 120keV (1.9*10-17 10-14 J), λ
-A radioaktivitás a nem stabil (úgynevezett radioaktív) atommagok bomlásának folyamata. -Nagyenergiájú ionizáló sugárzást kelt Az elnevezés: - radio
-A radioaktivitás a nem stabil (úgynevezett radioaktív) atommagok bomlásának folyamata. -Nagyenergiájú ionizáló sugárzást kelt Az elnevezés: - radio (sugároz) - activus (cselekvő) Különféle foszforeszkáló
Radioaktivitás és mikrorészecskék felfedezése
Radioaktivitás és mikrorészecskék felfedezése Mag és részecskefizika 1. előadás 2017. Február 17. A félév tematikája 1. Mikrorészecskék felfedezése 2. Kvark gondolat bevezetése, béta-bomlás, neutrínóhipotézis
Radioaktív elemek környezetünkben: természetes és mesterséges háttérsugárzás. Kovács Krisztina, Alkímia ma
Radioaktív elemek környezetünkben: természetes és mesterséges háttérsugárzás Tartalom bevezetés, alapfogalmak természetes háttérsugárzás mesterséges háttérsugárzás összefoglalás OSJER Bevezetés - a radiokémiai
Sugárvédelem kurzus fogorvostanhallgatók számra. Méretek. Az ionizáló sugárzások fajtái. 1. Atomfizika, Radioaktivitás és Röntgensugázás
Az ionizáló sugárzások fajtái Sugárvédelem kurzus fogorvostanhallgatók számra Magsugárzások Röntgensugárzás 1. Atomfizika, Radioaktivitás és Röntgensugázás Dr. Smeller László Ionizáció: Az atomból vagy
Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.
Különböző sugárzások tulajdonságai Típus töltés Energia hordozó E spektrum Radioaktí sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktí sugárzások detektálása. α-sugárzás pozití
Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
Az atom felépítése Alapfogalmak
Anyagszerkezeti vizsgálatok 2017/2018. 1. félév Az atom felépítése Alapfogalmak Csordás Anita E-mail: csordasani@almos.uni-pannon.hu Tel:+36-88/624-924 Pannon Egyetem Radiokémiai és Radioökológiai Intézet
Tamás Ferenc: Természetes radioaktivitás és hatásai
Tamás Ferenc: Természetes radioaktivitás és hatásai A radioaktivitás a nem stabil magú atomok (más néven: radioaktív) természetes úton való elbomlása. Ez a bomlás igen nagy energiájú ionizáló sugárzást
Az atombomba története
Az atombomba története Szegedi Péter TTK Tudománytörténet és Tudományfilozófia Tanszék Déli Tömb 1-111-es szoba 372-2990 vagy 6670-es mellék pszegedi@caesar.elte.hu és http://hps.elte.hu Tematika 1. A
Atomfizika. Radioaktív sugárzások kölcsönhatásai. 2010. 10. 18. Biofizika, Nyitrai Miklós
Atomfizika. Radioaktív sugárzások kölcsönhatásai. 2010. 10. 18. Biofizika, Nyitrai Miklós Emlékeztető Radioaktív sugárzások keletkezése, típusai A Z A Z α-bomlás» α-sugárzás A Z 4 X X + 2 X A Z 4 2 X 4
Folyadékszcintillációs spektroszkópia jegyz könyv
Folyadékszcintillációs spektroszkópia jegyz könyv Zsigmond Anna Julia Fizika MSc I. Mérés vezet je: Horváth Ákos Mérés dátuma: 2010. október 21. Leadás dátuma: 2010. november 8. 1 1. Bevezetés A mérés
FIZIKA. Radioaktív sugárzás
Radioaktív sugárzás Atommag összetétele: Hélium atommag : 2 proton + 2 neutron 4 He 2 A He Z 4 2 A- tömegszám proton neutron együttesszáma Z- rendszám protonok száma 2 Atommag összetétele: Izotópok: azonos
Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.
Radioaktív izotópok Izotópok Egy elem különböző tömegű (tömegszámú - A) formái; Egy elem izotópjainak a magjai azonos számú protont (rendszám - Z) és különböző számú neutront (N) tartalmaznak; Egy elem
Sugárzások és anyag kölcsönhatása
Sugárzások és anyag kölcsönhatása Az anyaggal kölcsönhatásba lépő részecskék Töltött részecskék Semleges részecskék Nehéz Könnyű Nehéz Könnyű T D p - + n Radioaktív sugárzás + anyag energia- szóródás abszorpció
IDTÁLLÓ GONDOLATOK MOTTÓK NAGY TERMÉSZET TUDÓSOK BÖLCS GONDOLATAIBÓL A TUDOMÁNY ÉS A MINDEN NAPI ÉLET VONAKOZÁSÁBAN
! " #! " 154 IDTÁLLÓ GONDOLATOK MOTTÓK NAGY TERMÉSZET TUDÓSOK BÖLCS GONDOLATAIBÓL A TUDOMÁNY ÉS A MINDEN NAPI ÉLET VONAKOZÁSÁBAN (Ludwig Boltzman) (James Clerk Maxwell)!" #!!$ %!" % " " ( Bay Zoltán )
Radioaktív lakótársunk, a radon. Horváth Ákos ELTE Atomfizikai Tanszék december 6.
Radioaktív lakótársunk, a radon Horváth Ákos ELTE Atomfizikai Tanszék 2012. december 6. Radioaktív lakótársunk, a radon 2 A radon fontossága Természetes és mesterséges ionizáló sugárzások éves dózisa átlagosan
Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei
Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdasá Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI
http://www.flickr.com Az atommag állapotait kvantummechanikai állapotfüggvénnyel írjuk le. A mag paritását ezen fv. paritása adja meg. Paritás: egy állapot tértükrözéssel szemben mutatott viselkedését
Modern fizika vegyes tesztek
Modern fizika vegyes tesztek 1. Egy fotonnak és egy elektronnak ugyanakkora a hullámhossza. Melyik a helyes állítás? a) A foton lendülete (impulzusa) kisebb, mint az elektroné. b) A fotonnak és az elektronnak
Modern fizika laboratórium
Modern fizika laboratórium Röntgen-fluoreszcencia analízis Készítette: Básti József és Hagymási Imre 1. Bevezetés A röntgen-fluoreszcencia analízis (RFA) egy roncsolásmentes anyagvizsgálati módszer. Rövid
Kémiai alapismeretek 2. hét
Kémiai alapismeretek 2. hét Horváth Attila Pécsi Tudományegyetem, Természettudományi Kar, Kémia Intézet, Szervetlen Kémiai Tanszék 2012. február 14. 1/15 2011/2012 II. félév, Horváth Attila c XIX sz. vége,
LABORATÓRIUMI GYAKORLAT. Alfa-, béta-, gamma-sugárzások mérése
LABORATÓRIUMI GYAKORLAT Alfa-, béta-, gamma-sugárzások mérése (Bódizs Dénes BME Nukleáris Technikai Intézet 2006) 1. BEVEZETÉS Környezetünkben számos radioaktív izotóp fordul elő. Ezek egy része természetes,
A sugárzás és az anyag kölcsönhatása. A béta-sugárzás és anyag kölcsönhatása
A sugárzás és az anyag kölcsönhatása A béta-sugárzás és anyag kölcsönhatása Cserenkov-sugárzás v>c/n, n törésmutató cos c nv Cserenkov-sugárzás Pl. vízre (n=1,337): 0,26 MeV c 8 m / s 2. 2* 10 A sugárzás
Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
Modern Fizika Labor Fizika BSC
Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. május 4. A mérés száma és címe: 9. Röntgen-fluoreszencia analízis Értékelés: A beadás dátuma: 2009. május 13. A mérést végezte: Márton Krisztina Zsigmond
Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.
Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása. Magsugárzások (α, β, γ) kölcsönhatása atomi rendszerekkel (170-174, 540-545 o.) Direkt és
Az ionizáló sugárzások előállítása és alkalmazása
Az ionizáló sugárzások előállítása és alkalmazása Dr. Voszka István Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Wilhelm Conrad Röntgen 1845-1923 Antoine Henri Becquerel 1852-1908 Ionizáló sugárzások
Nukleáris fizika I. rész
Fizikai Tanszék Dr. Paripás Béla Nukleáris fizika I. rész Miskolc, 2015 Tartalomjegyzék 1. radioaktivitás felfedezése, fajtái... 3 2. z α-, β-, γ-sugárzás és bomlás, a β-bomlás három formája... 3 3. z
A Nukleáris Medicina alapjai
A Nukleáris Medicina alapjai Szegedi Tudományegyetem Nukleáris Medicina Intézet Történet 1. 1896 Henri Becquerel titokzatos sugár (Urán) 1897 Marie and Pierre Curie - radioaktivitás 1901-1914 Rádium terápia
Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez
A Név... Válassza ki a helyes mértékegységeket! állandó intenzitás abszorbancia moláris extinkciós A) J s -1 - l mol -1 cm B) W g/cm 3 - C) J s -1 m -2 - l mol -1 cm -1 D) J m -2 cm - A Wien-féle eltolódási
Radioaktív sugárzás elnyelődésének vizsgálata
11. fejezet Radioaktív sugárzás elnyelődésének vizsgálata Az ólomtorony és a szcintillációs számláló A természetes radioaktív anyagok esetében háromféle sugárzást lehet megkülönböztetni. Erre egyszerű
Radiometrikus kutatómódszer. Összeállította: dr. Pethő Gábor, dr. Vass Péter
Radiometrikus kutatómódszer Összeállította: dr. Pethő Gábor, dr. Vass Péter Ionizáló sugárzások különböző áthatoló képessége Alfa-sugárzást egy papírlap is elnyeli. hélium atommagokból áll (2 proton +
Az ionizáló sugárzások előállítása és alkalmazása
Az ionizáló sugárzások előállítása és alkalmazása Dr. Voszka István Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Wilhelm Conrad Röntgen 1845-1923 Antoine Henri Becquerel 1852-1908 Ionizáló sugárzások
A nukleáris fizika története, a nukleáris energetika születése
Tematika 1. Az atommagfizika elemei 2. A nukleáris fizika története, a nukleáris energetika születése 3. Magsugárzások detektálása és detektorai 4. Az atomreaktor 5. Reaktortípusok a felhasználás módja
Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós
Atomfizika. Az atommag szerkezete. Radioaktivitás. 2010. 10. 13. Biofizika, Nyitrai Miklós Összefoglalás Atommag alkotói, szerkezete; Erős vagy magkölcsönhatás; Tömegdefektus. A kölcsönhatások világképe
FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István
Sugárzunk az elégedettségtől! () Dr. Seres István atommagfizika Atommodellek 440 IE Democritus, Leucippus, Epicurus 1803 1897 John Dalton J.J. Thomson 1911 Ernest Rutherford 19 Niels Bohr 3 Atommodellek
A modern fizika születése
A modern fizika születése Lord Kelvin a 19. század végén azt mondta, hogy a fizika egy befejezett tudomány: Nincsen olyan probléma amit a tudomány ne tudna megoldani. A fizika egy befejezett tudomány,
Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei
Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdasá Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI
Radiometrikus módszer. Összeállította: dr. Pethő Gábor, dr. Vass Péter
Radiometrikus módszer Összeállította: dr. Pethő Gábor, dr. Vass Péter Történeti áttekintés Martin Heinrich Klaproth 1789-ban fedezte fel az uránt és a cirkóniumot, 1803-ban pedig a titánt. Megállapította,
ELEMI RÉSZECSKÉK ATOMMODELLEK
ELEMI RÉSZECSKÉK ATOMMODELLEK Az atomok felépítése Készítette: Horváthné Vlasics Zsuzsanna Mi van az atomok belsejében? DÉMOKRITOSZ (Kr.e. 460-370) az anyag nem folytonos parányi, tovább nem bontható,
Radioaktív izotópok előállítása. Általános módszerek
Radioaktív izotópok előállítása Általános módszerek Természetes radioaktív izotópok kinyerése U-238 Th-234 Pa-234 U-234 Th-230 Ra-226 Rn-222 4,5e9 év 24,1 nap 1,2 min 2,5e5 év 8e4 év 1620 év 3,825 nap
RADIOKÉMIA SZÁMOLÁSI FELADATOK. 2005. Szilárdtest- és Radiokémiai Tanszék
RADIOKÉMIA SZÁMOLÁSI FELADATOK 2005. Szilárdtest- és Radiokémiai Tanszék 1. Az atommag kötési energiája Az atommag kötési energiája az ún. tömegdefektusból ( m) számítható ki. m = [Z M p + N M n ] - M
Miért érdekes? Magsugárzások. Az atommag felépítése. Az atom felépítése
Miért érdekes? Magsugárzások Dr Smeller László egyetemi doces Semmelweis Egyetem Biofizikai és Sugárbiológiai Itézet Radioaktív izotóok ill. sugárzások orvosi felhaszálása: - diagosztika (izotódiagosztika)
Mag- és neutronfizika
Mag- és neutronfizika z elıadás célja: : megalapozni az atomenergetikai ismereteket félév során a következı témaköröket ismertetjük: Magfizikai alapfogalmak (atommagok, radioaktivitás) Sugárzás és anyag
Radioaktív bomlási sor szimulációja
Radioaktív bomlási sor szimulációja A radioaktív bomlásra képes atomok nem öregszenek, azaz nem lehet sem azt megmondani, hogy egy kiszemelt atom mennyi idıs (azaz mikor keletkezett), sem azt, hogy pontosan
RADIOAKTIVITÁS. Természetes (spontán) radioaktivitásról beszélünk, ha a természetben megtalálható elemek atommagja képes átalakulni.
RADIOAKTIVITÁS Az atommagoknak két csoportja van, a stabil és a radioaktív magok. Ez utóbbiak nagy energiájú sugárzást kibocsátva más atommagokká alakulnak. Ilyen radioaktív elem például a rádium a polónium
Miért érdekes? Magsugárzások. Az atommag felépítése. Az atom felépítése
Miért érdekes? Magsugárzások Dr Smeller László egyetemi taár Semmelweis Egyetem Biofizikai és Sugárbiológiai Itézet Radioaktív izotóok ill. sugárzások orvosi felhaszálása: - diagosztika (izotódiagosztika)
ATOMFIZIKA, RADIOAKTIVITÁS
ATOMFIZIKA, RADIOAKTIVITÁS 2013. 11. 08. A biofizika fizikai alapjai Magfizika Az atomhéj (atommag körüli elektronok) fizikáját a kvantumfizika írja le teljes körűen. A magfizika azonban még nem lezárt
Radioaktív sugárzások az orvosi gyakorlatban. Az ionizáló sugárzások biológiai hatása. A sugárhatás osztályozása. A sugárhatás osztályozása
Radioaktív sugárzások az orvosi gyakorlatban Az ionizáló sugárzások biológiai hatása Dr Smeller László Biofizikai és Sugárbiológiai Intézet A sugárhatás osztályozása A sugárhatás osztályozása A károsodás
Mit értünk a termikus neutronok fogalma alatt? Becsüljük meg a sebességüket 27 o C hőmérsékleten!
Országos Szilárd Leó fizikaverseny Elődöntő 04. Minden feladat helyes megoldása 5 pontot ér. A feladatokat tetszőleges sorrenen lehet megoldani. A megoldáshoz bármilyen segédeszköz használható. Rendelkezésre
Bevezetés a magfizikába
a magfizikába Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19. Bevezetés Kötési energia Magmodellek Magpotenciál Bevezetés 2 / 35 Bevezetés Bevezetés Kötési energia Magmodellek Magpotenciál Rutherford
Sugárvédelem alapjai. Nukleáris alapok. Papp Ildikó
Sugárvédelem alapjai Nukleáris alapok Papp Ildikó 2 Emlékeztető A sugárzások és az anyagi közeg kölcsönhatása Dózisfogalmak 3 Pici történelem 1896: Henri Becquerel uránsók Azt találta, hogy sugárzás intenzitása
Magsugárzások. Előadásvázlat. Készítette: Dr. Blaskó Katalin
Magsugárzások Előadásvázlat. Készítette: Dr. Blaskó Katalin Az Orvosbiologia Mérnökképzés "Radiológiai Technikák" cimű tantárgyának egy részlete. A további részeket : Dr. Makó Ernő (SOTE), Dr. Sükösd Csaba,
Röntgendiagnosztika és CT
Röntgendiagnosztika és CT 2013.04.09. Röntgensugárzás Elektromágneses sugárzás (f=10 16 10 19 Hz, E=120eV 120keV (1.9*10-17 10-14 J), λ
MAGFIZIKA. a 11.B-nek
MAGFIZIKA a 11.B-nek ATOMMAG Pozitív töltésű, rendkívül kicsi ATOMMAG Töltése Z e, ahol Z a rendszám 10 átmérő Tömege az atom 99,9%-a Sűrűsége: 10 rendkívül nagy! PROTON Jelentése: első (ld. prototípus,
Miért érdekes? Magsugárzások. Az atom felépítése. Az atommag felépítése. Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet
Miért érdekes? Magsugárzások Dr Smeller László Semmelweis Egyetem Biofizikai és Sugárbiológiai Itézet Radioaktív izotóok ill. sugárzások orvosi felhaszálása: - diagosztika (izotódiagosztika) - teráia (sugárteráia)
Kémia I. Műszaki menedzser hallgatók számára
Kémia I, Műszaki menedzser hallgatók számára Novák Csaba BME, Általános és Analitikai Kémia Tanszék, 2005. Kémia I. Műszaki menedzser hallgatók számára Kémia I. Műszaki menedzser hallgatók számára Novák
A radioaktív bomlás típusai
A radioaktív bomlás típusai Párhuzamos negatív és pozitív bétabomlás/elektronbefogás 40 19 K kb.89% 0.001%, kb.11% EX 40 40 Ca Ar Felszabaduló energia Ca-40: 1311 kev Ar-40: 1505 kev Felezési idő P-40
Röntgendiagnosztikai alapok
Röntgendiagnosztikai alapok Dr. Voszka István A röntgensugárzás keltésének alternatív lehetőségei (röntgensugárzás keletkezik nagy sebességű, töltéssel rendelkező részecskék lefékeződésekor) Röntgencső:
A Lederman-Steinberger-Schwartz-f ele k et neutrn o ks erlet
A Lederman-Steinberger-Schwartz-f ele k et neutrn o ks erlet Modern zikai ks erletek szemin arium Kincses D aniel E otv os Lor and Tudom anyegyetem 2017. február 21. Kincses Dániel (ELTE) A két neutrínó
Az atom felépítése Alapfogalmak
Anyagszerkezeti vizsgálatok 2018/2019. 1. félév Az atom felépítése Alapfogalmak Csordás Anita E-mail: csordasani@almos.uni-pannon.hu Tel:+36-88/624-924 Pannon Egyetem Radiokémiai és Radioökológiai Intézet
Mit tanultunk kémiából?2.
Mit tanultunk kémiából?2. Az anyagok rendkívül kicsi kémiai részecskékből épülnek fel. Több milliárd részecske Mól az anyagmennyiség mértékegysége. 1 mol atom= 6. 10 23 db atom 600.000.000.000.000.000.000.000
Sugárterápia. Ionizáló sugárzások elnyelődésének következményei. Konzultáció: minden hétfőn 15 órakor. 1. Fizikai történések
Sugárterápia 40% 35% 30% 25% 20% 15% % 5% 0% 2014/2015. tanév FOK biofizika kollokvium jegyspektruma 5 4,5 4 3,5 3 2,5 2 1,5 1 Konzultáció: minden hétfőn 15 órakor Ionizáló sugárzások elnyelődésének következményei
Sugárterápia. Ionizáló sugárzások elnyelődésének következményei
Sugárterápia Sugárterápia: ionizáló sugárzások klinikai alkalmazása malignus daganatok eltávolításában. A sugárkezelés során célunk az ionizáló sugárzás terápiás dózisának elérése a kezelt daganatban a
A sötét anyag nyomában. Krasznahorkay Attila MTA Atomki, Debrecen
A sötét anyag nyomában Krasznahorkay Attila MTA Atomki, Debrecen Látható és láthatatlan világunk A levegő Túl kicsi dolgok Mikroszkóp Túl távoli dolgok távcső, teleszkópok Gravitációs vonzás, Mágneses
Sugárzás kölcsönhatása az anyaggal 1. Fény kölcsönhatása az anyaggal. 2. Ionizáló sugárzás kölcsönhatása az anyaggal KAD
Sugárzás kölcsönhatása az anyaggal 1. Fény kölcsönhatása az anyaggal 2. Ionizáló sugárzás kölcsönhatása az anyaggal KAD 2012.10.03 1976 2 1. 3 4 n 1 >n 2 5 6 7 8 9 10 11 12 13 14 2. Az ionizáló sugárzások
Gamma sugárzás. Gamma-kamera SPECT PET. Tömeg-energia ekvivalencia. Nukleáris medicína. γ-sugárzás előállítása. γ-sugárzás kölcsönhatása az anyaggal
2011.05.02. SPECT PET Gamma sugárzás Elektromágneses sugárzás (f>10 19 Hz, E>~50keV (6.6 10-15 J), λ< 3 10-11 m) gamma-bomlás (atommag alacsonyabb energiájú állapotba történő átmenetét kísérő foton kibocsátás)
Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens.
Kémia, BMEVEAAAMM Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens Jegyzet dr. Horváth Viola, KÉMIA I. http://oktatas.ch.bme.hu/oktatas/konyvek/anal/
Párhuzamok: legerjedés Párhuzamok: energia átadása
Az atom felépítése AZ IONIZÁLÓ SUGÁRZÁS FAJTÁI ÉS KELETKEZÉSE. elektron TÖLTÖTT RÉSZSKÉK KÖLCSÖNHATÁSA KÖZEGGEL proton Varga József Debreceni Egyetem Nukleáris Medicina Intézet Fogorvos-képzés, 26 atommag
Az atommag szerkezete
Az atommag szerkezete Biofizika előadások 2013 november Orbán József PTE ÁOK Biofzikai Intézet Filozófusok / tudósok Történelem Aristoteles Dalton J.J.Thomson Bohr Schrödinger Pauli Curie házaspár Teller
Ionizáló sugárzások dozimetriája
Ionizáló sugárzások dozimetriája A becsült átlagos évi dózis természetes és mesterséges forrásokból 3.6 msv. környezeti foglalkozási katonai nukleáris ipari orvosi A terhelés megoszlása a források között
Az atomhéj (atommag körüli elektronok) fizikáját a kvantumfizika írja le teljes körűen.
MGFIZIK z atomhéj (atommag körüli elektronok) fizikáját a kvantumfizika írja le teljes körűen. Z TOMMG SZERKEZETE, RDIOKTIVITÁS PTE ÁOK Biofizikai Intézet Futó Kinga magfizika azonban még nem lezárt tudomány,
Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár,
Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Facebook,
FIZIKA. Atommag fizika
Atommag összetétele Fajlagos kötési energia Fúzió, bomlás, hasadás Atomerőmű működése Radioaktív bomlástörvény Dozimetria 2 Atommag összetétele: Hélium atommag : 2 proton + 2 neutron 4 He 2 He Z A 4 2
Atommag, atommag átalakulások, radioaktivitás
Atommag, atommag átalakulások, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron
Az elektromágneses hullámok
203. október Az elektromágneses hullámok PTE ÁOK Biofizikai Intézet Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm Ritter Joseph von Fraunhofer Robert
Gamma-röntgen spektrométer és eljárás kifejlesztése anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű elemzésére
Gamma-röntgen spektrométer és eljárás kifejlesztése anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű elemzésére OAH-ABA-16/14-M Dr. Szalóki Imre, egyetemi docens Radócz Gábor, PhD
PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész
PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész MTA Izotópkutató Intézet Gméling Katalin, 2009. november 16. gmeling@iki.kfki.hu Isle of Skye, UK 1 MAGSPEKTROSZKÓPIAI MÓDSZEREK Gerjesztés:
Periódusosság. Általános Kémia, Periódikus tulajdonságok. Slide 1 of 35
Periódusosság 11-1 Az elemek csoportosítása: a periódusos táblázat 11-2 Fémek, nemfémek és ionjaik 11-3 Az atomok és ionok mérete 11-4 Ionizációs energia 11-5 Elektron affinitás 11-6 Mágneses 11-7 Az elemek
ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK. Kalocsai Angéla, Kozma Enikő
ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK Kalocsai Angéla, Kozma Enikő RUTHERFORD-FÉLE ATOMMODELL HIBÁI Elektromágneses sugárzáselmélettel ellentmondásban van Mivel: a keringő elektronok gyorsulnak Energiamegmaradás
Első magreakciók. Exoterm (exoerg) és endoterm (endoerg) magreakciók. Coulomb-gát küszöbenergia
Magreakciók 7 N 14 17 8 O p Első magreakciók 30 Al n P 27 13, 15. 7 N(, p) 14 17 8 O Targetmag Megmaradási elvek: 1. a nukleonszám 2. a töltés megmaradását. 3. a spin, 4. a paritás, 5. az impulzus, 6.
Általános Kémia, BMEVESAA101
Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Óravázlatok:
+ + Az atomhéj (atommag körüli elektronok) fizikáját a kvantumfizika írja le teljes körűen.
MAGFIZIKA Az atomhéj (atommag körüli elektronok) fizikáját a kvantumfizika írja le teljes körűen. AZ ATOMMAG SZERKEZETE, RADIOAKTIVITÁS 9. 9. 4. PTE ÁOK Biofizikai Intézet Vig Andrea A magfizika azonban
Periódusosság. Általános Kémia, Periódikus tulajdonságok. Slide 1 of 35
Periódusosság 3-1 Az elemek csoportosítása: a periódusos táblázat 3-2 Fémek, nemfémek és ionjaik 3-3 Az atomok és ionok mérete 3-4 Ionizációs energia 3-5 Elektron affinitás 3-6 Mágneses 3-7 Az elemek periodikus
(A Scientific American újság 1993. augusztusi számában megjelent cikk alapján)
Országos Szilárd Leó Fizikaverseny Döntő 2014. I. kategória Minden feladat helyes megoldása 5 pontot ér. A feladatokat tetszőleges sorrendben, feladatonként külön lapon kell megoldani. A megoldáshoz bármilyen