Mennyiségek, mértékegységek nemzetközi rendszere
|
|
- Ádám Szőke
- 8 évvel ezelőtt
- Látták:
Átírás
1 Ismerd meg Mennyiségek, mértékegységek nemzetközi rendszere 1. Alapmennyiségek. Származtatott mennyiségek A tudományok rohamos fejlődése szükségessé tette a mértékegységek elnevezésének és a jelrendszer nemzetközi egységesítését, amelyet a legújabb fizikai és kémiai szakkönyvek következetesen alkalmaznak is. Sajnos, a mi tankönyveink erre nem fektetnek különösebb hangsúlyt, habár az 1978-ban megszavazott 27-es törvény kimondja, hogy 1981 január 1-től Romániában az egyetlen elfogadott mértékrendszer az SI, sőt, egyes mennyiségek mértékegységei a kémia tankönyvekben eltérnek a fizika tankönyvekben alkalmazottaktól. Ezenkívül a mindennapi életben számos más mértékegységet is használnak. Ennek a cikknek éppen az a célja, hogy a fenti hiányosságok kiküszöbölését elősegítse, és a definíció- és jelölésrendszert, valamint az SI következetes alkalmazását szorgalmazza az iskolai oktatásban. Az Általános Súly- és Mértékügyi Értekezlet (Conférernce Générale des Poids et Measures, CGPM) 1960-ban fogadta el első változatban a nemzetközi mértékegységrendszert (Systeme Internationale d'unités, SI). A nemzetközi tudományos világszervezetek és szabványosítási szervezet (ISO) mintegy 30 éve folyó munkájának a célja, hogy rendezze a fogalmak szabatos használatát, egységessé tegye a mennyiségek jelölését és a mértékegységek használatát, és ennek következménye nemcsak annak a különbségnek a megszűnése, amit már a fizikával és kémiával kapcsolatban említettem, hanem az is, hogy bizonyos megszokott mértékegységekről le kell mondanunk, ugyanakkor néhány új nagyságrendet is el kell fogadnunk.. Mennyiségek A fizikai és kémiai mennyiségek a jelenségek és fogalmak mérhető tulajdonságai és két független tényező, a számérték (mérőszám) és a mértékegység szorzatát jelentik. Pl. V = 10 m 3, illetve 5 mol esetén: a mennyiség és jele: térfogat: V, illetve anyagmennyiség: n; a számérték: 10 illetve 5 a mértékegység: m illetve mol. Megállapodás alapján a nemzetközi mértékegységrendszerben jelenleg hét fizikai, kémiai mennyiséget tekintenek egymástól dimenzionálisan független alapmennyiségnek. Ezekből származtatják az összes többi mennyiséget az ismert természeti törvények (képletek, amelyekben csak szorzás, osztás, deriválás és integrálás fordulhat elő) alapján és ezeket származtatott mennyiségeknek nevezzük.
2 A mértékegységek definíciója a legkorszerűbb méréstechnikához és a tudomány legújabb eredményeihez igyzolódik, ezért időről időre nemzetközi megállapodás szerint változhat. A hét alapmennyiséget a megfelelő hét Sí-alapegységgel és ezek jelölésével, valamint a jelenlegi érvényes definíciójuk elfogadásának évét a következő táblázat tünteti fel: Év Alapmennyiség Sl-alapegység neve jele neve jele 1901 tömeg m kilogramm kg 1948 elektromos áramerősség 1 amper A 1967 Idő t másodperc s 1967 termodinamikai hőmérséklet T kelvin K 1971 anyagmennyiség m mól mol 1979 fényerősség lv kandela cd 1983 hosszúság 1 méter m A mennyiség jele a mennyiség rövid leírására szolgál, és bizonyos általános szabálynak kell eleget tennie. Sem a mennyiség, sem annak jele nem utal arra, hogy milyen mértékegységet kell használni az értékek megadásánál. A mennyiségek jeleit nemzetközi megegyezés alapján állapítják meg és a jel általában a latin vagy görög ábécé nagy vagy kisbetűje. A betűket szabályosan, dőlten kell ími. Amennyiben szükséges a jeleket alsó vagy felső indexxel módosítani lehet és amennyiben az index maga is egy mennyiséget vagy számot jelöl, ezt is dőlt betűvel kell írni: pl. Cp - hőkapacitás állandó nyomáson; CB - a B anyag hőkapacitása. A számokat álló típusú karakterekkel kell írni. Az állandó értékeket jelölő betűket (pl. e, π, h) szintén álló típusú betűk jelölik, míg a nem állandó számok betűjele (pl. n, t) mindig dőlt típusú. Hasonlóan a matematikai függvények jele (pl. log, In, exp, sin, cos, A) szintén álló típusú betű, de maga a függvény általános jele f(x), dőlt betű. A dimenzió olyan kifejezés, amely megadja, hogy milyen kapcsolat van a fizikai, kémiai mennyiségek és az alapmennyiségek között és független a mértékegység megválasztásától. Ugyanannak a mennyiségnek csak egyféle dimenziója, de több mértékegysége lehet. Pl. a sebesség dimenziója hosszúság/idő, mértékegysége lehet m/s, m/h, km/h, stb. A dimenzió tehát egy szavakban elmondott képlet (sokszor összetévesztik a mértékegységgel). Vannak mennyiségek, amelynek dimenziója egy; ezek az ún. dimenzió nélküli mennyiségek. Ilyen pl. a móltört, disszociációfok, relatív sűrűség, stb.
3 Tényezőnek vagy faktornak azokat a dimenzió nélküli mennyiségeket nevezzük, amelyek két másik mennyiség (A és B) közötti arányosságot adják meg: A - kb. Ha az arányossági tényezőnek (k) van dimenziója, együtthatónak vagy koefficiensnek nevezzük. Két mennyiség dimenzió nélküli hányadosát törtnek nevezzük, ha ez az arány egynél kisebb (pl. móltört). Gyakran előfordul, hogy a dimenzió nélküli mennyiség nevében a szám kifejezés szerepel (pl. rendszám, tömegszám, oxidációs szám, sztöchiometriai szám). Helytelen a dimenziós mennyiséget számnak nevezni: tehát nem Avogadroszám, hanem Avogadro-állandó; nem Faraday-szám, hanem Fraday-állandó, stb. Az állandóknak több típusát ismerjük: univerzális állandó, olyan fizikai mennyiséget jelöl, amelynek értéke minden körülmények között állandó (pl Avogadro-állandó, Faraday-állandó, Boltzmann-állandó) és anyagi állandók, amelyek egy adott anyag esetében minden körülményen állandóak (pl. radioaktív bomlási állandó) és amelyek adott körülmények között állandóak (pl. egyensúlyi állandó, sebességi állandó). Extenzív mennyiségeknek nevezzük az olyan mennyiségeket, amelyeknek az értéke összegeződik a részek értékeiből, ha a rendszert gondolatban vagy ténylegesen a részekből állítjuk össze (pl. térfogat, tömeg, energia, stb.). Intenzív mennyiségek azok, amelyeknek értéke a rendszer egészére nem kaphatók meg a helyi értékek összegezésével. Ezeket kiegyenlítődő mennyiségeknek is szokták nevezni, mert a folyamtok során gyakran kiegyenlítődnek (pl. a hőmérséklet, nyomás). A fajlagos jelzőt olyan esetben használjuk, amikor az adott extenzív mennyiség egységnyi tömegre vonatkozik. Ha az extenzív mennyiséget nagybetű jelöli, akkor ennek fajlagos mennyiségét a megfelelő kisbetűvel (betűkkel) jelöljük. Pl. a fajlagos térfogatot (v) úgy kapjuk meg, hogy a térfogatot (V) elosztjuk a tömeggel (m). Néhány esetben a "fajlagos" szó használata nem felel meg ennek a definíciónak (fajlagos forgatóképesség, fajlagos ellenállás), ezért ilyenkor mindig meg kell határozni, hogy mire vonatkozik az adat. A "moláris" szókapcsolat, amely a kémiában nagyon gyakran szerepel, azt jelenti, hogy a megfelelő extenzív mennyiséget elosztjuk az anyagmennyiséggel, vagyis egységnyi anyagmennyiségre vonatkoztatjuk. A moláris mennyiséget a megfelelő fizikai mennyiség jelének "m" alsó indexe jelöl. Pl. moláris térfogat: V m = V/n; moláris entrópia: Sm = S/n stb. Mind a "fajlagos" mind a "moláris" kifejezések helyett szokás a "faj" illetve a "mól" rövidítést használni, azonban ezt kerülni kell. Tehát: fajlagos hőkapacitás (c p ) és nem fajhő; moláris térfogat (V m ) és nem móltérfogat. A sűrűség (amelyet főleg az általános iskolában a diákok gyakran összetévesztenek a sűrűség hétköznapi használatával, a viszkozitással), a menynyiség és a neki megfelelő térfogat hányadosát jelenti (pl. töltéssűrűség ρ = Q/V). Fontos megjegyezni, hogy: 1. Összeadni és kivonni csak az egynemű mennyiségeket lehet és az eredmény dimenziója megegyezik a tagok dimenziójával; 2. A szorzást, osztást, hatványozást és gyökvonást a számértékkel és a mértékegységekkel egyaránt el kell végezni.
4 Az alapegységek Sí-definíciója A mértékegység a mennyiség megállapodás szerint rögzített értéke. A mennyiség ehhez viszonyított nagyságát a mérőszám fejezi ki. A kilogramm az 1889-ben Párizsban megtartott első Általános Súly- és Mértékügyi Értekezlet által a tömeg etalonjául, a Nemzetközi Súly- és Mértékügyi Hivatalban, Sévresben őrzött platina-iridium henger tömege. Az amper olyan állandó elektromos áram erőssége, amely két párhuzamos, egyenes, végtelen hosszúságú, elhanyagolhatóan kicsi kör keresztmetszetű és egymástól 1 m távolságban levő vezetőben áramolva a két vezető között méterenként 2.1CT 7 newton erőt hoz létre. A másodperc az alapállapotú 133 Cs-atom két hiperfinom energiaszintje közötti átmenetnek megfelelő sugárzás periódusidejének szerese. A kelvin a víz hármaspontja termodinamikai hőmérsékletének 1/273,l6-od része. A mól annak az anyagi rendszernek az alapmennyisége, amely annyi elemi egységet tartalmaz, mint ahány atom van 0,012 kg 12 C-ben. Az elemi egységfajtákat mindig meg kell adni (atom, molekula, ion, elektron, stb.), tehát egy szabatos kifejezésben a mértékegység, a mérőszám és az elemi egység neve együtt kell hogy szerepeljen. ^ A kandela az olyan fényforrás fényerőssége adott irányban, amely hertz (Hz) frekvenciájú monokromatikus fényt bocsát ki és sugárzási erőssége ebben az irányban 1/683 watt/sr (sr-steradián). (1979-ig a kandela: a fekete sugárzó 1/ m 2 -nyi felületének fényerőssége a felületre merőleges irányban a platina fagyáspontjának hőmérsékletén, newton/m 2 nyomáson.) A méter annak az útnak a hosszúsága, amelyet a fény vákuumban 1/ ad másodperc alatt megtesz. (1983-ig a méter* a 8 Kr-atom 2pio és 5d5 energiaszintje közötti átmenetnek megfelelő vákkumban terjedő sugárzás hullámhosszúságának ,73-szorosa.) Származtatott SI és Si n kívüli mennyiségek és egységek Az alapmennyiségekből származtatott mennyiségek és származtatott egységek képezhetők. A származtatott SI egységek egy részének jelentőségük és gyakoriságuk miatt külön neve és jele van. Ezek közül a kémia szempontjából a legfontosabbakat a lenti táblázat tartalmazza. Származtatott mennyiség SI egysége neve jele neve jele kifejezése SI egységben sebesség V - - ms"' gyorsulás a ms erő F newton N m kg s~ 2 energia A joule J m 2 kg s~ 2 munka A joule J m 2 kg s~ 2 hő A joule J m 2 kg s~ 2 teljesítmény P watt W m 2 kg s" 3
5 Sl egysége neve jele neve jele kifejezése Sl egységben nyomás p pascal Pa elektromos töltés Q coulomb C elektromos feszültség U volt V elektromos potenciál V volt V elektromos ellenállás R ohm Ω elektromos kapacitás C farad F elektromos vezetés G siemens S fényáram Φ lumen lm frekvencia f hertz Hz Meg kell jegyeznünk, hogy külön neve csak az alapegységekből származtatott újabb egységeknek lehet. A tört és többszörös egységekből származtathatók mértékegységek, de nem lehet külön nevük. Pl. s.a egység neve coulomb, jele: C. A nemzetközi mértékegység rendszeren kívül, de korlátozás nélkül használhatók az alábbi mértékegységek: Mennyiség neve Celsius hőmérséklet Celsius fok C térfogat liter l,l tömeg tonna t Idő perc min Idő óra h idő nap d energia (munka) wattóra Wh Mértékegység neve jele kifejezése Sl egységekkel Szintén nemzetközi mértékegységrendszeien kívüli, kizárólag meghatározott területen használható, törvényes mértékegység pl. a folyadékok és gázok nyomásának a jellemzésére a bar; 1 bar = 10 5 Pa; az energia jellemzésére az atomfizikában az elektronvolt; jele: ev, 1 ev = 1, J, vagy a tömeg jellemzésére ugyancsak az atomfizikában használt atomi tömeg egység; jele: u, 1 u = 1, kg. Már nem használható, nem törvényes mértékegységek (korábbi szakkönyvekben és példatárakban még szerepelnek) pl. az angström: 1Á= m; az atmoszféra: 1 atm = Pa; 1cai =4,186 kj.
6 Ha olyan mennyiséget akarunk kifejezni, amelynek nagysága nagyságrendekkel kisebb vagy nagyobb mint az SI egység, akkor az egység neve elé illesztett prefixumok segítségével képezzük a megfelelő mértékegységet és ezeket egybeírjuk, a két jelt pedig egymás mellé írjuk. Pl. kilojoule: kj; megapascal: MPa; nanométer: nm; milligramm: mg. Általában a 10 prefixumokat részesítjük előnyben. Összetett prefixumokat nem használhatunk. A használható prefixumok neve, jele és számértéke a következő táblázatban van feltüntetve: Prefixum Jele Szorzó, amellyel a mértékegységet meg kell szorozni exa E = peta P = 1 o 15 tera T = giga G = 10 9 mega M = 10 5 kilo k 1 000= 10 3 hektó h 100= 10 2 deka da 10= 10 1 deci d 0,1 = 10-1 centi c 0,01 = 10-2 milll m 0,001 = 10-3 mikro H 0, = 10-6 nano n 0, = 10-9 pikó P 0, = femto f 0, =10-15 atto a 0, = Horváth Gabriella Marosvásárhely
Mérés szerepe a mérnöki tudományokban Mértékegységrendszerek. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem
Mérés szerepe a mérnöki tudományokban Mértékegységrendszerek Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem Alapinformációk a tantárgyról a tárgy oktatója: Dr. Berta Miklós Fizika és
A klasszikus mechanika alapjai
A klasszikus mechanika alapjai FIZIKA 9. Mozgások, állapotváltozások 2017. október 27. Tartalomjegyzék 1 Az SI egységek Az SI alapegységei Az SI előtagok Az SI származtatott mennyiségei 2 i alapfogalmak
A NEMZETKÖZI MÉRTÉKEGYSÉG-RENDSZER (AZ SI)
A NEMZETKÖZI MÉRTÉKEGYSÉG-RENDSZER (AZ SI) A Nemzetközi Mértékegység-rendszer bevezetését, az erre épült törvényes mértékegységeket hazánkban a mérésügyről szóló 1991. évi XLV. törvény szabályozza. Az
Az SI alapegysegei http://web.inc.bme.hu/fpf/kemszam/alapegysegek.html 1 of 2 10/23/2008 10:34 PM Az SI alapegységei 1. 2. 3. 4. 5. 6. 7. A hosszúság mértékegysége a méter (m). A méter a kripton-86-atom
Az SI mértékegységrendszer
PTE Műszaki és Informatikai Kar DR. GYURCSEK ISTVÁN Az SI mértékegységrendszer http://hu.wikipedia.org/wiki/si_mértékegységrendszer 1 2015.09.14.. Az SI mértékegységrendszer Mértékegységekkel szembeni
Az SI mértékegység rendszer
Az SI mértékegység rendszer Az egyes fizikai mennyiségek közötti kapcsolatokat méréssel tudjuk meghatározni, de egy mennyiség méréséhez valamilyen rögzített értéket kell alapul választanunk. Ezt az alapul
Nemzetközi Mértékegységrendszer
Nemzetközi Mértékegységrendszer 1.óra A fizika tárgya, mérés, mértékegységek. Fűzisz Természet Fizika Mérés, mennyiség A testek, anyagok bizonyos tulajdonságait számszerűen megadó adatokat mennyiségnek
1991. évi XLV. törvény. a mérésügyrıl, egységes szerkezetben a végrehajtásáról szóló 127/1991. (X. 9.) Korm. rendelettel. I.
1991. évi XLV. törvény a mérésügyrıl, egységes szerkezetben a végrehajtásáról szóló 127/1991. (X. 9.) Korm. rendelettel [Vastag betővel szedve az 1991. évi XLV. törvény (a továbbiakban: Tv.), vékony betővel
Mértékrendszerek, az SI, a legfontosabb származtatott mennyiségek és egységeik
Mértékrendszerek, az SI, a legfontosabb származtatott mennyiségek és egységeik A fizikában és a méréstudományban mértékegységeknek hívjuk azokat a méréshez használt egységeket, amivel a fizikai mennyiségeket
1. SI mértékegységrendszer
I. ALAPFOGALMAK 1. SI mértékegységrendszer Alapegységek 1 Hosszúság (l): méter (m) 2 Tömeg (m): kilogramm (kg) 3 Idő (t): másodperc (s) 4 Áramerősség (I): amper (A) 5 Hőmérséklet (T): kelvin (K) 6 Anyagmennyiség
Amit tudnom kell ahhoz, hogy szakmai számításokat végezzek
Tolnainé Szabó Beáta Amit tudnom kell ahhoz, hogy szakmai számításokat végezzek A követelménymodul megnevezése: Gyártás előkészítése és befejezése A követelménymodul száma: 0510-06 A tartalomelem azonosító
MÉRÉSTECHNIKA. Mérés története I. Mérés története III. Mérés története II. A mérésügy jogi szabályozása Magyarországon. A mérés szerepe a mai világban
Mérés története I. MÉRÉSTECHNIKA - A mérés első jogi szabályozása (i.e. 3000): Halálbüntetésre számíthat aki elmulasztja azon kötelességét, hogy "Ami számítható, azt számítsd ki, ami mérhető, azt mérd
Tartalom Fogalmak Törvények Képletek Lexikon
Fizikakönyv ifj. Zátonyi Sándor, 2014. Tartalom Fogalmak Törvények Képletek Lexikon Fogalmak Bevezetés A fizikai megismerés módszerei megfigyelés A megfigyelés olyan (tudományos) megismerési módszer, melynek
Általános Géptan I. SI mértékegységek és jelölésük
Általános Géptan I. 1. Előadás Dr. Fazekas Lajos SI mértékegységek és jelölésük Alapmennyiségek Jele Mértékegysége Jele hosszúság l méter m tömeg m kilogramm kg idő t másodperc s elektromos áramerősség
Melyik több? Egy szekrény súlya vagy egy papírlap tömege?
Melyik több? Egy szekrény súlya vagy egy papírlap tömege? Régi súly, hosszúság és űrmértékek Süsü: tátsd ki a szád! Három és fél akó. Mai mértékegységben 1 akó 41,97 liter és 85,6 liter közé esett. A bécsi
Kémiai alapismeretek 1. hét
Kémiai alapismeretek 1. hét Horváth Attila Pécsi Tudományegyetem, Természettudományi Kar, Kémia Intézet, Szervetlen Kémiai Tanszék 2012. február 7. 1/14 2011/2012 II. félév, Horváth Attila c Előadás látogatás
ALKÍMIA MA Az anyagról mai szemmel, a régiek megszállottságával.
ALKÍMIA MA Az anyagról mai szemmel, a régiek megszállottságával www.chem.elte.hu/pr Kvíz az előző előadáshoz Programajánlatok december 2. 16:00 ELTE Kémiai Intézet 065-ös terem Észbontogató (www.chem.elte.hu/pr)
10/10/2014 tema01_biolf_
1. Fizikai mennyiségek és mérésük Mérések és mértékegységek. Az SI-mértékrendszer, prefixumok. Alapvető mennyiségek mérése. a természet vizsgálata, számszerűsítés igénye modellek létrehozása: egyszerűsített
A FIZIKA MÓDSZEREI. Fáról leesı alma zuhanás. Kísérletes természettudomány: a megfigyelt jelenségek leírása és értelmezése
A FIZIKA MÓDSZEREI Kísérletes természettudomány: a megfigyelt jelenségek leírása és értelmezése A módszer lépései: Megfigyelés Kísérlet Mérés-kiértékelés Modellalkotás A modell mőködése a gyakorlatban
Az Ohm törvény. Ellenállás karakterisztikája. A feszültség és az áramerősség egymással egyenesen arányos, tehát hányadosuk állandó.
Ohm törvénye Az Ohm törvény Az áramkörben folyó áram erőssége függ az alkalmazott áramforrás feszültségétől. Könnyen elvégezhető kísérlettel mérhetjük az áramkörbe kapcsolt fogyasztón a feszültséget és
Bevezetés a laboratóriumi gyakorlatba és biológiai számítások GY. Molnár Tamás Solti Ádám
Bevezetés a laboratóriumi gyakorlatba és biológiai számítások GY Molnár Tamás Solti Ádám 2019 A kurzus célja Felkészítés a Biológia BSc és MSc képzés további laboratóriumi gyakorlataira A laborokban leggyakrabban
2013. 09. 02. www.biofizika.aok.pte.hu Biofizika I. Kötelező tantárgy Tantárgyfelelős: Dr. Nyitrai Miklós Heti 2 óra előadás, 2 óra gyakorlat Félévközi számonkérés: Egy írásbeli dolgozat Félév végi vizsga:kollokvium
Követelmények: f - részvétel az előadások 67 %-án - 3 db érvényes ZH (min. 50%) - 4 elfogadott laborjegyzőkönyv
Fizikai kémia és radiokémia B.Sc. László Krisztina 18-93 klaszlo@mail.bme.hu F ép. I. lépcsőház 1. emelet 135 http://oktatas.ch.bme.hu/oktatas/konyvek/fizkem/kornymern Követelmények: 2+0+1 f - részvétel
Kérdések Fizika112. Mozgás leírása gyorsuló koordinátarendszerben, folyadékok mechanikája, hullámok, termodinamika, elektrosztatika
Kérdések Fizika112 Mozgás leírása gyorsuló koordinátarendszerben, folyadékok mechanikája, hullámok, termodinamika, elektrosztatika 1. Adjuk meg egy tömegpontra ható centrifugális erő nagyságát és irányát!
Alapfogalmak Metrológia Metrológia: Általános metrológia Mérés célja Mérési elvek, mérési módszerek Mér eszközök konstrukciós elemei, elvei
Alapfogalmak Metrológia, a mérés tudománya a mérési bizonytalanság meghatározásával együtt. Metrológia: alkalmazott tudomány, mely a kvantitatív ismeretszerzési folyamatok - tervezéséhez, - végrehajtásához
Felvételi, 2017 július -Alapképzés, fizika vizsga-
Sapientia Erdélyi Magyar Tudományegyetem Marosvásárhelyi Kar Felvételi, 2017 július -Alapképzés, fizika vizsga- Minden tétel kötelező. Hivatalból 10 pont jár. Munkaidő 3 óra. I. Az alábbi kérdésekre adott
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. 1 2 óra előadás, 1 óra gyakorlat Félévi követelmény: évközi jegy Az évközi jegy megszerzésének módja: A feladatok határidőre történő beadása
Javaslat: AZ EURÓPAI PARLAMENT ÉS A TANÁCS IRÁNYELVE. a mértékegységekre vonatkozó tagállami jogszabályok közelítéséről. (kodifikált szöveg)
EURÓPAI BIZOTTSÁG Brüsszel, 2010.9.27. COM(2010) 507 végleges 2010/0260 (COD) C7-0287/10 Javaslat: AZ EURÓPAI PARLAMENT ÉS A TANÁCS IRÁNYELVE a mértékegységekre vonatkozó tagállami jogszabályok közelítéséről
MÉRTÉKEGYSÉGEK. Kausay 1
MÉRTÉKEGYSÉGEK Kausay 1 Fizikai mennyiség megadása Egy fizikai mennyiség megadásához meg kell adnunk a mérés alapegységét, ezt mértékegységnek nevezzük, valamint a mennyiség alapegységhez viszonyított
EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY
EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY ALAPMÉRTÉKEGYSÉGEK A fizikában és a méréstudományban mértékegységeknek hívjuk azokat a méréshez használt egységeket,
Általános kémia képletgyűjtemény. Atomszerkezet Tömegszám (A) A = Z + N Rendszám (Z) Neutronok száma (N) Mólok száma (n)
Általános kémia képletgyűjtemény (Vizsgára megkövetelt egyenletek a szimbólumok értelmezésével, illetve az egyenletek megfelelő alkalmazása is követelmény) Atomszerkezet Tömegszám (A) A = Z + N Rendszám
9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK
9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK 1.A gyakorlat célja Az MPX12DP piezorezisztiv differenciális nyomásérzékelő tanulmányozása. A nyomás feszültség p=f(u) karakterisztika megrajzolása. 2. Elméleti
Elektromos ellenállás, az áram hatásai, teljesítmény
Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás Az anyag részecskéi akadályozzák a töltések mozgását. Ezt a tulajdonságot nevezzük elektromos ellenállásnak. Annak a fogyasztónak
Testek mozgása. Készítette: Kós Réka
Testek mozgása Készítette: Kós Réka Fizikai mennyiségek, átváltások ismétlése az általános iskolából, SI Nemzetközi Mértékegység Rendszer 1. óra Mérés A mérés a fizikus alapvető módszere. Mérőeszközre,
Zaj- és rezgés. Törvényszerűségek
Zaj- és rezgés Törvényszerűségek A hang valamilyen közegben létrejövő rezgés. A vivőközeg szerint megkülönböztetünk: léghangot (a vivőközeg gáz, leggyakrabban levegő); folyadékhangot (a vivőközeg folyadék,
Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens.
Kémia, BMEVEAAAMM Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens Jegyzet dr. Horváth Viola, KÉMIA I. http://oktatas.ch.bme.hu/oktatas/konyvek/anal/
1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom:
1. előadás Gáztörvények Kapcsolódó irodalom: Fizikai-kémia I: Kémiai Termodinamika(24-26 old) Chemical principles: The quest for insight (Atkins-Jones) 6. fejezet Kapcsolódó multimédiás anyag: Youtube:
Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája
Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gázegyenlet és általánosított gázegyenlet 5-4 A tökéletes gázegyenlet alkalmazása 5-5 Gáz reakciók 5-6 Gázkeverékek
Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája
Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet 5-4 A tökéletes gáz egyenlet alkalmazása 5-5 Gáz halmazállapotú reakciók
Osztályozó vizsga anyagok. Fizika
Osztályozó vizsga anyagok Fizika 9. osztály Kinematika Mozgás és kölcsönhatás Az egyenes vonalú egyenletes mozgás leírása A sebesség fogalma, egységei A sebesség iránya Vektormennyiség fogalma Az egyenes
1. Mi a termodinamikai rendszer? Miben különbözik egymástól a nyitott és a zárt termodinamikai
3.1. Ellenőrző kérdések 1. Mi a termodinamikai rendszer? Miben különbözik egymástól a nyitott és a zárt termodinamikai rendszer? Az anyagi valóság egy, általunk kiválasztott szempont vagy szempontrendszer
9. évfolyam. Osztályozóvizsga tananyaga FIZIKA
9. évfolyam Osztályozóvizsga tananyaga A testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás: gyorsulás fogalma, szabadon eső test mozgása 3. Bolygók mozgása: Kepler törvények A Newtoni
Műszaki hőtan I. ellenőrző kérdések
Alapfogalmak, 0. főtétel Műszaki hőtan I. ellenőrző kérdések 1. Mi a termodinamikai rendszer? Miben különbözik egymástól a nyitott és zárt termodinamikai rendszer? A termodinamikai rendszer (TDR) az anyagi
Fizika 1 Elektrodinamika beugró/kis kérdések
Fizika 1 Elektrodinamika beugró/kis kérdések 1.) Írja fel a 4 Maxwell-egyenletet lokális (differenciális) alakban! rot = j+ D rot = B div B=0 div D=ρ : elektromos térerősség : mágneses térerősség D : elektromos
SI kiegészítő egységei. Az SI-alapegységek meghatározásai
SI alapmértékegységek: Az alapmennyiség Az alapmértékegység Sorszáma neve jele neve jele I. Hosszúság l méter m II. Tömeg m kilogramm kg III. Idő t másodperc s IV. Áramerősség (elektromos) I amper A V.
A munkavégzés a rendszer és a környezete közötti energiacserének a D hőátadástól eltérő valamennyi más formája.
11. Transzportfolyamatok termodinamikai vonatkozásai 1 Melyik állítás HMIS a felsoroltak közül? mechanikában minden súrlódásmentes folyamat irreverzibilis. disszipatív folyamatok irreverzibilisek. hőmennyiség
Légköri termodinamika
Légköri termodinamika Termodinamika: a hőegyensúllyal, valamint a hőnek, és más energiafajtáknak kölcsönös átalakulásával foglalkozó tudományág. Meteorológiai vonatkozása ( a légkör termodinamikája): a
Elektromos áram. Vezetési jelenségek
Elektromos áram. Vezetési jelenségek Emlékeztető Elektromos áram: töltéshordozók egyirányú áramlása Áramkör részei: áramforrás, vezető, fogyasztó Áramköri jelek Emlékeztető Elektromos áram hatásai: Kémiai
-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el.
1. 2. 3. Mondat E1 E2 Össz Energetikai mérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. május 15. Neptun kód:... g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus
Az Ampère-Maxwell-féle gerjesztési törvény
Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér
Az egységes mértékegységrendszer kialakítása és hazai bevezetésének akadémiai vonatkozásai
Az egységes mértékegységrendszer kialakítása és hazai bevezetésének akadémiai vonatkozásai Dr Ádám József az MTA rendes tagja BME Általános- és Felsőgeodézia Tanszék A méterrendszer bevezetésének kezdete
Feladatlap X. osztály
Feladatlap X. osztály 1. feladat Válaszd ki a helyes választ. Két test fajhője közt a következő összefüggés áll fenn: c 1 > c 2, ha: 1. ugyanabból az anyagból vannak és a tömegük közti összefüggés m 1
MFI mérés BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR POLIMERTECHNIKA TANSZÉK HŐRE LÁGYULÓ MŰANYAGOK FOLYÓKÉPESSÉGÉNEK VIZSGÁLATA
B2 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR POLIMERTECHNIKA TANSZÉK MFI mérés HŐRE LÁGYULÓ MŰANYAGOK FOLYÓKÉPESSÉGÉNEK VIZSGÁLATA A JEGYZET ÉRVÉNYESSÉGÉT A TANSZÉKI WEB OLDALON
71. A lineáris és térfogati hőtágulási tényező közötti összefüggés:
Összefüggések: 69. Lineáris hőtágulás: Hosszváltozás l = α l 0 T Lineáris hőtágulási Kezdeti hossz Hőmérsékletváltozás 70. Térfogati hőtágulás: Térfogatváltozás V = β V 0 T Hőmérsékletváltozás Térfogati
Alapfogalmak folytatás
Alapfogalmak folytatás Színek Szem Számítási eljárások Fényforrások 2014.10.14. OMKTI 1 Ismétlés Alapok: Mi a fény? A gyakorlati világítás technika alap mennyisége? Φ K m 0 Φ e ( ) V ( ) d; lm Fényáram,
Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár,
Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Facebook,
Szenzorok bevezető és szükséges fogalmak áttekintése
Szenzorok bevezető és szükséges fogalmak áttekintése 1 SI alapegységek 2 SI alapegységek Definició: Az alapegység az alapmennyiség mérésének az egysége a mennyiségek adott rendszerében. Minden egyes alapegység
Mérés alapelve, mértékegységek, számolási szabályok. Gyenes Róbert, Tarsoly Péter
Geodézia I. Mérés alapelve, mértékegységek, számolási szabályok Gyenes Róbert, Tarsoly Péter 1 A mérés alapelve Mérendı mennyiség és az alapegység összehasonlítása Jellemzés kvantitatív úton ( egy adott
FIZIKA ZÁRÓVIZSGA 2015
FIZIKA ZÁRÓVIZSGA 2015 TESZT A következő feladatokban a három vagy négy megadott válasz közül pontosan egy helyes. Írd be az általad helyesnek vélt válasz betűjelét a táblázat megfelelő cellájába! Indokolni
A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a
a Matematika mérnököknek I. című tárgyhoz Függvények. Függvények A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a szabadon eső test sebessége az idő függvénye. Konstans hőmérsékleten
Öveges korcsoport Jedlik Ányos Fizikaverseny 2. (regionális) forduló 8. o március 01.
Öveges korcsoport Jedlik Ányos Fizikaverseny. (regionális) forduló 8. o. 07. március 0.. Egy expander 50 cm-rel való megnyújtására 30 J munkát kell fordítani. Mekkora munkával nyújtható meg ez az expander
1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk:
Válaszoljatok a következő kérdésekre: 1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: a) zéró izoterm átalakulásnál és végtelen az adiabatikusnál
Betűtípusok. Betűstílusok:
Betűtípusok ez a mondat times new roman ce betűtípussal 12 pontos betűmérettel van írva. ez a mondat times new roman betűtípussal 14 pontos betűmérettel van írva. ez a mondat courier new ce betűtípussal
Felvételi, 2018 szeptember - Alapképzés, fizika vizsga -
Sapientia Erdélyi Magyar Tudományegyetem Marosvásárhelyi Kar Felvételi, 2018 szeptember - Alapképzés, fizika vizsga - Minden tétel kötelező Hivatalból 10 pont jár Munkaidő 3 óra I Az alábbi kérdésekre
Általános Kémia, BMEVESAA101
Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Óravázlatok:
FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Fizika középszint 051 ÉRETTSÉGI VIZSGA 007. május 14. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM A dolgozatokat az útmutató utasításai
Mértékegység rendszerek és mértékegységek, különös tekintettel a klasszikus mechanikára
1. MÉRTÉKEGYSÉG-RENDSZEREK Mértékegység rendszerek és mértékegységek, különös tekintettel a klasszikus mechanikára Mértékegység rendszerek cgs m-kp-s SI és mértékegység rendszer mértékegység rendszer mértékegység
Villamosságtan. Dr. Radács László főiskolai docens A3 épület, II. emelet, 7. ajtó Telefon: 12-13 elkrad@uni-miskolc.hu www.uni-miskolc.
Vllamosságtan Dr. adács László főskola docens A3 épület,. emelet, 7. ajtó Telefon: -3 e-mal: Honlap: elkrad@un-mskolc.hu www.un-mskolc.hu/~elkrad Ajánlott rodalom Demeter Károlyné - Dén Gábor Szekér Károly
2. (d) Hővezetési problémák II. főtétel - termoelektromosság
2. (d) Hővezetési problémák II. főtétel - termoelektromosság Utolsó módosítás: 2015. március 10. Kezdeti érték nélküli problémák (1) 1 A fél-végtelen közeg a Az x=0 pontban a tartományban helyezkedik el.
A. mértékegységek (alap és származtatott mértékegységet, átváltások) neve: jele: neve: jele: hosszúság * l méter m. tömeg * m kilogramm kg
Vegyipari és biomérnöki műveletek (BSc) tárgy számolási gyakorlat, segédlet Általános tudnivalók: Ez a segédlet tartalmazza az órai feladatokat és témakörönként néhány gyakorlófeladatot, valamit a feladatok
Elektromos áram, áramkör, kapcsolások
Elektromos áram, áramkör, kapcsolások Áram Az elektromos töltések egyirányú, rendezett mozgását, áramlását, elektromos áramnak nevezzük. (A fémekben az elektronok áramlanak, folyadékokban, oldatokban az
Fermi Dirac statisztika elemei
Fermi Dirac statisztika elemei A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra érvényes klasszikus statisztika
Galvanomágneses jelenségek
isme d meg Galvanomágneses jelenségek Azokat a jelenségeket, amelyek az áramátjárta vezetőben mágneses tér hatására jönnek létre galvanomágneses jelenségebiek nevezzük. Ezek a jelenségek a közegben haladó
Elektromos áram, egyenáram
Elektromos áram, egyenáram Áram Az elektromos töltések egyirányú, rendezett mozgását, áramlását, elektromos áramnak nevezzük. (A fémekben az elektronok áramlanak, folyadékokban, oldatokban az oldott ionok,
Elektromos áram, egyenáram
Elektromos áram, egyenáram Áram Az elektromos töltések egyirányú, rendezett mozgását, áramlását, elektromos áramnak nevezzük. (A fémekben az elektronok áramlanak, folyadékokban, oldatokban az oldott ionok,
Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont)
1. 2. 3. Mondat E1 E2 NÉV: Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, 2017. december 05. Neptun kód: Aláírás: g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus /
Műszaki termodinamika I. 2. előadás 0. főtétel, 1. főtétel, termodinamikai potenciálok, folyamatok
Műszaki termodinamika I. 2. előadás 0. főtétel, 1. főtétel, termodinamikai potenciálok, folyamatok Az előadás anyaga pár napon belül pdf formában is elérhető: energia.bme.hu/~imreattila (nem kell elé www!)
Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)
3. Gyakorlat 29A-34 Egy C kapacitású kondenzátort R ellenálláson keresztül sütünk ki. Mennyi idő alatt csökken a kondenzátor töltése a kezdeti érték 1/e 2 ed részére? Kirchhoff 2. törvénye (huroktörvény)
Elektromos ellenállás, az áram hatásai, teljesítmény
Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás Az anyag részecskéi akadályozzák a töltések mozgását. Ezt a tulajdonságot nevezzük elektromos ellenállásnak. Annak a fogyasztónak
Általános Kémia GY tantermi gyakorlat 1.
Általános Kémia GY tantermi gyakorlat 1. Oxidációs számok Redoxiegyenletek rendezése Oldatkészítés, koncentrációegységek átváltása Honlap: http://harmatv.web.elte.hu Példatárak: Villányi Attila: Ötösöm
Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont)
Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont) 1. "Az olyan rendszereket, amelyek határfelülete a tömegáramokat megakadályozza,... rendszernek nevezzük" (1) 2. "Az olyan rendszereket,
Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések
Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések 1. Melyek a rezgőmozgást jellemző fizikai mennyiségek?. Egy rezgés során mely helyzetekben maximális a sebesség, és mikor a gyorsulás? 3. Milyen
TANÁCS III. (Előkészítő jogi aktusok)
2008.12.30. C 330 E/1 III (Előkészítő jogi aktusok) TANÁCS 28/2008/EK KÖZÖS ÁLLÁSPONT a Tanács által 2008. november 18-án elfogadva a mértékegységekre vonatkozó tagállami jogszabályok közelítéséről szóló
1. Metrológiai alapfogalmak. 2. Egységrendszerek. 2.0 verzió
Mérés és adatgyűjtés - Kérdések 2.0 verzió Megjegyzés: ezek a kérdések a felkészülést szolgálják, nem ezek lesznek a vizsgán. Ha valaki a felkészülése alapján önállóan válaszolni tud ezekre a kérdésekre,
5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével
5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével 5.1. Átismétlendő anyag 1. Adszorpció (előadás) 2. Langmuir-izoterma (előadás) 3. Spektrofotometria és Lambert Beer-törvény
A nagyobb tömegű Peti 1,5 m-re ült a forgástengelytől. Összesen: 9p
Jedlik 9-10. o. reg feladat és megoldás 1) Egy 5 m hosszú libikókán hintázik Évi és Peti. A gyerekek tömege 30 kg és 50 kg. Egyikük a hinta végére ült. Milyen messze ült a másik gyerek a forgástengelytől,
Tipikus megvilágítás szintek a szabadban (délben egy napfényes napon) FISHER LED
Egy fényforrás által minden inrányba kisugárzott fény mennyisége Jele: Ф Egysége: lm A Φ sugárzott teljesítményből, a sugárzásnak a CIE szabványos fénymérő észlelőre gyakorolt hatása alapján származtatott
Fizika-Biofizika I. DIFFÚZIÓ OZMÓZIS Október 22. Vig Andrea PTE ÁOK Biofizikai Intézet
Fizika-Biofizika I. DIFFÚZIÓ OZMÓZIS 2013. Október 22. Vig Andrea PTE ÁOK Biofizikai Intézet DIFFÚZIÓ 1. KÍSÉRLET Fizika-Biofizika I. - DIFFÚZIÓ 1. kísérlet: cseppentsünk tintát egy üveg vízbe 1. megfigyelés:
TANMENET FIZIKA. 10. osztály. Hőtan, elektromosságtan. Heti 2 óra
TANMENET FIZIKA 10. osztály Hőtan, elektromosságtan Heti 2 óra 2012-2013 I. Hőtan 1. Bevezetés Hőtani alapjelenségek 1.1. Emlékeztető 2. 1.2. A szilárd testek hőtágulásának törvényszerűségei. A szilárd
Dr. Nagy Balázs Vince D428
Műszaki Optika 2. előadás Dr. Nagy Balázs Vince D428 nagyb@mogi.bme.hu Izzólámpa és fénycső 30,0 25,0 20,0 15,0 10,0 5,0 0,0 350 400 450 500 550 600 650 700 750 2 Fényforrások csoportosítása Fényforrások
ÖVEGES JÓZSEF ORSZÁGOS FIZIKAVERSENY II. fordulója feladatainak javítókulcsa április 5.
ÖVEGES JÓZSEF ORSZÁGOS FIZIKAVERSENY II. fordulója feladatainak javítókulcsa 2005. április 5. Számítási feladatok Valamennyi számítási feladat javítására érvényes: ha a versenyző számítási hibát vét, de
1991. évi XLV. törvény. a mérésügyről. I. fejezet. Általános rendelkezések. A törvény hatálya. Mérésügy, mérésügyi szervezet. Hatáskör és illetékesség
1991. évi XLV. törvény a mérésügyről Az Országgyűlés a mérések hazai és nemzetközi egységességének és pontosságának biztosítása, a mérési - valamint ennek révén mind a kutatási és fejlesztési, mind a gyártási,
Elektrosztatikai alapismeretek
Elektrosztatikai alapismeretek THALÉSZ: a borostyánt (élektron) megdörzsölve az a könnyebb testeket magához vonzza. Az egymással szorosan érintkező anyagok elektromosan feltöltődnek, elektromos állapotba
Tartalom I. Az SI egységrendszer. 1 Tájékoztató. 2 Ajánlott irodalom. 3 A méréselmélet szerepe. 4 Bevezetés. 5 A mérőberendezés felépítése
Tartalom I 1 Tájékoztató 2 Ajánlott irodalom 3 A méréselmélet szerepe Az SI egységrendszer 4 Bevezetés 5 A mérőberendezés felépítése 6 A műszerek legfontosabb jellemzői 7 Mérési hibák 8 A mérési eredmény
Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27
Az egyensúly 6'-1 6'-2 6'-3 6'-4 6'-5 Dinamikus egyensúly Az egyensúlyi állandó Az egyensúlyi állandókkal kapcsolatos összefüggések Az egyensúlyi állandó számértékének jelentősége A reakció hányados, Q:
Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola
Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola 1047 Budapest, Langlet Valdemár utca 3-5. www.brody-bp.sulinet.hu e-mail: titkar@big.sulinet.hu Telefon: (1) 369 4917 OM: 034866 Osztályozóvizsga részletes
ELEKTROSZTATIKA. Ma igazán feltöltődhettek!
ELEKTROSZTATIKA Ma igazán feltöltődhettek! Elektrosztatikai alapismeretek THALÉSZ: a borostyánt (élektron) megdörzsölve az a könnyebb testeket magához vonzza. Elektrosztatikai alapjelenségek Az egymással
Víz. Az élő anyag szerkezeti egységei. A vízmolekula szerkezete. Olyan mindennapi, hogy fel sem tűnik, milyen különleges
Az élő anyag szerkezeti egységei víz nukleinsavak fehérjék membránok Olyan mindennapi, hogy fel sem tűnik, milyen különleges A Föld felszínének 2/3-át borítja Előfordulása az emberi szövetek felépítésében
Orvosi biofizika. 1 Az orvostudomány és a biofizika kapcsolata. Sugárzások a medicinában. gyakorlatok. 1. félév előadásai
Orvosi biofizika 1. félév: 1,5 óra előadás + óra gyakorlat. félév: óra előadás + óra gyakorlat Fizika az orvostudományban SE Biofizikai és Sugárbiológiai Intézet igazgató: Prof. Kellermayer Miklós tanulmányi
Biológiai jelek mérése
Biológiai jelek mérése Méréstechnikai alapfogalmak A mérések célja Objektí információszerzés, megismerés Minimális beaatkozás mellett Módszere Érzékelés Összehasonlítás alapegységekkel Összehasonlítás