Középfeszültségû tervezési segédlet
|
|
- Ottó Lukács
- 9 évvel ezelőtt
- Látták:
Átírás
1 Középfeszültségû tervezési segédlet
2 Tartalomjegyzék Ismertetés 3. Fémtokozású gyártott berendezés 3. Feszültség 4. Áramerôsség 6. Frekvencia 7. A kapcsolókészülékek feladatai 7. Tokozási típusok 8. Tervezési szabályok 9. Zárlati teljesítmény 9. Zárlati áram 10. Transzformátor 11. Szinkrongenerátor (váltakozó áramú generátorok és motorok) 12. Aszinkron motor 12. A háromfázisú zárlati áramerôsség számítási módjának felidézése 13. Példák háromfázisú számításokra 15. Gyûjtôsín-számítások 19. Hôállóság 22. Elektrodinamikai szilárdság 25. Rezonáns önfrekvencia 27. Gyûjtôsín-számítási példa 28. Szigetelési szilárdság 36. A közeg szigetelési szilárdsága 36. Az alkatrészek alakja 37. Az alkatrészek közti távolság 37. Védettségi fokozat 39. IP kód 39. IK kód 41. Kapcsolókészülékek kiválasztása 43. Középfeszültségû megszakító 43. Áramváltó 52. Feszültségváltó 59. A névleges értékek csökkentése 62. Mértékegységek 64. Alap mértékegységek 64. Származtatott jellemzôk és mértékegységek 64. Az angol és a nemzetközi mértékegységek (SI) közti összefüggések 66. Szabványok 67. Az idézett szabványok 67. IEC - ANSI összehasonlítások 68. CEI ANSI összehasonlítások 72. Betûrendes névmutató 77. Schneider Electric 1
3 0Tervezési segédlet Ez a segédlet mûszaki megoldások katalógusa a középfeszültségû berendezések tervezôi számára. Célunk b Szemléltetve segíteni a középfeszültségû berendezések szabványoknak megfelelô kiválasztását. b Tervezési szabályokat szolgáltatni a középfeszültségû cellasor méreteinek és névleges értékeinek kiszámításához. Hogyan? b Egyszerû és érthetô számítási sémákkal vezetve a tervezôt, lépésrôl lépésre. b A témákhoz kapcsolódó számítási példák bemutatásával. b Információkat szolgáltatva a mértékegységekrôl és a nemzetközi szabványokról. b A nemzetközi szabványokhoz történô viszonyításokkal. Összegezve: A segédlet segítséget nyújt a berendezés méreteinek kiszámításához és hasznos információkkal szolgál a középfeszültségû kapcsolóberendezés megtervezéséhez. 2 Schneider Electric
4 Ismertetés 0Fémtokozású gyártott berendezés Indulásként, íme néhány alapvetô információ a középfeszültségû kapcsolóberendezésekrôl! A hivatkozások az International Electrotechnical Commission (IEC) szabványainak megfelelnek. Bevezetés A középfeszültségû cellák tervezéséhez ismerni kell az alábbi alapvetô értékeket: b feszültség b áramerôsség b frekvencia b zárlati teljesítmény A feszültség, a névleges áramerôsség és a frekvencia értékét általában ismerjük, vagy könnyen meg tudjuk állapítani. Hogyan tudjuk kiszámítani a zárlati teljesítményt vagy áramerôsséget a berendezés egy adott pontján? A hálózati rendszer zárlati teljesítményének ismeretében ki tudjuk választani a cellasor azon részeit, amelyeknek jelentôs hômérsékletemelkedést és elektrodinamikus hatást kell elviselniük. A feszültség (kv) ismeretében meg tudjuk határozni, hogy mekkora legyen az egyes részek szigetelési ellenállása. (Például: megszakítók, szigetelôk, áramváltók.) A villamos hálózatok lekapcsolása, vezérlése és védelme kapcsolókészülékek használatával valósítható meg. b A fémvázas kapcsolóberendezések három alcsoportba sorolhatók: v tokozott v rekeszelt v egyterû Schneider Electric 3
5 Ismertetés 0Fémtokozású gyártott berendezés Feszültség U (kv) üzemi feszültség Ez a feszültség található a berendezés kivezetésein. Rated voltage Ur (kv) névleges feszültség A névleges feszültség azon feszültség effektív értékének a maximuma, amelyet a berendezés normál üzemeltetési körülmények között el tud viselni. A névleges feszültség mindig magasabb az üzemi feszültségnél, és egy szigetelési szint tartozik hozzá. Ud (kv eff. 1 perc) és Up (kv csúcs) szigetelési szint Ez határozza meg a berendezés szigetelési ellenállását a kapcsolási túlfeszültségekkel vagy az impulzusszerû túlfeszültségekkel szemben. b Ud: belsô eredetû túlfeszültség, amely az áramkörben történô minden változást kísér: egy áramkör nyitását vagy zárását, egy szigetelés letörését vagy lecsökkenését, stb. Ezt laboratóriumban állítják elô névleges frekvenciájú, 1 percig tartó próbafeszültséggel. b Up: külsô vagy légköri eredetû túlfeszültség, amely akkor keletkezik, ha villám csap a hálózatba vagy annak közelébe. Az ennek eredményeként keletkezô feszültséghullámot laboratóriumban képezik le, és névleges lökô próbafeszültségnek nevezzük. Megjegyzés: az IEC 694 szabvány 4. cikkelye fekteti le a különbözô feszültségértékeket, a 6. cikkelyben lefektetett szigetelési vizsgálati feltételekkel együtt. Példa: b Üzemi feszültség: 20 kv b Névleges feszültség: 24 kv b Ipari frekvenciás szigetelési próbafeszültség 50 Hz 1 mn: 50kV eff. b Lökô-próbafeszültség 1.2/50 µs: 125 kv csúcs. 4 Schneider Electric
6 Ismertetés 0Fémtokozású gyártott berendezés Szabványok Különleges esetektôl eltekintve a MERLIN GERIN berendezések kielégítik az IEC és szabványok 1. sorozat táblázatának két listájában felsoroltakat. Névleges feszültség Névleges ívelési lökô próbafeszültség 1.2/50 µs Ipari frekvenciás névleges szigetelési feszültség 50 Hz Normál üzemi feszültség kv eff. kv csúcs 1 perc kv eff. kv eff. 1. lista 2. lista Ezek a szigetelési feszültségszintek fémtokozású kapcsolóberendezésekre 1000 méter tengerszint fölötti magasságig, 20 C-nál, 11g/m 3 páratartalom és 1013 mbar légnyomás mellett alkalmazhatók. Ezen határok felett a szintértékek csökkentésével kell számolni. Minden szigetelési szinthez tartozik egy levegôben mért szigetelési távolság, amely próba nélkül is garantálja a berendezés szigetelési ellenállását. Névleges feszültség kv eff. Névleges szigetelési lökô-próbafeszültség 1.2/50 µs kv csúcs Földtôl mért távolság levegôben cm IEC szabvány szerinti feszültségek Um U 0,5 Um Névleges ipari frekvenciás szigetelési feszültség 50Hz 1 perc Névleges feszültség 7, , Ud Ur Up 0 1,2 µs 50 µs Névleges szigetelési lökôfeszültség t Schneider Electric 5
7 Ismertetés 0Fémtokozású gyártott berendezés Áramerôsség Ir (A) névleges áramerôsség Ez annak az áramerôsségnek az effektív értéke, amelyet a zárt berendezés képes elviselni a szabványokban megengedett hômérsékletemelkedési érték meghaladása nélkül. Az alábbi táblázat tartalmazza az IEC által megengedett hômérsékletemelkedési értékeket az érintkezôtípusok függvényében. Névleges áramerôsség: Az anyag felépítése Maximális értékek A vezetô max. hômérséklete ( C) érintkezés levegô közegben csupasz réz vagy rézötvözet ezüst- vagy nikkelbevonat ónozott csavarozott vagy ezzel egyenértékû érintkezések csupasz réz, réz- vagy alumíniumötvözet ezüst- vagy nikkelbevonat ónozott Megjegyzés: a MERLIN GERIN általában az alábbi névleges áramerôsség-értékeket használja: 400, 630, 1250, 2500 és 3150A Max hômérsékletemelkedés t. max C Példák: b Az elosztószekrény egy 630 kw-os motor és egy 1250kVA-s transzformátor leágazást lát el 5,5kV üzemi feszültségen. v a transzformátor leágazás üzemi áramerôsségének kiszámítása: Látszólagos teljesítmény: S = UI 3 I (A) üzemi áramerôsség Ez az érték a szóban forgó áramkörre kapcsolt készülékek fogyasztásából számítható ki. Ez az áram folyik át ténylegesen a berendezésen. Ha nem rendelkezünk a számításokhoz szükséges adatokkal, akkor a megrendelônek kell azokat szolgáltatnia. Akkor számítható ki az üzemi áramerôsség, ha ismerjük a fogyasztó készülékek teljesítményét. S I = = = 130A U 3 55, p 1, 732 v a motoros leágazás üzemi áramerôsségének kiszámítása: cosϕ = teljesítménytényezô = 0.9 η = hatásfok = 0.9 I = P = = 82 A U 3cosϕη Schneider Electric
8 Ismertetés 0Fémtokozású gyártott berendezés Minimális zárlati áramerôsség: Isc (kaeff) (tárgyalását lásd a Zárlati áramok fejezetben) A maximális zárlati áram effektív értéke: Ith (kaeff 1 s vagy 3 s) (tárgyalását lásd a Zárlati áramok fejezetben) A maximális zárlati áram csúcsértéke: I dyn (kacsúcs) (a kezdeti csúcsérték a tranziens szakaszban) (tárgyalását lásd a Zárlati áramok fejezetben) Frekvencia fr (Hz) b világszerte általában két féle frekvenciát használnak: v 50 Hz-et Európában v 60 Hz-et Amerikában. Némely országok mindkét frekvenciát használják megkülönböztetés nélkül. A kapcsolókészülékek feladatai Megnevezés és jelkép szakaszoló feladat leválasztás Áram kapcsolása üzemszerûen hiba esetén földelô szakaszoló kapcsoló leválasztás kapcsolás nem választ le 4 (zárlatra kapcsolási teljesítôképesség) teljesítménykapcsoló kapcsolás leválasztás 4 rögzített megszakító kocsizható megszakító rögzített kontaktor kapcsolás védelem nem választ le kapcsolás védelem kikocsizva leválasztás kapcsolás nem választ le kocsizható kontaktor kapcsolás kikocsizva leválasztás 4 biztosító védelem nem választ le (egyszeri) = IGEN Schneider Electric 7
9 Ismertetés 0Fémtokozású gyártott berendezés Tokozási típusok Jellemzôk Fémtokozott Rekeszelt Egyterû Cellák Külsô falazás fém és mindig földelt A középfeszültségû fülkék száma Belsô elválasztások fém és mindig földelt mindegy, hogy fém vagy nem az mindegy, hogy fém vagy nem az Átvezetô szigetelôk alkalmazása lehetséges Feszültség alatti tereket leválasztó redônyök Feszültség alatti kezelhetôség Ívmozgás a cellán belül nehéz, de lehetséges = IGEN 8 Schneider Electric
10 Tervezési szabályok 0Zárlati teljesítmény E 1. példa: 25 ka 11kV üzemi feszültség mellett Zcc R L A Icc Ssc = 3 U Isc B U Zs Bevezetés b A zárlati teljesítmény a hálózat kialakításától és összetevôinek impedanciájától függ: a vezetékek, kábelek, transzformátorok, motorok impedanciájától; azokétól, amelyeken a zárlati áram áthalad. b Ez egy MVA-ben vagy az adott üzemi feszültséghez tartozó kaeff-ben kifejezett maximális teljesítmény, amellyel a hálózat táplálni képes egy berendezést a meghibásodás idôtartama alatt. U : üzemi feszültség (kv) Isc : zárlati áram (kaeff). Lásd a következô oldalakon. A zárlati teljesítmény látszólagos teljesítményként fejezhetô ki. b A megrendelô általában megadja a zárlati teljesítmény értékét, mivel mi ritkán rendelkezünk az annak kiszámításához szükséges adatokkal. A zárlati teljesítmény meghatározásához elemezni kell a hibahelyet tápláló zárlati teljesítményt a legkedvezôtlenebb esetben. A lehetséges tápforrások: b Hálózati betáplálás erôátviteli transzformátoron keresztül. b Generátorról történô betáplálás. b Teljesítmény-visszatáplálás forgó készülékeken (pl. motorokon) vagy közép-/kisfeszültségû transzformátoron keresztül. 63 kv 2. példa: b Az Isc5 általi kisfeszültségû visszatáplálás csak akkor lehetséges, ha a T4 transzformátort egy másik tápforrás táplálja. T1 A T2 Icc1 Icc2 Icc3 A B C D1 D2 D3 b A cellasor három tápforrással rendelkezik (T1-A-T2). v D1 megszakító (zárlat az A helyen) Isc1 + Isc2 + Isc3 + Isc4 + Isc5 v D2 megszakító (zárlat az B helyen) Isc1 + Isc2 + Isc3 + Isc4 + Isc5 v D3 megszakító (zárlat az C helyen) Isc1 + Isc2 + Isc3 + Isc4 + Isc5 D6 MT T3 Icc5 BT 10 kv D4 D5 D7 M Icc4 BT T4 MT Minden egyes Isc áramot ki kell számítanunk. Schneider Electric 9
11 Tervezési szabályok 0Zárlati áram Kivétel nélkül valamennyi áramkört védeni kell zárlat ellen, még elektromos folyamatossági törés esetén is, amely legtöbbször vezeték-keresztmetszet változásnál fordul elô. A zárlati áramot a hálózaton belüli minden lehetséges összeállítási változatra ki kell számolni annak érdekében, hogy meg tudjuk határozni azokat a jellemzôket, amelyekkel a berendezésnek rendelkeznie kell a hibaáram megszakítása vagy elviselése érdekében. b Háromféle zárlati áramerôsség értéket kell ismernünk ahhoz, hogy ki tudjuk választani a megfelelô kapcsolót (megszakító vagy biztosító) és be tudjuk állítani a védelmeket: v minimális zárlati áramerôsség: Isc = (kaeff) (például: 25 ka rms) Ez egy olyan zárlatnak felel meg, amelyiknél a hiba a védelmi lánc egyik végén következik be [a leágazás végén bekövetkezô hiba (lásd az 1.ábrát)] és nem közvetlenül a megszakító után. Ez az érték szolgál alapul a túláramvédelmi készülékek és biztosítók küszöbértékeinek beállításához, különösen hosszú kábelek vagy nagyobb impedanciájú tápforrások (generátor) esetén. v a maximális zárlati áramerôsség effektív értéke: Ith = (kaeff. 1 s vagy 3 s) (például: 25 ka rms. 1 s) Ith Icc Ez egy olyan zárlatnak felel meg, amelyiknél a hiba a kapcsolókészülék bejövô ági kapcsainak közvetlen közelében keletkezik (lásd az 1.ábrát). Ezt 1 vagy 3 másodperces ka értékben határozzák meg, és a berendezés termikus szilárdságának meghatározására használják. v a maximális zárlati áramerôsség csúcsértéke: (a kezdeti csúcsérték a tranziens szakasz elején) 1. ábra R X középfeszültségû kábel Idyn = (kaeff) (például: ka = ka csúcs IEC vagy ka = 67.5 ka csúcs ANSI ) - Idyn értéke: 2.5 Isc, 50 Hz (IEC) esetén vagy, 2.6 Isc, 60 Hz (IEC) vagy, 2.7 Isc (ANSI) esetén a hálózat egy adott pontjára vonatkoztatva. Áramerôsség Ez határozza meg az áramkör megszakítóinak és kapcsolóinak megszakítási és rákapcsolási teljesítôképességét, valamint a gyûjtôsínek és a kapcsoló elektrodinamikai szilárdságát. 2rIcc Áram csúcsérték= Idyn Egyenáramú összetevô 2rIcc Idô - Az IEC az alábbi értékeket használja: kaeff. Az elôírásokban is általában ezek az értékek szerepelnek. Megjegyzés: b az elôírás tartalmazhat kaeff vagy MVA értéket az alábbiak szerint: Isc = 19 kaeff vagy 350MVA 10kV-nál v Számoljuk ki a 350MVA-nek megfelelô áramerôsséget: 350 I sc = = 20.2 kaeff 3 p 10 A különbség oka a kerekítési módokban és a helyi szokásokban keresendô. Valószínûleg a 19 ka érték a reálisabb. v Másik lehetséges magyarázat: közép- és nagyfeszültségen az IEC 909 a maximális Isc meghatározásához egy 1,1 értékû szorzót alkalmaz. U E I sc = 11, p = p Z cc Z cc (Rövidítésekhez lásd az elôzô oldal 1.példáját). Ez az 1,1-es szorzó 10%-os feszültségeséssel számol a meghibásodott rész kábeleinél. 10 Schneider Electric
12 Tervezési szabályok 0Zárlati áram Transzformátor A transzformátor kapcsain átfolyó zárlati áram meghatározásához ismerni kell a zárlati feszültséget (Usc %). b Az Usc % az alábbi módon határozható meg: A zárlati áram értéke a hálózatba beépített készülékek típusától függ (transzformátorok, generátorok, motorok, vezetékek, stb). feszültségosztó U: O - Ucc V primer szekunder A I: O - Ir Példa: b Transzformátor 20 MVA b Feszültség 10 kv b Usc = 10 % b Bejövô ági teljesítmény: meghatározatlan Sr Ir = = = A 3 U terheletlen 3 p 10 Ir Isc = = = A = 11.5 ka Usc a transzformátor nincs feszültség alatt: U = 0 a szekunder tekercset zárjuk rövidre folyamatosan növeljük az U feszültséget a primer tekercsnél addig, 3 ameddig a szekunder tekercsben az áramerôsség el nem éri a névleges Ir értéket. A primer kapcsokon ekkor mérhetô U érték egyenlô az Usc-vel. b A ka-ben kifejezett zárlati áramot az alábbi képlet segítségével számíthatjuk ki: Ir Isc= Usc Schneider Electric 11
13 Tervezési szabályok 0Zárlati áram G Szinkrongenerátor (váltakozó áramú generátorok és motorok) Egy szinkrongenerátor kapcsain áthaladó zárlati áram kiszámítása igen nehéz, mivel a generátor belsô impedanciája az idôtôl függôen változik. b Ha fokozatosan növeljük a teljesítményt, az áram csökkenése három jellemzô szakaszra osztható: v szubtranziens állapot, (lehetôséget ad a megszakító rákapcsolási teljesítményszükségletének és elektrodinamikai igénybevételének meghatározására), az átlagos idôtartam 10 ms v tranziens állapot, (megadja a berendezés termikus igénybevételét), átlagos idôtartam 250 ms v állandósult állapot, (ez a zárlati áram értéke állandósult állapotban). b A zárlati áramot ugyanúgy kell kiszámítani, mint a transzformátoroknál, de a különbözô állapotokat figyelembe kell venni. Példa: Számítási mód egy szinkrongenerátor vagy szinkron motor esetében b Generátor 15 MVA b Feszültség U = 10 kv b X'd = 20 % áramerôsség Sr 15 Ir = = = 870 A 3 p U 3 p Ir 870 Isc= = = A = 4.35 ka Xcc trans. 20/100 a hiba megjelenik Ir hibátlan állapot szubtranziens állapot tranziens állapot Icc idô állandósult állapot zárlat b A zárlati áram az alábbi képlettel számítható ki: 1 Ir Isc = Xsc Xsc : zárlati áramkör reaktanciája b Egy szinkrongenerátor jellemzô értékei: Állapot Szubtranziens X''d Tranziens X'd Állandósult Xd Xsc % % % M Aszinkron motor b Aszinkron motoroknál v a sorkapcsokon mérhetô zárlati áram azonos az indítási árammal: Isc z 5-8 Ir v a motorok hozzájárulása (áram-visszatáplálás) a zárlati áramerôsséghez: I 3 Σ Ir z A 3-as együttható azt veszi figyelembe, hogy a motorok megállásakor az önindukció a hibaáramot erôsíti. 12 Schneider Electric
14 Tervezési szabályok 0Zárlati áram A háromfázisú zárlati áramerôsség számítási módjának felidézése b Háromfázisú zárlat U 2 Ssc = 1.1 U Isc p 3 = Zsc 1.1 U Isc = ahol Zsc = R 2 + X 2 3 Zsc b Betápláló hálózat Z = U Ssc kv-nál R --- = kv-nál X { kv-nál b Betápláló vezetékek R = ρ L S --- X = 0.4 Ω/km nagyfeszültség X = 0.3 Ω/km közép-/kisfeszültség ρ = Ω cm réz ρ = Ω cm alumínium ρ = Ω cm almélec b Szinkrongenerátorok Z( Ω) = X() Ω = U 2 Xsc (%) Sr 100 Xsc Szubtranziens Tranziens Állandósult hengeres forgórész % % % kiképzett pólus % % % b Transzformátorok (nagyságrendek: fogadjuk el a gyártó adatait) Például: 20 kv/410 V transzformátornál; Sr = 630 kva; Usc = 4 % 63 kv/11 V transzformátornál; Sr = 10 MVA; Usc = 9 % Z() U Ω 2 Usc % = () Sr 100 b Kábelek Sr (kva) to 5000 Usc (%) közép- / kisfesz. nagy- / középfesz X = Ω/km három- vagy egyfázisú b Gyûjtôsínek X = 0.15 Ω/km Schneider Electric 13
15 Tervezési szabályok 0Zárlati áramok b Szinkronmotorok és kompenzátorok Xsc Szubtranziens Tranziens Állandósult nagysebességû motorok 15 % 25 % 80 % kissebességû motorok 35 % 50 % 100 % kompenzátorok 25 % 40 % 160 % b Aszinkronmotorok Ir Z() U 2 Ω = Id Sr csak szubtranziens Isc z z 5-8 Ir Isc 3 Σ Ir, növeli az Isc zárlati áramot Ir mértékû visszatáplálással b Íves zárlat Isc Id = b Transzformátor és egy sorba kötött elem eredô impedanciája v Például, a kisfeszültségû oldal meghibásodása esetén a nagy- /kisfeszültségû transzformátor nagyfeszültségû tápkábelén átfolyó zárlati áram számításához az eredô impedancia az alábbi: U2 R2 = R1( ) 2 U1 és U2 X2 = X1 ( ) 2 U1 azaz U2 Z2 = Z1 ( ) 2 U1 Ez az egyenlet igaz a kábelre bármely feszültségszinten, más szavakkal: igaz bármilyen szériagyártású transzformátorra. Tápforrás Ra, Xa nagyfesz. kábel R1, X1 n transzformátor primer impedanciája: RT, XT kisfesz. kábel R2, X2 A v az impedancia az A hibahelyrôl nézve: RT R1 Ra XT X1 Xa ΣR= R n n n 2 ΣX= X n n n 2 n: a transzformátor áttétele b Az impedancia-háromszög Z = ( R 2 + X 2 ) Z X ϕ R 14 Schneider Electric
16 Tervezési szabályok 0Zárlati áram Példák háromfázisú számításokra A háromfázisú zárlati áramerôsség kiszámításánál a fô nehézséget a hibahely elôtti hálózati impedancia értékének meghatározása okozza. Impedancia módszer A hálózat minden része (táphálózat, transzformátor, generátor, motorok, kábelek, sínek, stb.) egyetlen (Z) impedanciával jellemezhetô, amely egy ohmos (R) és egy induktív (X) úgynevezett reaktancia összetevôbôl áll. Az X, R és Z értékét ohmban fejezzük ki. b Ezen összetevôk közti összefüggést az alábbi képlet adja meg: Z = ( R 2 + X 2 ) (lásd 1. példát szemben) b A módszer lényege: v a hálózatot részekre kell osztani v minden tagra külön ki kell számítani az R és X értéket v a hálózati adatok kiszámítása: - az eredô R vagy X kiszámítása - az eredô impedancia-érték kiszámítása -a zárlati áram kiszámítása. 1. példa: b A háromfázisú zárlati áram: A hálózat kapcsolása Isc = U Zsc A Tr1 Tr2 Eredô kapcsolások Zr Zt1 Zt2 Za Isc : zárlati áramerôsség (ka-ben) U : vonali feszültség (kv) a kérdéses helyen a hiba megjelenése elôtt Zsc : zárlati impedancia (ohm-ban) (lásd a 2. példát lent) Z = Zr + Zt1xZt2 Z = Zr + Zt1 Zt2 Zt1 + Zt2 Za Zcc = Zx/Za Zcc = Z Za Z + Za 2. példa: b Zsc = 0.72 ohm b U = 10 kv 10 Isc = , 27 = ka Schneider Electric 15
17 Tervezési szabályok Zárlati áram Itt van egy megoldandó probléma A feladat kiinduló adatai Tápfeszültség 63 kv A tápforrás zárlati teljesítôképessége: MVA b A hálózat elrendezése: Két párhuzamosan kapcsolt transzformátor és egy generátor b A készülékek jellemzô adatai: v Transzformátorok: - feszültség 63 kv / 10 kv - látszólagos teljesítmények: 1-15 MVA, 1-20 MVA - zárlati feszültség: U sc = 10 % v Váltakozó áramú generátor: - feszültség: 10 kv - látszólagos teljesítmény: 15 MVA - X'd tranziens: 20 % - X"d szubtranziens: 15 % b Feladat: v meghatározandók a zárlati áramerôsség-értékek a gyûjtôsíneken, v meghatározandók a D1 D7 megszakítók megszakító- és bekapcsolási képessége. Egyvonalas rajz Generátor 15 MVA X'd = 20 % X''d = 15 % G1 T1 Transzformátor 15 MVA Usc = 10 % 63 kv T2 Transzformátor 20 MVA Usc = 10 % D3 D1 10 kv D2 Gyûjtôsínek D4 D5 D6 D7 16 Schneider Electric
18 Tervezési szabályok Zárlati áram Íme a feladat megoldása a számítási módszer bemutatásával A feladat megoldása b A különbözô zárlati áramok meghatározása Három tápforrás képes a zárlatot táplálni: a két transzformátor és a generátor. Tegyük fel, hogy a D4, D5, D6 és D7 megszakítókon keresztül nem lehetséges visszatáplálás. Abban az esetben, ha a zárlat az egyik megszakító (D1, D2, D3, D4, D5, D6, D7) bejövô ágában van, akkor ezen átfolyik a T1, T2 és G1 által táplált zárlati áram. b Eredô kapcsolási ábra Mindegyik elem tartalmaz egy ohmos és egy induktív reaktancia értéket, amelyeket egyenként ki kell számítanunk. A hálózat az alábbi ábra szerint képezhetô le: Zr = a hálózat impedanciája Za = a generátor impedanciája, amely az állapot függvényében változó (tranziens vagy szubtranziens) Z15 = a transzformátor impedanciája 15 MVA Z20 = a transzformátor impedanciája 20 MVA gyûjtôsínek A tapasztalat azt mutatja, hogy az ellenállás értéke kisebb, mint a reaktanciájé, ebbôl következôen feltételezhetjük, hogy a reaktancia egyenlô az impedanciával (X = Z). b A zárlati teljesítmény meghatározásához ki kell számítanunk az egyes ellenállások és reaktanciák értékeit, majd külön-külön ki kell számítanunk számtani összegüket: Rt = R Xt = X b Rt és Xt értékét ismerve, ki tudjuk számítani Zt értékét az alábbi összefüggés segítségével: Z = ( ΣR 2 + ΣX 2 ) Megjegyzés: Mivel R értéke elhanyagolható X-hez képest, mondhatjuk, hogy Z=X. Schneider Electric 17
19 Tervezési szabályok Zárlati áram Íme az eredmények! Áramköri elem Számítás Z = X (ohm) Hálózat U Ssc = MVA Zr = = U op. = 10 kv Ssc Transzformátor, 15 MVA (Usc = 10 %) U 2 10 U op. = 10 kv Z = Usc = Sr Transzformátor, 20 MVA (Usc = 10 %) U op. = 10 kv Z20 = U Usc Sr = Generátor, 15 MVA U op. = 10 kv Tranziens állapot (Xsc = 20 %) Szubtranziens állapot (Xsc = 15 %) Gyûjtôsínek A transzformátorokkal párhuzamosan kötve A hálózattal és a transzformátor impedanciával sorba kötve Za = U Xsc Zat = Zas = Sr Z15 Z15 Z Z20 = = Z15 + Z Zr + Zet = Zat = 1.33 Zas = 1 Zet = 0.29 Zer = 0.34 A párhuzamosan kötött generátor egység Tranziens állapot Zer Zer Zat Zat = = Zer + Zat z 0.27 Szubtranziens állapot Zer Zer Zat Zat = = Zer + Zat z 0.25 Megjegyzés: a megszakítóhoz tartozik egy állandósult állapotbéli bizonyos megszakítóképesség effektív értékben és a váltakozó áramú összetevô százalékos értékében kifejezve, amely függ a nyitás idôtartamától és a hálózat értékétôl (kb. 30 %). --- R X Generátoroknál az aperiodikus összetevô igen magas, a számításokat laboratóriumi kísérletekkel kell alátámasztani. Megszakító D4 - D7 Zr Za Z15 Z20 Zt = [Zr + (Z15//Z20)]//Za D3 a generátoré Zr Z15 Z20 Az áramkör eredô impedanciája Megszakító képesség Bekapcsoló képesség Z (ohm) ka eff. 2.5 Isc (ka csúcs) Icc = U = Zsc tranziens állapot Z = 0.27 szubtranziens állapot Z = 0.25 Z = Zsc = = 42.5 Zt = Zr + (Z15//Z20) D1 a 15 MVA transzformátoré Zr tranziens állapot Z = 0.39 Za Z20 szubtranziens állapot Z = 0.35 Zt = (Zr + Z20)//Za D2 a 20 MVA transzformátoré Za Zr Z15 Zt = (Zr + Z15)//Za tranziens állapot Z = 0.47 szubtranziens állapot Z = = = Schneider Electric
20 Tervezési szabályok 0Gyûjtôsín-számítások Bevezetés b A gyûjtôsín méreteit normális üzemeltetési körülményeket alapul véve kell meghatározni. A létesítmény üzemi feszültsége (kv) meghatározza a fázistávolságot, valamint a támszigetelôk alakját és magasságát. A gyûjtôsíneken átfolyó névleges áramerôsség alapján kell megválasztani a vezetôk fajtáját és keresztmetszetét. b Ezek után gyôzôdjünk meg arról, hogy a támszigetelôk elviselik azt a mechanikai, a gyûjtôsínek pedig azt a mechanikai és termikus igénybevételt, amelyet a zárlati áram kifejt. Azt is ellenôrizni kell, hogy a síneken megjelenô vibráció periódusa nem rezonáns-e az áram frekvenciájával. b Egy gyûjtôsín-számítás elvégzéséhez az alábbi mechanikai és villamos adatokra van szükségünk: A gyûjtôsín villamossági jellemzôi Ssc : a hálózat zárlati teljesítménye* MVA Ur : névleges feszültség kv U : üzemi feszültség kv Ir : névleges áram A A gyûjtôsín-számítás valójában annak ellenôrzésére szolgál, hogy sínek kellô termikus és elektrodinamikai szilárdsággal rendelkeznek-e, és nem rezonánsak-e. * Megjegyzés: ezt általában a megrendelô szolgáltatja, de kiszámíthatjuk mi is, ha ismerjük az Isc zárlati áramot és az U üzemi feszültséget: (Ssc = 3 Isc U; lásd a zárlati áramok fejezetben). A gyûjtôsín mechanikai jellemzôi S : a gyûjtôsín keresztmetszete cm 2 d : fázistávolság cm l : szigetelôk távolsága azonos fázison belül cm θn : környezeti hômérséklet (θn 40 C) C (θ - θn) : megengedett hôfokemelkedés* C profil : lapos anyag : réz alumínium elrendezés : lapjára állított élére állított sínek mennyisége fázisonként: * Megjegyzés: lásd az IEC szabvány V táblázatait a következô két oldalon. Összefoglalás: db sín / fázis X cm keresztmetszet Schneider Electric 19
21 Tervezési szabályok 0Gyûjtôsín-számítások Hômérsékletemelkedés Az IEC szabvány V táblázatából merítve. A készülék, az anyag és a szigetelôközeg típusa (Lásd: 1, 2 és 3) Hômérséklet θ ( C) Hômérsékletemelkedés (θ - θn) θn = 40 C esetén Csavaros készülék-csatlakozások (lásd: 7) csupasz réz, csupasz réz-ötvözet vagy alumínium-ötvözet sínekkel az alábbi szigetelô közegekben levegô SF6 * olaj Csatlakozás ezüstözött vagy nikkelezett sínfelületekkel az alábbi szigetelô közegekben levegô SF olaj Csatlakozás horganyzott sínfelületekkel az alábbi szigetelô közegekben levegô SF olaj * SF6: kénhexafluorid Feladatától függôen ugyanaz a készülék a V táblázatban megadott kategóriák közül többen is szerepelhet. Ilyen esetben megengedhetô hômérséklet és hômérséklet-emelkedés értékként a szóba jövô kategóriák közül a legalacsonyabb értékeket kell figyelembe venni. Vákuumos kapcsoló-készülékeknél ezek a megengedhetô hômérséklet és hômérséklet-emelkedés értékek nem alkalmazhatók. A többi készüléknél be kell tartani a V táblázatban megadott határokat. Minden szükséges intézkedést meg kell tenni annak érdekében, hogy a szigetelô közeg egyáltalán ne sérülhessen meg. Ha az érintkezô felületek eltérô bevonatúak, akkor megengedhetô hômérséklet és hômérséklet-emelkedés értékként annak az értékeit kell a V táblázatból figyelembe venni, amelyiknél az engedélyezett értékek a legalacsonyabbak. 20 Schneider Electric
22 Tervezési szabályok 0Gyûjtôsín-számítások Hômérsékletemelkedés Kivonat az IEC szabvány V táblázatából. A készülék, az anyag és a szigetelô közeg típusa (Lásd 1, 2 és 3) Hômérséklet θ ( C) A bevonat minôsége olyan legyen, hogy a védôréteg ép maradjon az érintkezési zónában a következô esetekben: - rákapcsolási és megszakítási próbák után (ha vannak ilyenek), - rövid idejû hôállósági vizsgálat után, - a mechanikai élettartam vizsgálatok után, a berendezés minden egyes alkatrészére vonatkozó elôírás szerint. Ha ez nem így történik, akkor az érintkezési felületeket csupasz -nak kell tekinteni. Hômérsékletemelkedés (θ - θn) θn = 40 C esetén Sínérintkezések (Lásd: 4) csupasz réz vagy csupasz réz-ötvözet sínekkel az alábbi szigetelô közegekben levegô SF6 * olaj Csatlakozás ezüstözött vagy nikkelezett sínfelületekkel (lásd: 5) az alábbi szigetelô közegekben levegô SF olaj Csatlakozás horganyzott sínfelületekkel (lásd: 5 és 6) az alábbi szigetelô közegekben levegô SF olaj * SF6: kénhexafluorid Feladatától függôen ugyanaz a készülék a V táblázatban megadott kategóriák közül többen is szerepelhet. Ilyen esetben megengedhetô hômérséklet és hômérséklet-emelkedés értékként a szóba jövô kategóriák közül a legalacsonyabb értékeket kell figyelembe venni. Vákuumos kapcsolókészülékeknél ezek a megengedhetô hômérséklet és hômérséklet-emelkedés értékek nem alkalmazhatók. A többi készüléknél be kell tartani a V táblázatban megadott határokat. Minden szükséges intézkedést meg kell tenni annak érdekében, hogy a szigetelô közeg egyáltalán ne sérülhessen meg. 4 Ha az érintkezô felületek eltérô bevonatúak, akkor megengedhetô hômérséklet és hômérséklet-emelkedés értékként annak az értékeit kell a V táblázatból figyelembe venni, amelyiknél az engedélyezett értékek a legalacsonyabbak. 5 6 Biztosítók érintkezôinél a hômérsékletemelkedésnek összhangban kell lennie a nagyfeszültségû biztosítókra vonatkozó elôírásokkal. Schneider Electric 21
tápvezetékre jellemző, hogy csak a vezeték végén van terhelés, ahogy az 1. ábra mutatja.
Tápvezeték A fogyasztókat a tápponttal közvetlen összekötő vezetékeket tápvezetéknek nevezzük. A tápvezetékre jellemző, hogy csak a vezeték végén van terhelés, ahogy az 1. ábra mutatja. U T l 1. ábra.
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) és a 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) és a 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 522 01
Számítási feladatok megoldással a 6. fejezethez
Számítási feladatok megoldással a 6. fejezethez. Egy szinuszosan változó áram a polaritás váltás után μs múlva éri el első maximumát. Mekkora az áram frekvenciája? T = 4 t = 4 = 4ms 6 f = = =,5 Hz = 5
VILLAMOSENERGIA-RENDSZER
SZÉCHENYI ISTVÁN EGYETEM HTTP://UNI.SZE.HU VILLAMOSENERGIA-RENDSZER 2014/2015 - tavaszi szemeszter További energiatermelési lehetőségek GEOTERMIKUS ENERGIA BIOMASSZA ERŐMŰ További energiatermelési lehetőségek
Számítási feladatok a 6. fejezethez
Számítási feladatok a 6. fejezethez 1. Egy szinuszosan változó áram a polaritás váltás után 1 μs múlva éri el első maximumát. Mekkora az áram frekvenciája? 2. Egy áramkörben I = 0,5 A erősségű és 200 Hz
SZÉCHENYI ISTVÁN EGYETEM HTTP://UNI.SZE.HU AUTOMATIZÁLÁSI TANSZÉK HTTP://AUTOMATIZALAS.SZE.HU HÁLÓZATOK MÉRETEZÉSE
SZÉCHENY STÁN EGYETEM HTT://N.SZE.H HÁLÓZATOK MÉRETEZÉSE Marcsa Dániel illamos gépek és energetika 2013/2014 - őszi szemeszter Kisfeszültségű hálózatok méretezése A leggyakrabban kisfeszültségű vezetékek
VIVEA336 Villamos kapcsolókészülékek Házi feladat
1. feladat Mekkora a potenciál egy U feszültségű vasúti munkavezeték mellett x távolságban és h magasságban, az ott futó távközlő vezeték helyén? A munkavezeték föld feletti magassága h m, a vezető átmérője
Épületinformatika â 1880 Edison
â 1880 Edison levego ben kifeszített fém szál zárlati áram korlátozásra csak kis zárlati teljesítmény esetén használható Iváncsy Tamás Villamos Energetika Tanszék Nagyfeszültségu Technika és Berendezések
A 27/2012 (VIII. 27.) NGM rendelet 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.
A 27/2012 (VIII. 27.) NGM rendelet 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 522 01 Erősáramú elektrotechnikus
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) és a 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) és a 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 522 01
ÜZLETKÖTŐI ÉRTEKEZLET 2012-01-13 DUNAKESZI
ÜZLETKÖTŐI ÉRTEKEZLET 2012-01-13 DUNAKESZI ÉS MOTORVÉDŐ KAPCSOLÓK KONTAKTOROK Kontaktor definíció: Olyan gyakori működésre alkalmas elektromágneses elven működtetett mechanikus kapcsolókészülék,
Nemzeti Akkreditáló Testület. RÉSZLETEZŐ OKIRAT a NAT /2014 nyilvántartási számú akkreditált státuszhoz
Nemzeti Akkreditáló Testület RÉSZLETEZŐ OKIRAT a NAT-1-1732/2014 nyilvántartási számú akkreditált státuszhoz Az INFOWARE Vállalkozási és Kereskedelmi Zrt. Zárlati próbaállomás (2310 Szigetszentmiklós,
A 27/2012 (VIII. 27.) NGM rendelet 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.
A 27/2012 (VIII. 27.) NGM rendelet 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 522 01 Erősáramú elektrotechnikus
OPT. típusú öntáp-egységek ΩProt készülékek számára. Budapest, 2005. április. Azonosító: OP-13-6769-20
OmegaProt OPT típusú öntáp-egységek ΩProt készülékek számára Azonosító: OP-13-6769-20 Budapest, 2005. április Alkalmazási terület Azt OPT típusú öntáp-egység másik ΩProt készülék táplálására és az általa
RÉSZLETEZŐ OKIRAT (3) a NAH /2014 nyilvántartási számú 2 akkreditált státuszhoz
RÉSZLETEZŐ OKIRAT (3) a NAH-1-1732/2014 nyilvántartási számú 2 akkreditált státuszhoz 1) Az akkreditált szervezet neve és címe: INFOWARE Vállalkozási és Kereskedelmi Zrt. Zárlati próbaállomás 2310 Szigetszentmiklós,
Használható segédeszköz: szabványok, táblázatok, gépkönyvek, számológép
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 34 522 02 Elektromos gép- és készülékszerelő
VILLAMOS ENERGETIKA VIZSGA DOLGOZAT - A csoport
VILLAMOS ENERGETIKA VIZSGA DOLGOZAT - A csoport MEGOLDÁS 2013. június 3. 1.1. Mekkora áramot (I w, I m ) vesz fel az a fogyasztó, amelynek adatai: U n = 0,4 kv (vonali), S n = 0,6 MVA (3 fázisú), cosφ
Az olvadóbiztosító: Működés zárlatkor:
Az olvadóbiztosító: Az olvadó biztosító olyan kapcsolókészülék, amely az áramkörbe beiktatott olvadó elemének (egy vagy több párhuzamosan kapcsolt olvadószálának) megolvadásával és az azt követő ív oltásával
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 522 01 Erősáramú elektrotechnikus
0,16A, kioldási osztály 10 0,11-0,16A / 0,04kW BES ,20A, kioldási osztály 10 0,14-0,20A / 0,06kW BES00020
W BES MOTORVÉDŐKAPCSOLÓ NAGYSÁG 0 Összeépíthető 0 nagyságú mágneskapcsolóval az LSZ0D002 mechanikus összekötővel (AC tekercs) vagy az LSZ0D004-gyel (DC tekercs) Összeépíthető 00 nagyságú mágneskapcsolóval
Használható segédeszköz: szabványok, táblázatok, gépkönyvek, számológép
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 34 522 02 Elektromos gép- és készülékszerelő
Gazsó András, Kisfeszültségű készülékek és berendezések, Solar bemutató Kisfeszültségű elemek. ABB April 11, 2014 Slide 1
Gazsó András, Kisfeszültségű készülékek és berendezések, 2014.04.11. Solar bemutató Kisfeszültségű elemek April 11, 2014 Slide 1 Szolár erőművek fajtái Lakossági AC elosztó String elosztó Napelemek Inverter
Tájékoztató. Használható segédeszköz: számológép
T 5 5 0/ A 9/06. (VIII. 6.) NGM rendelet szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 5 5 0 Automatikai berendezés karbantartó Tájékoztató A vizsgázó az első lapra
VÁLTAKOZÓ ÁRAMÚ KÖRÖK
Számítsuk ki a 80 mh induktivitású ideális tekercs reaktanciáját az 50 Hz, 80 Hz, 300 Hz, 800 Hz, 1200 Hz és 1,6 khz frekvenciájú feszültséggel táplált hálózatban! Sorosan kapcsolt C = 700 nf, L=600 mh,
1. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye?
.. Ellenőrző kérdések megoldásai Elméleti kérdések. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye? Az ábrázolás történhet vonaldiagramban. Előnye, hogy szemléletes.
Kiegészítô mûszaki adatok
Compact S Kiegészítô mûszaki adatok Bemutatás Alkalmazások és mûszaki adatok Beépítési javaslatok Méretek 47 Csatlakozás 8 Villamos bekötési rajzok 9 Kioldási görbék 4 Compact S80-MA 4 Compact S0 0 az
Kiserőmű igénybejelentés
Kiserőmű igénybejelentés 1. IGÉNYBEJELENTŐ ADATAI Székhelye: Cégjegyzékszáma: Az igénybejelentő kapcsolattartója: Neve: Telefonszáma: E-mail címe: Az igénybejelentő által megbízott villamos tervező (vagy
ikerfém kapcsoló Eloadás Iváncsy Tamás termisztor â Közvetett védelem: áramvédelem
â Közvetlen motorvédelem: hovédelem ikerfém kapcsoló kis teljesítményen: közvetlenül kapcsolja a motort nagy teljesítményen: kivezetéssel muködteti a 3 fázisú kapcsolót Iváncsy Tamás termisztor â Közvetett
Nagy épület villamos betáplálása. Épületinformatika. Nagy épület villamos betáplálása. Nagy épület villamos betáplálása. Eloadás.
Nagy épület villamos betáplálása Iváncsy Tamás Villamos Energetika Tanszék Nagyfeszültségu Technika és Berendezések Csoport Nagy épület villamos betáplálása Nagy épület villamos betáplálása M Motor. Nagy
2014. április 14. NÉV:...
VILLAMOS ENERGETIKA A CSOPORT 2014. április 14. NÉV:... NEPTUN-KÓD:... Terem és ülőhely:... 1. 2. 3. 4. 5. 1. feladat 10 pont 1.1. Az ábrán látható transzformátor névleges teljesítménye 125 MVA, százalékos
33 522 04 1000 00 00 Villanyszerelő 4 Villanyszerelő 4
A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,
KISERŐMŰ IGÉNYBEJELENTÉS
M13 sz. melléklet E.ON Tiszántúli Áramhálózati Zrt. - Elosztói Üzletszabályzat KISERŐMŰ IGÉNYBEJELENTÉS 1. RENDSZERHASZNÁLÓ ADATAI 1.1. Cégneve:... 1.2. Székhelye:... 1.3. Levelezési címe:... 1.4. Cégjegyzékszáma:...
MPX 3 motorvédő kismegszakítók
MPX 3 motorvédő kismegszakítók műszaki jellemzők MOTORVÉDŐ KISMEGSZAKÍTÓK MPX 3 32S MPX 3 32H Méret 1 2 Típus termikus-mágneses termikus-mágneses Zárlati megszakítóképesség normál kiemelt Kar típusa billenőkaros
4. /ÁK Adja meg a villamos áramkör passzív építő elemeit!
Áramkörök 1. /ÁK Adja meg a mértékegységek lehetséges prefixumait (20db)! 2. /ÁK Értelmezze az ideális feszültség generátor fogalmát! 3. /ÁK Mit ért valóságos feszültség generátor alatt? 4. /ÁK Adja meg
4. /ÁK Adja meg a villamos áramkör passzív építő elemeit!
Áramkörök 1. /ÁK Adja meg a mértékegységek lehetséges prefixumait (20db)! 2. /ÁK Értelmezze az ideális feszültség generátor fogalmát! 3. /ÁK Mit ért valóságos feszültség generátor alatt? 4. /ÁK Adja meg
ÍRÁSBELI FELADAT MEGOLDÁSA
33 522 04 1000 00 00-2013 MAGYAR KERESKEDELMI ÉS IPARKAMARA Szakma Kiváló Tanulója Verseny Elődöntő ÍRÁSBELI FELADAT MEGOLDÁSA Szakképesítés: 33 522 04 1000 00 00 SZVK rendelet száma: Modulok: Modulon
Villanyszerelő 4. 33 522 04 0001 33 02 Érintésvédelmi,erősáramú berendezés szabványossági felülvizsgáló
A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,
Táblázat fejlécek piktogramjai IP65 / C. Hőmérsékleti együttható IEC 60947-3. L-N 8/20μs. Névleges szigetelési feszültség. mod
Táblázat fejlécek piktogramjai Ajtókupplungos Alapkivitel IP65 Tokozva IP65 Isc Rövidzárási áram Umpp Névleges feszültség Impp Névleges áram % Hatásfok Pmax Névleges teljesítmény max Teljesítmény-tolerancia
HÁLÓZATI INSTALLÁCIÓS KÉSZÜLÉKEK Segéd és hibajelző érintkező 500 V C (A) 230 V AC 3 A 6 A 1 A 2 A 4 A
HÁLÓZATI INSTALLÁIÓS KÉSZÜLÉKEK Segéd és hibajelző érintkező 20/400 V A 5.000 20 5 7.5 4.000 0,5-4 -25..+55 Piktogramok F/0 -AUX11 EVOH-AUX11 EVOTDA-AUX11 -AL EVOH-AL EVOTDA-AL EVOH EVOTDA EVOH EVOTDA
Marcsa Dániel Transzformátor - példák 1. feladat : Egyfázisú transzformátor névleges teljesítménye 125kVA, a feszültsége U 1 /U 2 = 5000/400V. A névleges terheléshez tartozó tekercsveszteség 0,06S n, a
VILLAMOS ENERGETIKA VIZSGA DOLGOZAT - A csoport
VILLAMOS ENERGETIKA VIZSGA DOLGOZAT - A csoport MEGOLDÁS 2013. június 10. 1.1. Egy öntözőrendszer átlagosan 14,13 A áramot vesz fel 0,8 teljesítménytényező mellett a 230 V fázisfeszültségű hálózatból.
ES SOROZAT. Installációs mágneskapcsolók A
2 vagy 4 érintkezővel: 25 A, 4 érintkezővel: 40 A vagy 63 A Az érintkezők kivitele: érintkezőhíd A nyitott érintkezők távolsága: záró 3 mm, nyitó 1.5 mm (22.32 és 22.34-es típusoknál), nyitó 3 mm (22.44
Beépítési útmutató Méretek 0 EasyPact 100 EasyPact 250
Beépítési útmutató Méretek 0 EasyPact 100 EasyPact 250 Méretek EasyPact 100 Méretek EasyPact 250 DB106057 DB106058 Beépítés szerelõlapra EasyPact 100 Beépítés szerelõlapra EasyPact 250 DB106095 Beépítés
Villanyszerelő Érintésvédelmi, erősáramú berendezés szabványossági felülvizsgáló
A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,
SPX vízszintes késes szakaszolókapcsoló kalapsínre, szerelőlapra vagy 600mm-es gyűjtősínrendszerre
SPX vízszintes késes szakaszolókapcsoló kalapsínre, szerelőlapra vagy mm-es gyűjtősínrendszerre SPX-V függőleges késes szakaszolókapcsoló 0, vagy 85 mm-es gyűjtősínrendszerre 052 052 02 052 04 052 0 052
Oldalra szerelhető, 1 z + 1 ny 00/0/2/ BEZ Mellső beépítésű, 1 z + 1 ny 00/0/2/ BEZ00003
W SEGÉDÉRINTKEZŐ Be- és kikapcsolt állapot jelzése A motorvédőkapcsoló bal oldalára vagy elejére pattintható építési változatok Minden építési nagysághoz BEZ00001 Oldalra szerelhető, 1 z + 1 ny 00/0/2/3
MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny. Elődöntő KOMPLEX ÍRÁSBELI FELADATSOR
MAGYAR KERESKEDELMI ÉS IPARKAMARA Országos Szakmai Tanulmányi Verseny Elődöntő KOMPLEX ÍRÁSBELI FELADATSOR Szakképesítés: SZVK rendelet száma: Komplex írásbeli: Számolási, szerkesztési, szakrajzi feladatok
VX 3 függőleges optimalizált elosztási rendszerek
VX 3 optimalizált elosztási rendszerek VX 3 elosztási rendszerek I max (A) Szerelés Kat. szám lexo³ XL³ 125 XL³ 160 Elosztószekrények XL³ 400 XL³ 800 XL³ 4000 Elosztók mérete alapján: VX 3 4 rugós elosztóblokk
fűtőteljesítmény 10 W ventilátor nélkül névleges üzemi feszültség ( )V AC/DC
7H 7H- Kapcsolószekrények fűtőegységei Fűtőteljesítmény (10 550)W Tápfeszültség vagy Légbefúvással vagy anélkül Kettős szigetelésű műanyag készülékház Alacsony felületi hőmérséklet Dinamikus felfűtés a
kis vagy közepes bekapcsolási áramok kapcsolására érintkezők anyaga AgNi 2 NO 1 NO + 1 NC 2 NC Lásd rendelési információk 250 / 440 250 / 440 2.
2 vagy 4 érintkezővel: 25, 4 érintkezővel: 40 vagy 63 z érintkezők kivitele: érintkezőhíd nyitott érintkezők távolsága: záró 3 mm, nyitó 1,5 mm (22.32 és 22.34-es típusoknál), nyitó 3 mm (22.44 és 22.64-es
KöF kapcsolóberendezés végeselemes analízisei. Balázs Novák
KöF kapcsolóberendezés végeselemes analízisei Tartalom a)bevezetés t)gáznyomás u)átütések v)joule-veszteség w)állandósult melegedés Balázs Novák (mechanikai analízis) (villamos térerősség) (elektromágneses
Versenyző kódja: 30 27/2012. (VIII. 27.) NGM rendelet MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny.
54 522 01-2016 MAGYAR KERESKEDELMI ÉS IPARKAMARA Országos Szakmai Tanulmányi Verseny Elődöntő ÍRÁSBELI FELADAT Szakképesítés: 54 522 01 SZVK rendelet száma: 27/2012. (VIII. 27.) NGM rendelet : Számolási/szerkesztési/szakrajzi
VILLAMOS ENERGETIKA PÓT-PÓTZÁRTHELYI - A csoport
VILLAMOS ENERGETIKA PÓT-PÓTZÁRTHELYI - A csoport MEGOLDÁS 2014. május 21. 1.1. Tekintsünk egy megoszló terheléssel jellemezhető hálózatot! A hosszegységre eső áramfelvétel i = 0,24 A/m fázisonként egyenlő
Háromfázisú aszinkron motorok
Háromfázisú aszinkron motorok 1. példa Egy háromfázisú, 20 kw teljesítményű, 6 pólusú, 400 V/50 Hz hálózatról üzemeltetett aszinkron motor fordulatszáma 950 1/min. Teljesítmény tényezője 0,88, az állórész
VILLAMOS ENERGETIKA VIZSGA DOLGOZAT - A csoport
VILLAMOS ENERGETIKA VIZSGA DOLGOZAT - A csoport MEGOLDÁS 2013. június 21. 390.5D, 7B, 8B, 302.2B, 102.2B, 211.2E, 160.4A, 240.2B, 260.4A, 999A, 484.3A, 80.1A, 281.2A, 580.1A 1.1. Határozza meg az ábrán
Kisfeszültségű termékek. Termékválaszték 2014
Kisfeszültségű termékek Termékválaszték 2014 Megbízható minőség Tartalom Moduláris alkatrészek 01-09 Kismegszakítók és moduláris kapcsolók Életvédelmi relék Időzítő relék és moduláris mágneskapcsolók Túlfeszültség
CP-ST. Elektromos centrifugálszivattyúk rozsdamentes acélból
CP-ST Elektromos centrifugálszivattyúk rozsdamentes acélból Szivattyúház: AISI 304 rozsdamentes acél Járókerék: AISI 304 rozsdamentes acél Tengely: AISI 431 rozsdamentes acél Szivattyúház: AISI 316L rozsdamentes
2 érintkező 1 NO (záróé.) + 1 NC (nyitóé.)
7S 7S Relék kényszerműködtetésű érintkezőkkel, A típusú érintkezők az EN 50205:2002 szerint Gépek, villamos vezérlések funkcionális biztonsági követelményeinek teljesítése az EN 13849-1 szerint Kényszerműködtetésű
VILLAMOS ENERGETIKA PÓTPÓTZÁRTHELYI DOLGOZAT - A csoport
VLLAMOS ENERGETKA PÓTPÓTZÁRTHELY DOLGOZAT - A csoport 2013. május 22. NÉV:... NEPTN-KÓD:... Terem és ülőhely:... A dolgozat érdemjegye az összpontszámtól függően: 40%-tól 2, 55%-tól 3, 70%-tól 4, 85%-tól
Táblázat fejlécek piktogramjai IP65 / C. Hőmérsékleti együttható IEC L-N 8/20μs. Névleges szigetelési feszültség. mod
Táblázat fejlécek piktogramjai Ajtókupplungos Alapkivitel IP65 Tokozva IP65 Isc Rövidzárási áram Umpp Névleges feszültség Impp Névleges áram % Hatásfok Pmax Névleges teljesítmény max Teljesítmény-tolerancia
NO + 1 NC, 20 A rögzítőfül a relé hátoldalán Faston 250 (6.3 x 0.8)mm
65- Teljesítményrelék 20-30 65-20 / 30 -es teljesítményrelék NYÁK-ba szereléshez vagy csúszósarus csatlakozással C vagy DC kivitelű tekercsek záróérintkezős változatnál teljes lekapcsolás az EN 60335-1
34-es sorozat - Ultravékony print-/dugaszolható relék 6 A
-es sorozat - Ultravékony print-/dugaszolható relék 6 A - 5 mm széles, ultravékony relé - Érzékeny DC tekercs, 170 mw - Biztonsági elválasztás VDE 0160/EN 50178 szerint a tekercs és az érintkezõk között
ÍRÁSBELI FELADAT MEGOLDÁSA
33 522 04 1000 00 00-2012 MAGYAR KERESKEDELMI ÉS IPARKAMARA Szakma Kiváló Tanulója Verseny Elődöntő ÍRÁSBELI FELADAT MEGOLDÁSA Szakképesítés: 33 522 04 1000 00 00 Villanyszerelő Feladatok a szakmai ismeretek,
Késes biztosítók G/8. Késes biztosítók MSZ EN 60269-1 MSZ EN 60269-2 MSZ HD 60269-2-1
Késes biztosítók A késes biztosító túlterhelés vagy zárlat esetén - a létrejövő hő hatására történő kiolvadás útján - nyitja az áramkört, ezáltal a mögötte lévő vezetékrészt és fogyasztókészülékeket megóvja.
7S sorozat - Relék kényszerműködtetésű érintkezőkkel 6 A
7S - Relék kényszerműködtetésű érintkezőkkel 6 A 7S Relék kényszerműködtetésű érintkezőkkel, A típusú érintkezők az EN 50205:2002 szerint 7S.12...5110 7S.14...0220/0310 7S.16..0420 Gépek, villamos vezérlések
CTX 3 ipari mágneskapcsolók 3P
CTX 3 ipari mágneskapcsolók 3P 9 és 100 A között 4 160 96 4 161 26 4 161 46 4 161 56 4 161 86 4 161 96 Műszaki jellemzők (60. oldal) Geometriai méretek és koordinációs táblázatok, e-katalógusban Megfelel
21. laboratóriumi gyakorlat. Rövid távvezeték állandósult üzemi viszonyainak vizsgálata váltakozóáramú
1. laboratóriumi gyakorlat Rövid távvezeték állandósult üzemi viszonyainak vizsgálata váltakozóáramú kismintán 1 Elvi alapok Távvezetékek villamos számításához, üzemi viszonyainak vizsgálatához a következő
Használható segédeszköz: szabványok, táblázatok, gépkönyvek, számológép
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 34 522 02 Elektromos gép- és készülékszerelő
LÉPCSŐHÁZI AUTOMATÁK W LÉPCSŐHÁZI AUTOMATA TIMON W SCHRACK INFO W FUNKCIÓK W MŰSZAKI ADATOK
W LÉPCSŐHÁZI AUTOMATA TIMON 150 BZ327210-A W FUNKCIÓK Energiamegtakarítás funkció Beállíthatóság 0,5 30 perc Halk működés Nagy bekapcsoló képesség, 80 A max / 20 ms 3 vagy 4 vezetékes bekötés Glimmlámpaállóság:
22-es sorozat - Installációs mágneskapcsolók 25 A
Installációs mágneskapcsolók 2 vagy 4 érintkezővel, 25 A Érintkezők kettős megszakítási hellyel A nyitott érintkezők távolsága 3 mm (záró) A nyitott érintkezők távolsága 1,5 mm (nyitó) Belső kapcsolási
11-12. évfolyam. A tantárgy megnevezése: elektrotechnika. Évi óraszám: 69. Tanítási hetek száma: 37 + 32. Tanítási órák száma: 1 óra/hét
ELEKTROTECHNIKA (VÁLASZTHATÓ) TANTÁRGY 11-12. évfolyam A tantárgy megnevezése: elektrotechnika Évi óraszám: 69 Tanítási hetek száma: 37 + 32 Tanítási órák száma: 1 óra/hét A képzés célja: Választható tantárgyként
Egyenáram tesztek. 3. Melyik mértékegység meghatározása nem helyes? a) V = J/s b) F = C/V c) A = C/s d) = V/A
Egyenáram tesztek 1. Az alábbiak közül melyik nem tekinthető áramnak? a) Feltöltött kondenzátorlemezek között egy fémgolyó pattog. b) A generátor fémgömbje és egy földelt gömb között szikrakisülés történik.
Programozható vezérlő rendszerek. Elektromágneses kompatibilitás II.
Elektromágneses kompatibilitás II. EMC érintkező védelem - az érintkezők nyitása és zárása során ún. átívelések jönnek létre - ezek csökkentik az érintkezők élettartamát - és nagyfrekvenciás EM sugárzások
2. Mágneskapcsolók: NC1-es sorozat
2. Mágneskapcsolók: NC1-es sorozat Alkalmazási terület: A mágneskapcsolót egyen- vagy váltakozó feszültséggel vezérelve kapcsolhatunk max. 6VAC névleges feszültségű és 95A névleges áramú áramkört. A készülék
Sorbaépíthető jelző, működtető és vezérlőkészülékek
w Lépcsőházi automaták w Schrack-Info Lépcsőházi automaták TIMON, VOWA, BZ BZ327350 w Lépcsőházi automata TIMON w Schrack-Info Energiamegtakarítási funkció Beállítható kapcsolási idő 0,5-30 perc Alacsony
67- ES SOROZAT. 67-ES SOROZAT Teljesítményrelék 50 A. -AgSnO -
67-ES SOROZT Teljesítményrelék 50 67- ES SOROZT Teljesítményrelék, inverterekben történő alkalmazásra, nyitott érintkezők távolsága 3 mm, 50 67.22-x300-as típus 2 záróérintkező (hídérintkezők) 67.23-x300-as
Elektromos ellenállás, az áram hatásai, teljesítmény
Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás Az anyag részecskéi akadályozzák a töltések mozgását. Ezt a tulajdonságot nevezzük elektromos ellenállásnak. Annak a fogyasztónak
Háztartási Méretű KisErőművek
Pásztohy Tamás. @hensel.hu Napelemes rendszerek érintés-, villám-, és s túlfeszt lfeszültségvédelme Háztartási Méretű KisErőművek Hálózatra visszatápláló (ON-GRID) rendszerek Napelemek Inverter Elszámolási
írásbeli vizsgatevékenység
Vizsgarészhez rendelt követelménymodul azonosítója, megnevezése: 0896-06 Villanyszerelési munka előkészítése, dokumentálása Vizsgarészhez rendelt vizsgafeladat száma, megnevezése: 0896-06/3 Mérési feladat
l i CSATLAKOZÓ-KOMBINÁCIÓK
r e GANZ KK Kft n ISO 9001 d s z e rb a en t l tá i d u CSATLAKOZÓKOMBINÁCIÓK A ház különlegesen erõs, ütésálló könnyen nyitható, ezáltal komfortos szerelést biztosít tömszelencén át csatlakoztatható 35
TGV-2 típusú kéziműködtetésű motorvédő kapcsoló Műszaki ismertető
TGV-2 típusú kéziműködtetésű motorvédő kapcsoló Műszaki ismertető A motorvédőkapcsoló olyan mechanikai kapcsolókészülék, amely hárompólusú érintkezőrendszerből, kéziműködtetésű mechanizmusból, termikus
BIZTOSÍTÓS KÉSZÜLÉKEK, GYŰJTŐSÍN RENDSZEREK
W TYTAN R BIZTOSÍTÓS KAPCSOLÓ 60 mm-es SÍNRENDSZERRE IS504851 Biztosító betéttartóval (villogó kiolvadásjelző) Szűkitő betéttel D01 és 10x38 mm cilinder betétekhez 400 V AC, 63 A, 50 ka, AC22B, lakatolható,
állítható termosztátok a fűtés kapcsolása* Min
7T 7T- Kapcsolószekrények hőmérsékletének a felu gyelete Kis méretek (szélesség: 17.5 mm) Bimetál rugóelőfeszítéses érintkezők Széles beállítási tartomány Nagy villamos élettartam TS 35 mm-es sínre szerelhető
Közreműködők Erdélyi István Györe Attila Horvát Máté Dr. Semperger Sándor Tihanyi Viktor Dr. Vajda István
Villamos forgógépek és transzformátorok Szakmai Nap Szupravezetős Önkorlátozó Transzformátor Györe Attila VILLAMOS ENERGETIKA TANSZÉK BUDA PESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGY ETEM Közreműködők Erdélyi
CTX-1 ipari mágneskapcsoló
Te CTX-1 ipari mágneskapcsoló műszaki jellemzők Szabványok Megfelel az alábbi előírásoknak: - IEC/EN 60947-1 - IEC/EN 60947-4-1 - IEC/EN 60947-5-1 - UL 508 Környezeti feltételek Tárolási hőmérséklet: -
ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM
ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL INFORMATIKUS HALLGATÓK RÉSZÉRE 1. EGYENÁRAM 1. Vezesse le a feszültségosztó képletet két ellenállás (R 1 és R 2 ) esetén! Az összefüggésben szerepl mennyiségek jelölését
Érintésvédelem alapfogalmak
Érintésvédelem alapfogalmak Horváth Zoltán Villamos üzemmérnök T: 06 20 9 284 299, E mail: horvath.z@clh.hu Miért fontos az ÉV ellenőrzése? Munkánk során felelősek vagyunk azért, amit teszünk DE: felelősek
2 váltóérintkező, 8 A push in kapcsok
4C 4C- Csatoló relék, 1 vagy 2 váltóérintkező push in csatlakozókkal 4C.P1 4C.P2 4C.P1-es típus 1 váltóérintkező 10 A 4C.P2-es típus 2 váltóérintkező 8 A AC vagy DC kivitelű tekercsek LED-es állapotjelző
Kisfeszültségű energiaelosztás
A Fupact készülékek általános bemutatása Fupact termékcsalád leírása és működési módja A Fupact termékcsalád egy készülékbe integrálja a kapcsolás, a szakaszolás és a biztosítófoglalat funkciókat. Ezeket
Áramköri elemek mérése ipari módszerekkel
3. aboratóriumi gyakorlat Áramköri elemek mérése ipari módszerekkel. dolgozat célja oltmérők, ampermérők használata áramköri elemek mérésénél, mérési hibák megállapítása és azok függősége a használt mérőműszerek
7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át?
1. Jelöld H -val, ha hamis, I -vel ha igaz szerinted az állítás!...két elektromos töltés között fellépő erőhatás nagysága arányos a két töltés nagyságával....két elektromos töltés között fellépő erőhatás
DILEM12-10 (230 V 50 HZ, 240 V 60 HZ)
1 oldal Kontaktor, 5,5 kw/400 V, AC-működtetésű Típus DILEM12-10 (230 V 50 HZ, 240 V 60 HZ) Cikkszám 127075 Választék Termékválaszték Választékcsoport Alkalmazási lehetőségek Ismertetés Pólusszám Csatlakoztatási
Magyar Mérnöki Kamara ELEKTROTECHNIKAI TAGOZAT Villámvédelmi vizsgára felkészítő tanf. 2015 MSZ EN 62305-3
Magyar Mérnöki Kamara ELEKTROTECHNIKAI TAGOZAT Villámvédelmi vizsgára felkészítő tanf. 2015 MSZ EN 62305-3 Alapok - Az építményben és annak környezetében a fizikai károsodás és az élőlények érintési és
EGYFÁZISÚ VÁLTAKOZÓ ÁRAM
VANYSEEŐ KÉPÉS 0 5 EGYFÁSÚ VÁTAKOÓ ÁAM ÖSSEÁÍTOTTA NAGY ÁSÓ MÉNÖKTANÁ - - Tartalomjegyzék Váltakozó áram fogalma és jellemzői...3 Szinuszos lefolyású váltakozó feszültség előállítása...3 A szinuszos lefolyású
24 VAC (3 VA), 100 115 VAC (4 VA), 200 230 VAC (5 VA) Maximális névleges bemeneti érték 10 100%-a
K8AB-AS Egyfázisú áramrelé Ezek az egyfázisú áramrelék a túláramok és áramesések figyelésére szolgálnak. Egyetlen relé lehetővé teszi a kézi és az automatikus nyugtázást. Az indítászárolási és a kapcsolási
Villanyszerelő 4. 33 522 04 0001 33 02 Érintésvédelmi,erősáramú berendezés szabványossági felülvizsgáló
A 10/2007 (. 27.) SzMM rendelettel módosított 1/2006 (. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,
58.P3 58.P4. 3 váltóérintkező, 10 A. push in kapcsok
58-58- Csatoló relék, 3 vagy 4 váltóérintkező push in csatlakozással 58.P3 58.P4 58.P3-as típus 3 váltóérintkező, 10 A 58.P4-es típus 4 váltóérintkező, 7 A AC vagy DC kivitelű tekercsek LED-es állapotjelző
Négypólusok helyettesítő kapcsolásai
Transzformátorok Magyar találmány: Bláthy Ottó Titusz (1860-1939), Déry Miksa (1854-1938), Zipernovszky Károly (1853-1942), Ganz Villamossági Gyár, 1885. Felépítés, működés Transzformátor: négypólus. Működési
Alapkészülék. csatlakoztatásához
Alapkészülék DE50546 Bekötés Biztonsági okokból (a veszélyes feszültségû kapcsok érintésének megakadályozása érdekében) minden csatlakozópont csavarját meg kell húzni, függetlenül attól, hogy használatban
Védelmi kapcsolókészülékek
Motorvédő kapcsoló Z-MS Megbízható védelem termikus túlterhelés és zárlat esetén. Alkalmas kiselosztókba történő beépítéshez. Érinkezőállás-kijelző piros - zöld. Fő alkalmazási terület: max. 15 kw (380/400