STM32 mikrovezérlők programozása ARM Keil környezetben

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "STM32 mikrovezérlők programozása ARM Keil környezetben"

Átírás

1 STM32 mikrovezérlők programozása ARM Keil környezetben 7. Analóg Digitális átalakító (ADC) 1

2 Felhasznált és ajánlott irodalom Joseph Yiu: Cortex-M for Beginners Joseph Yiu: Thee Definnitive Guide To Thee ARM CORTEX-M3 Muhammad Ali Mazidi, Shujen Chen, Eshragh Ghaemi: STM32 Arm Programming for Embedded Systems Alexander Tarasov: Курс «Штурмуем STM32» Warren Gay: Beginning STM32 - Developing with FreeRTOS, libopencm3 and GCC ARM Keil MDK Gettiing started STM32F103C8 adatlap és termékinfo STM32F103 Family Reference Manual 2

3 Az ADC főbb jellemzői Az STM32F103C8 mikrovezérlő 2 db 12-bites ADC-vel rendelkezik Bemenő feszültség tartománya: 0 < V IN < 3.6 V (V SS < V IN < V DDA ) Konverziós idő: 1 56 MHz ( MHz) Szingli és folytonos konverziós módok Pásztázó mód több csatorna automatikus méréséhez Önkalibrálás Csatornánként beállítható sorrend és mintavételezési idő Injektált csatornák közbevetetti mérése Külső triggerelés a reguláris és az injektált csatornák méréséhez Duál módú mérések a két ADC összekapcsolásával DMA adatátviteli kérelem generálása konverzió végén 3

4 Az ADC blokkvázata max. 14 MHz /2, /4, /6, /8 max. 72 MHz 4

5 Az ADC funkcionális leírása ADC ki-/bekapcsolás: az ADCx_CR2 regiszter ADON bitjével ADC órajel: APB2 busz PCLK2 órajeléből leosztással (/2, /4, /6, /8), ami az RCC_CFGR regiszter ADC_PRE[1:0] bitjeivel állítható be Csatorna kiválasztás: elvileg 16+2, gyakorlatilag csak 10+2 csatorna áll rendelkezésre, melyek csoportokba rendezhetők: reguláris csatornák: max pásztázandó csatorna, melyek száma és tetszőleges sorrendje az ADCx_SQRn regiszterekben adható meg injektált csatornák: legfeljebb 4 db pásztázandó csatorna, melyek melyek száma és sorrendje az ADCx_JSQR regiszterben adható meg Belső hőmérő: az ADC1_IN16 csatornán érhető el V25 = (1.43 ± 0.09) V, Avg_Slope = (4.3 ± 0.6) mv Belső referencia: (1.20±0.04) V, ADC1_IN17 csatornán érhető el 5

6 Szingli konverziós mód Ebben a módban az ADC egyetlen konverziót végez A konverzió indítható az ADC_CR2 regiszter ADON bitjével, vagy külső triggerjellel, miközben a CONT bit 0-ra van állítva Ahogy a kiválasztotti csatornában a konverzió véget ér: Ha reguláris csatornában mértünk: Az eredmény a 16-bites ADC_DR regiszterbe kerül Az EOC (End Of Conversion) jelzőbit 1-be áll és megszakítás keletkezik, ha az EOCIE engedélyező bit 1-be van állítva Ha injektált csatonában történt a mérés: Az eredmény a 16-bites ADC_DRJ1 regiszterbe kerül A JEOC (End Of Conversion Injected) jelzőbit 1-be áll és megszakítás keletkezik, ha a JEOCIE engedélyező bit 1-be van állítva Az ADC ezután leáll 6

7 A reguláris csatornákhoz tartozó regiszterek A reguláris csatornák használatához az ADC-k alábbi regisztereit használjuk Az üzemmódot a CR1, CR2 regiszterekben állíthatjuk be, a csatorná(ka)t az SQRn regiszterek választják ki, a mintavételezési időt az SMPRn regiszterek szabják meg Regiszternév ADC_SR Funkció ADC Status register ADC_CR1 ADC Control Register 1. ADC_CR2 ADC Control Register 2. ADC_SMPR1 ADC sample time register 1. ADC_SMPR2 ADC sample time register 2. ADC_SQR1 ADC regular sequence register 1. ADC_SQR2 ADC regular sequence register 2. ADC_SQR3 ADC regular sequence register 3. ADC_DR ADC regular data register 7

8 Az ADC fontosabb regiszterei ADC_SR ADC Status Register STRT - Regular channel Start flaag, JSTRT - Injected channel Start flaag JEOC End of conversion (injected), EOC End of conversion (regular) AWD Analog watchdog eseményjelző ADC_CR1 ADC Control Register 1. SCAN többcsatornás pásztázás engedélyezése 8

9 Az ADC fontosabb regiszterei ADC_CR2 ADC Control register 2. EXTSEL[2:0] triggerforrás választás EXTTRIG triggerelés engedélyezés SWSTART szoftvveres triggerelés ALIGN jobbra/balra igazítás DMA DMA mód engedélyezés CONT folyamatos mód ADON ADC bekapcsolás 9

10 Az ADC fontosabb regiszterei ADC_SMPR1/ADC_SMPR2 ADC mintavételezési idő megadása 10

11 Az ADC fontosabb regiszterei ADC_SQR1 - SQR3 ADC szekvenciák megadása 11

12 Program07_1 Az STM32F103C8 mikrovezérlő AN1 (PA1) analóg bemenetére kötötti potméter csúszkáról levetti feszültséget mérjük A konverziót az ADC1_CR2 regiszterben a SWSTART bit 1-be állításával indítjuk, külső triggerjel forrásként kell konfingurálni Az eredménytől függően (ha a 8. bit = 1), akkor kigyújtjuk a beépítetti LED-et, egyébként pedig leoltjuk 12

13 Program07_1/main.c #include "stm32f10x.h" int main (void) { int result; //--- PC13, a beépített LED konfigurálása RCC->APB2ENR = RCC_APB2ENR_IOPCEN; // GPIOC órajel engedélyezés GPIOC->CRH &= ~(GPIO_CRH_CNF13 GPIO_CRH_MODE13); // pin13 CNF/Mode bitek törlése GPIOC->CRH = GPIO_CRH_MODE13_1; // CNF:00, Mode:10 PPout, 2MHz GPIOC->BSRR = GPIO_BSRR_BS13; // GPIOC 13. bitset (LED ki) //--- PA1 analóg bemenet konfigurálása RCC->APB2ENR = RCC_APB2ENR_IOPAEN; // GPIOA engedélyezés GPIOA->CRL &= ~GPIO_CRL_MODE1; // PA1 analóg bemenet GPIOA->CRL &= ~GPIO_CRL_CNF1; // CNF=00, Mode=00 //--- ADC1 konfigurálása RCC->APB2ENR = RCC_APB2ENR_ADC1EN; // ADC1 órajel engedélyezés RCC->CFGR &= ~RCC_CFGR_ADCPRE_0; // ADC prescaler = 6 RCC->CFGR = RCC_CFGR_ADCPRE_1; // ADCCLK = 72/6 = 12 MHz ADC1->CR2 = ADC_CR2_EXTTRIG // External trigger engedélyezés ADC_CR2_EXTSEL; // EXTSEL=111 SW trigger választása ADC1->SQR3 = 1; // Ch 1-gyel indul a konverziós sorozat ADC1->SQR1 = 0; // A konverzió sorozat hossza = 1 ADC1->CR2 = ADC_CR2_ADON; // ADC1 engedélyezése 13

14 Program07_1/main.c } while (1) { ADC1->CR2 = ADC_CR2_SWSTART; while(!(adc1->sr & ADC_SR_EOC)); result = ADC1->DR; if (result & 0x100) GPIOC->BSRR = GPIO_BSRR_BR13; else GPIOC->BSRR = GPIO_BSRR_BS13; } // Konverzió indítása // Konverzió végére várunk // Az eredmény kiolvasása (törli az EOC bitet!) // Ha bit8 = 1, akkor // LED be // különben // LED ki 14

15 Program07_2 Az STM32F103C8 mikrovezérlő belső hőmérőjének (AN16) jelét mérjük és számítjuk át Celsius fokokra A konverziót Timer2 CH2 csatornájának CC2 eseményével (PWM1 módban CNT = CCR2 egyezés) keltjük, 1 másodpercenként Az eredményt az UART1 soros porton (RB6) kiíratjuk, az előző előadás uart_irq mintapéldájában bemutatotti módon 15

16 #include "stm32f10x.h" #include <stdio.h> extern void buffer_init (void); extern void USART1_init (void); void Timer2_Init(void); void ADC1_Init(void); void GPIO_Init(void); Program07_2/main.c A kiíratáshoz kellenek int main (void) { int data; double volt, temp; buffer_init(); // RX / TX bufferek inicializálása USART1_init(); // USART1 configuration Timer2_Init(); // TIM2 konfigurálás: 1 Hz trigger ADC1_Init(); // ADC1 konfigurálás belsö homerohöz enable_irq(); // Megszakítások globális engedélyezése printf("adc internal temperature sensor \r\n"); while (1) { // végtelen ciklus while(!(adc1->sr & ADC_SR_EOC)); // Konverzió végére várunk data = ADC1->DR; /* Temperature (in C) = {V25 - VSENSE ) / Avg_Slope} + 25 */ /* V25 = 1.41V, slope = 4.5 mv/c */ volt = (double)data*3.3 / 4096; /* convert ADC output to voltage */ temp = ( volt) / ; /* convert voltage to temperature C */ printf("%d, %.2f C\r\n", data, temp); } } 16

17 Program07_2/main.c /* TIMER2 CH2 konfigurálása 1 Hz-es triggereléshez */ void Timer2_Init() { RCC->APB1ENR = RCC_APB1ENR_TIM2EN; // TIM2 órajel engedélyezése TIM2->CR1 = 0; TIM2->CR2 = 0; TIM2->PSC = SystemCoreClock/ ; // 10 khz-re osztjuk le az órajelet TIM2->ARR = ; // 1000-ig számlálunk (1000 ms) TIM2->CNT = 0; // Számláló nullázása TIM2->CCMR1 = 0x6800; // Ch2 PWM1 mód, preload enable TIM2->CCER = TIM_CCER_CC2E; // Ch2 engedélyezése TIM2->CCR2 = 50-1; TIM2->CR1 = TIM_CR1_CEN; // Számlálás engedélyezés } OC2M = 110 PWM1 mód, OC2PE = 1 Preload register enable, CC2S = 00 output mode 17

18 Program07_2/main.c void ADC1_Init() { RCC->APB2ENR = RCC_APB2ENR_ADC1EN; // ADC1 órajel engedélyezés RCC->CFGR &= ~RCC_CFGR_ADCPRE_0; // ADC prescaler = 6 RCC->CFGR = RCC_CFGR_ADCPRE_1; // ADCCLK = 72/6 = 12 MHz ADC1->CR1 = 0; ADC1->CR2 = ADC_CR2_EXTTRIG // External trigger engedélyezés ADC_CR2_EXTSEL_0 // EXTSEL=011, TIM2 CC2 event ADC_CR2_EXTSEL_1; ADC1->SMPR1 = ADC_SMPR1_SMP16; // 111: Mintavétel ciklus ADC1->SQR3 = 16; // Ch 16. a belsö hömérö ADC1->SQR1 = 0; // A konverzió sorozat hossza=1 ADC1->CR2 = ADC_CR2_ADON // ADC1 engedélyezése ADC_CR2_TSVREFE; // A hömérö bekapcsolása } EXTSEL= 011 Timer2 CC2 event, EXTTRIG=1 triggering enable, ALIGN=0 jobbra igazítás CONT=0 single conversion mode, ADON=1 ADC power ON 18

19 Program07_2 futási eredmény A 72 MHz-en futó MCU a kiírás szerint elég melegnek tűnik, de vegyük fingyelembe, hogy a hőmérő nincs kalibrálva 19

20 20

ARM Cortex-M0+ mikrovezérlő programozása KEIL MDK 5 környezetben. 11. Impulzus-szélesség moduláció (PWM)

ARM Cortex-M0+ mikrovezérlő programozása KEIL MDK 5 környezetben. 11. Impulzus-szélesség moduláció (PWM) ARM Cortex-M0+ mikrovezérlő programozása KEIL MDK 5 környezetben 11. Impulzus-szélesség moduláció (PWM) 1 Felhasznált anyagok, ajánlott irodalom Muhammad Ali Mazidi, Shujen Chen, Sarmad Naimi, Sepehr Naimi:

Részletesebben

MSP430 programozás Energia környezetben. Analóg jelek mérése

MSP430 programozás Energia környezetben. Analóg jelek mérése MSP430 programozás Energia környezetben Analóg jelek mérése 1 Hőmérés a beépített szenzorral /* TemperatureSensor: Hőmérés a beépített hőmérővel. A jobb feloldás érdekében a beépített 1.5 V-os referenciához

Részletesebben

ARM Cortex-M0+ mikrovezérlő programozása KEIL MDK 5 környezetben. 7. Analóg perifériák

ARM Cortex-M0+ mikrovezérlő programozása KEIL MDK 5 környezetben. 7. Analóg perifériák ARM Cortex-M0+ mikrovezérlő programozása KEIL MDK 5 környezetben 7. Analóg perifériák 1 Felhasznált anyagok, ajánlott irodalom Joseph Yiu: The Definitive Guide to ARM Cortex -M0 and Cortex-M0+ Processors

Részletesebben

Mechatronika és mikroszámítógépek. 2016/2017 I. félév. Analóg-digitális átalakítás ADC, DAC

Mechatronika és mikroszámítógépek. 2016/2017 I. félév. Analóg-digitális átalakítás ADC, DAC Mechatronika és mikroszámítógépek 2016/2017 I. félév Analóg-digitális átalakítás ADC, DAC AD átalakítás Cél: Analóg (időben és értékben folytonos) elektromos mennyiség kifejezése digitális (értékében nagyságában

Részletesebben

Jelfeldolgozás a közlekedésben. 2017/2018 II. félév. Analóg-digitális átalakítás ADC, DAC

Jelfeldolgozás a közlekedésben. 2017/2018 II. félév. Analóg-digitális átalakítás ADC, DAC Jelfeldolgozás a közlekedésben 2017/2018 II. félév Analóg-digitális átalakítás ADC, DAC AD átalakítás Cél: Analóg (időben és értékben folytonos) elektromos mennyiség kifejezése digitális (értékében nagyságában

Részletesebben

I. C8051Fxxx mikrovezérlők hardverfelépítése, működése. II. C8051Fxxx mikrovezérlők programozása. III. Digitális perifériák

I. C8051Fxxx mikrovezérlők hardverfelépítése, működése. II. C8051Fxxx mikrovezérlők programozása. III. Digitális perifériák I. C8051Fxxx mikrovezérlők hardverfelépítése, működése 1. Adja meg a belső RAM felépítését! 2. Miben különbözik a belső RAM alsó és felső felének elérhetősége? 3. Hogyan érhetők el az SFR regiszterek?

Részletesebben

Járműfedélzeti rendszerek I. 5. előadás Dr. Bécsi Tamás

Járműfedélzeti rendszerek I. 5. előadás Dr. Bécsi Tamás Járműfedélzeti rendszerek I. 5. előadás Dr. Bécsi Tamás Megszakítások (Interrupts: IT) Megszakítás fogalma Egy aszinkron jelzés (pl. gomblenyomás) a processzor felé (Interrupt Request: IRQ), hogy valamely

Részletesebben

ARM Cortex-M0+ mikrovezérlő programozása KEIL MDK 5 környezetben. 5. Időzítők, számlálók 1. rész

ARM Cortex-M0+ mikrovezérlő programozása KEIL MDK 5 környezetben. 5. Időzítők, számlálók 1. rész ARM Cortex-M0+ mikrovezérlő programozása KEIL MDK 5 környezetben 5. Időzítők, számlálók 1. rész 1 Felhasznált anyagok, ajánlott irodalom Joseph Yiu: The Definitive Guide to ARM Cortex -M0 and Cortex-M0+

Részletesebben

Mintavételezés tanulmányozása. AD - konverzió. Soros kommunikáció

Mintavételezés tanulmányozása. AD - konverzió. Soros kommunikáció Mintavételezés tanulmányozása. AD - konverzió. Soros kommunikáció A gyakorlat célja A gyakorlat során a dspic30f6010 digitális jelprocesszor Analóg Digital konverterét tanulmányozzuk. A mintavételezett

Részletesebben

Dr. Oniga István DIGITÁLIS TECHNIKA 9

Dr. Oniga István DIGITÁLIS TECHNIKA 9 r. Oniga István IGITÁLIS TEHNIKA 9 Regiszterek A regiszterek több bites tárolók hálózata S-R, J-K,, vagy kapuzott tárolókból készülnek Fontosabb alkalmazások: adatok tárolása és adatmozgatás Funkcióik:

Részletesebben

Labor 2 Mikrovezérlők

Labor 2 Mikrovezérlők Labor 2 Mikrovezérlők ATMEL AVR - ARDUINO BUDAI TAMÁS 2015. 09. 06. Tartalom Mikrovezérlők Mikrovezérlők felépítése, működése Mikrovezérlő típusok, gyártók Mikrovezérlők perifériái Mikrovezérlők programozása

Részletesebben

Dr. Oniga István DIGITÁLIS TECHNIKA 9

Dr. Oniga István DIGITÁLIS TECHNIKA 9 r. Oniga István IGITÁLIS TEHNIKA 9 Regiszterek A regiszterek több bites tárolók hálózata S-R, J-K,, vagy kapuzott tárolókból készülnek Fontosabb alkalmazások: adatok tárolása és adatmozgatás Funkcióik:

Részletesebben

ARM Cortex-M0+ mikrovezérlő programozása KEIL MDK 5 környezetben. 5. Időzítők, számlálók 2. rész

ARM Cortex-M0+ mikrovezérlő programozása KEIL MDK 5 környezetben. 5. Időzítők, számlálók 2. rész ARM Cortex-M0+ mikrovezérlő programozása KEIL MDK 5 környezetben 5. Időzítők, számlálók 2. rész 1 Felhasznált anyagok, ajánlott irodalom Joseph Yiu: The Definitive Guide to ARM Cortex -M0 and Cortex-M0+

Részletesebben

MSP430 programozás Energia környezetben. Az I/O portok kezelése

MSP430 programozás Energia környezetben. Az I/O portok kezelése MSP430 programozás Energia környezetben Az I/O portok kezelése 1 Egyszerű I/O vezérlés Digitális I/O pinmode(pin, mode) kivezetés üzemmódjának beállítása digitalwrite(pin, state) - kimenetvezérlés digitalread(pin)

Részletesebben

Újrakonfigurálható eszközök

Újrakonfigurálható eszközök Újrakonfigurálható eszközök 15. Cypress PSOC 5LP DMA adatátvitel Hobbielektronika csoport 2017/2018 1 Debreceni Megtestesülés Plébánia Felhasznált irodalom és segédanyagok Cypress: CY8C58LP FamilyDatasheet

Részletesebben

Mérési jegyzőkönyv. az ötödik méréshez

Mérési jegyzőkönyv. az ötödik méréshez Mérési jegyzőkönyv az ötödik méréshez A mérés időpontja: 2007-10-30 A mérést végezték: Nyíri Gábor kdu012 mérőcsoport A mérést vezető oktató neve: Szántó Péter A jegyzőkönyvet tartalmazó fájl neve: ikdu0125.doc

Részletesebben

Bevezetés a mikrovezérlők programozásába: Az Arduino, mint logikai analizátor

Bevezetés a mikrovezérlők programozásába: Az Arduino, mint logikai analizátor Bevezetés a mikrovezérlők programozásába: Az Arduino, mint logikai analizátor 1 Hasznos eszközök hibakereséshez Logikai áramkörök Logikai teszter Analóg áramkörök Voltmérő Logikai analizátor Oszcilloszkóp

Részletesebben

MSP430 programozás Energia környezetben. Szervó motorok vezérlése

MSP430 programozás Energia környezetben. Szervó motorok vezérlése MSP430 programozás Energia környezetben Szervó motorok vezérlése 1 Szervo motorok Felépítés Jelalak 2 Servo programkönyvtár A gyári Servo programkönyvtár max. 8 db szervót kezel, s ezekhez felhasználja

Részletesebben

ATMEL ATMEGA MIKROVEZÉRLŐ-CSALÁD

ATMEL ATMEGA MIKROVEZÉRLŐ-CSALÁD Misák Sándor ATMEL ATMEGA MIKROVEZÉRLŐ-CSALÁD Nanoelektronikai és Nanotechnológiai Részleg DE TTK v.0.1 (2007.02.13.) 1. előadás 1. Általános ismeretek. 2. Sajátos tulajdonságok. 3. A processzor jellemzői.

Részletesebben

ÖNÁLLÓ LABOR Mérésadatgyűjtő rendszer tervezése és implementációja

ÖNÁLLÓ LABOR Mérésadatgyűjtő rendszer tervezése és implementációja ÖNÁLLÓ LABOR Mérésadatgyűjtő rendszer tervezése és implementációja Nagy Mihály Péter 1 Feladat ismertetése Általános célú (univerzális) digitális mérőműszer elkészítése Egy- vagy többcsatornás feszültségmérés

Részletesebben

Járműfedélzeti rendszerek I. 4. előadás Dr. Bécsi Tamás

Járműfedélzeti rendszerek I. 4. előadás Dr. Bécsi Tamás Járműfedélzeti rendszerek I. 4. előadás Dr. Bécsi Tamás Rendszer órajel Órajel osztás XTAL Divide Control (XDIV) Register 2 129 oszthat Órajel források CKSEL fuse bit Külső kristály/kerámia rezonátor Külső

Részletesebben

Yottacontrol I/O modulok beállítási segédlet

Yottacontrol I/O modulok beállítási segédlet Yottacontrol I/O modulok beállítási segédlet : +36 1 236 0427 +36 1 236 0428 Fax: +36 1 236 0430 www.dialcomp.hu dial@dialcomp.hu 1131 Budapest, Kámfor u.31. 1558 Budapest, Pf. 7 Tartalomjegyzék Bevezető...

Részletesebben

Az MSP430 mikrovezérlők digitális I/O programozása

Az MSP430 mikrovezérlők digitális I/O programozása 10.2.1. Az MSP430 mikrovezérlők digitális I/O programozása Az MSP430 mikrovezérlők esetében minden kimeneti / bemeneti (I/O) vonal önállóan konfigurálható, az P1. és P2. csoportnak van megszakítás létrehozó

Részletesebben

Az vevő- és vezérlőáramkör programja

Az vevő- és vezérlőáramkör programja Az vevő- és vezérlőáramkör programja Központizár-vezérlés - IR vevő- és vezérlőáramkör INCLUDE 89C2051.mc ******************************************************************************** VÁLTOZÓK ********************************************************************************

Részletesebben

GIGADEVICE 32 BITES ARM CORTEX MIKRO- KONTROLLEREK AZ ENDRICH KÍNÁLATÁBAN A GPIO ÉS AZ ADC PROGRAMOZÁSA

GIGADEVICE 32 BITES ARM CORTEX MIKRO- KONTROLLEREK AZ ENDRICH KÍNÁLATÁBAN A GPIO ÉS AZ ADC PROGRAMOZÁSA GIGADEVICE 32 BITES ARM CORTEX MIKRO- KONTROLLEREK AZ ENDRICH KÍNÁLATÁBAN A GPIO ÉS AZ ADC PROGRAMOZÁSA A cikksorozat elsô részében áttekintettük a GigaDevice GD32 ARM Cortex RISC MCU-sorozat architektúráját,

Részletesebben

Mintavételes szabályozás mikrovezérlő segítségével

Mintavételes szabályozás mikrovezérlő segítségével Automatizálási Tanszék Mintavételes szabályozás mikrovezérlő segítségével Budai Tamás budai.tamas@sze.hu http://maxwell.sze.hu/~budait Tartalom Mikrovezérlőkről röviden Programozási alapismeretek ismétlés

Részletesebben

Labor gyakorlat Mikrovezérlők

Labor gyakorlat Mikrovezérlők Labor gyakorlat Mikrovezérlők ATMEL AVR ARDUINO 1. ELŐADÁS BUDAI TAMÁS Tartalom Labor 2 mikrovezérlők modul 2 alkalom 1 mikrovezérlők felépítése, elmélet 2 programozás, mintaprogramok Értékelés: a 2. alkalom

Részletesebben

Nagyteljesítményű mikrovezérlők Energiatakarékos üzemmódok

Nagyteljesítményű mikrovezérlők Energiatakarékos üzemmódok Nagyteljesítményű mikrovezérlők Energiatakarékos üzemmódok Scherer Balázs Budapest University of Technology and Economics Department of Measurement and Information Systems BME-MIT 2015 Fogyasztás és energiatakarékos

Részletesebben

A LOGSYS GUI. Fehér Béla Raikovich Tamás, Laczkó Péter BME MIT FPGA laboratórium

A LOGSYS GUI. Fehér Béla Raikovich Tamás, Laczkó Péter BME MIT FPGA laboratórium BUDAPESTI MŐSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK A LOGSYS GUI Fehér Béla Raikovich Tamás, Laczkó Péter BME MIT atórium

Részletesebben

Silabs STK3700, Simplicity Studio laborgyakorlat

Silabs STK3700, Simplicity Studio laborgyakorlat Silabs STK3700, Simplicity Studio laborgyakorlat Scherer Balázs Budapest University of Technology and Economics Department of Measurement and Information Systems BME-MIT 2016 Saját Firmware library Saját

Részletesebben

Programozási segédlet DS89C450 Fejlesztőpanelhez

Programozási segédlet DS89C450 Fejlesztőpanelhez Programozási segédlet DS89C450 Fejlesztőpanelhez Készítette: Fekete Dávid Processzor felépítése 2 Perifériák csatlakozása a processzorhoz A perifériák adatlapjai megtalálhatók a programozasi_segedlet.zip-ben.

Részletesebben

ARM Cortex-M0+ mikrovezérlő programozása KEIL MDK 5 környezetben. 13. DMA közvetlen memória hozzáférés

ARM Cortex-M0+ mikrovezérlő programozása KEIL MDK 5 környezetben. 13. DMA közvetlen memória hozzáférés ARM Cortex-M0+ mikrovezérlő programozása KEIL MDK 5 környezetben 13. DMA közvetlen memória hozzáférés 1 Felhasznált anyagok, ajánlott irodalom ARM University Program: Course/Lab Material for Teaching Embedded

Részletesebben

4.1.1. I 2 C, SPI, I 2 S, USB, PWM, UART, IrDA

4.1.1. I 2 C, SPI, I 2 S, USB, PWM, UART, IrDA 4.1.1. I 2 C, SPI, I 2 S, USB, PWM, UART, IrDA A címben található jelölések a mikrovezérlők kimentén megjelenő tipikus perifériák, típus jelzései. Mindegyikkel röviden foglalkozni fogunk a folytatásban.

Részletesebben

Mikrovezérlők programozása

Mikrovezérlők programozása Analóg és digitális rsz-ek megvalósítása prog. mikroák-kel BMEVIEEM371 Budapesti Műszaki és Gazdaságtudományi Egyetem Mikrovezérlők programozása Nagy Gergely Elektronikus Eszközök Tanszéke (BME) 2013.

Részletesebben

Labor gyakorlat Mikrovezérlők

Labor gyakorlat Mikrovezérlők Labor gyakorlat Mikrovezérlők ATMEL AVR ARDUINO 1. ELŐADÁS BUDAI TAMÁS 2015. 09. 06. Tartalom Labor 2 mikrovezérlők modul 2 alkalom 1 mikrovezérlők felépítése, elmélet 2 programozás, mintaprogramok Értékelés:

Részletesebben

T Bird 2. AVR fejlesztőpanel. Használati utasítás. Gyártja: BioDigit Kft. Forgalmazza: HEStore.hu webáruház. BioDigit Kft, 2012. Minden jog fenntartva

T Bird 2. AVR fejlesztőpanel. Használati utasítás. Gyártja: BioDigit Kft. Forgalmazza: HEStore.hu webáruház. BioDigit Kft, 2012. Minden jog fenntartva T Bird 2 AVR fejlesztőpanel Használati utasítás Gyártja: BioDigit Kft Forgalmazza: HEStore.hu webáruház BioDigit Kft, 2012 Minden jog fenntartva Főbb tulajdonságok ATMEL AVR Atmega128 típusú mikrovezérlő

Részletesebben

MPLAB IDE - SIM - - Rövid ismertető a használathoz - Kincses Levente 3E22 89/ November 14. Szabadka

MPLAB IDE - SIM - - Rövid ismertető a használathoz - Kincses Levente 3E22 89/ November 14. Szabadka MPLAB IDE - SIM - - Rövid ismertető a használathoz - 3E22 89/2004 2006. November 14 Szabadka - 2 - Tartalomjegyzék TARTALOMJEGYZÉK 3 SIMULATOR I/O 4 SIMULATOR STIMULUS 4 STIMULUS VEZÉRLŐ (CONTROLLER) 5

Részletesebben

Bevezetés a mikrovezérlők programozásába: Programciklusok szervezése, analóg I/O

Bevezetés a mikrovezérlők programozásába: Programciklusok szervezése, analóg I/O Bevezetés a mikrovezérlők programozásába: Programciklusok szervezése, analóg I/O 1 Ajánlott irodalom Aduino LLC.: Arduino Language Reference ATMEL: ATmega328p mikrovezérlő adatlapja Brian W. Kernighan,

Részletesebben

Bevezetés a mikrovezérlők programozásába: Fényérzékelés, fénymérés

Bevezetés a mikrovezérlők programozásába: Fényérzékelés, fénymérés Bevezetés a mikrovezérlők programozásába: Fényérzékelés, fénymérés 1 Lab 19 projektek LDR_test.ino tesztprogram a fényérzékeny ellenálláshoz (LDR) TLS2561_and_LDR.ino LDR kalibrálása TLS2561 fénymérővel

Részletesebben

Hordozható adatgyűjtő

Hordozható adatgyűjtő Hordozható adatgyűjtő Témalaboratórium jegyzőkönyv 2016/17. I. félév Vagner Jázon Konzulens: Dr. Kovácsházy Tamás Tartalomjegyzék Specifikáció... 2 Bevezetés... 2 A téma értelmezése... 2 Az elvégzendő

Részletesebben

The modular mitmót system. DPY kijelző kártya C API

The modular mitmót system. DPY kijelző kártya C API The modular mitmót system DPY kijelző kártya C API Dokumentációkód: -D 01.0.0.0 Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Beágyazott Információs Rendszerek

Részletesebben

MSP430 programozás Energia környezetben. Kitekintés, további lehetőségek

MSP430 programozás Energia környezetben. Kitekintés, további lehetőségek MSP430 programozás Energia környezetben Kitekintés, további lehetőségek 1 Még nem merítettünk ki minden lehetőséget Kapacitív érzékelés (nyomógombok vagy csúszka) Az Energia egyelőre nem támogatja, csak

Részletesebben

Vegyes témakörök. A KAT120B kijelző vezérlése Arduinoval

Vegyes témakörök. A KAT120B kijelző vezérlése Arduinoval Vegyes témakörök A KAT120B kijelző vezérlése Arduinoval 1 KAT120B hívószám kijelző A KAT120B kijelző a NEMO-Q International AB egy régi terméke. A cég ma is fogalmaz különféle hívószám kijelzőket bankok,

Részletesebben

Labor gyakorlat Mikrovezérlők

Labor gyakorlat Mikrovezérlők Labor gyakorlat Mikrovezérlők ATMEL AVR ARDUINO 1. ELŐADÁS BUDAI TAMÁS Tartalom Mikrovezérlők Mikrovezérlők felépítése, működése Mikrovezérlő típusok, gyártók Mikrovezérlők perifériái Mikrovezérlők programozása

Részletesebben

NI PCI-6251 multifunkciós mérésadatgyűjtő kártya specifikációja

NI PCI-6251 multifunkciós mérésadatgyűjtő kártya specifikációja NI PCI-6251 multifunkciós mérésadatgyűjtő kártya specifikációja ANALÓG BEMENET Csatornaszám AD felbontása Max konverziós frekvencia 16 SE (8 DIFF) 16 bit 1,25 MHz (egycsatornás) 1 MHz (többcsatornás) Bemeneti

Részletesebben

Arduino bevezető Szenzorhálózatok és alkalmazásaik

Arduino bevezető Szenzorhálózatok és alkalmazásaik Arduino bevezető Szenzorhálózatok és alkalmazásaik VITMMA09 Okos város MSc mellékspecializáció Mi az Arduino? Nyílt hardver és szoftver platform 8 bites Atmel mikrokontroller köré építve Ökoszisztéma:

Részletesebben

Mikrovezérlők Alkalmazástechnikája

Mikrovezérlők Alkalmazástechnikája Gingl Zoltán, 2015, Szeged Mikrovezérlők Alkalmazástechnikája 2015.12.06. 11:51 Analóg perifériák és használatuk 1 Gingl Zoltán, 2012, Szeged Mikrovezérlők Alkalmazástechnikája 2015.12.06. 11:51 Analóg

Részletesebben

11.3.1. Az MSP430 energiatakarékos használata

11.3.1. Az MSP430 energiatakarékos használata 11.3.1. Az MSP430 energiatakarékos használata A Texas Instruments ##LINK: www.ti.com## által fejlesztett MSP430 ##Mixed Signal Processor## család tagjai létrehozásakor a tervezők fontos célja volt a rendkívül

Részletesebben

MSP430 programozás Energia környezetben. LED kijelzok második rész

MSP430 programozás Energia környezetben. LED kijelzok második rész MSP430 programozás Energia környezetben LED kijelzok második rész 1 Lab13 SPI_595_7seg Egyszerű mintaprogram kétszámjegyű hétszegmenses LED kijelzővel, 74HC595 shift regiszterrel, SPI programkönyvtár használattal

Részletesebben

Bevezetés az elektronikába

Bevezetés az elektronikába Bevezetés az elektronikába 13. Arduino programozás analóg I/O Hobbielektronika csoport 2018/2019 1 Debreceni Megtestesülés Plébánia PWM: impulzus-szélesség moduláció PWM = pulse width modulation (impulzus-szélesség

Részletesebben

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Multiplexer (MPX) A multiplexer egy olyan áramkör, amely több bemeneti adat közül a megcímzett bemeneti adatot továbbítja a kimenetére.

Részletesebben

Multi-20 modul. Felhasználói dokumentáció 1.1. Készítette: Parrag László. Jóváhagyta: Rubin Informatikai Zrt.

Multi-20 modul. Felhasználói dokumentáció 1.1. Készítette: Parrag László. Jóváhagyta: Rubin Informatikai Zrt. Multi-20 modul Felhasználói dokumentáció. Készítette: Parrag László Jóváhagyta: Rubin Informatikai Zrt. 49 Budapest, Egressy út 7-2. telefon: +36 469 4020; fax: +36 469 4029 e-mail: info@rubin.hu; web:

Részletesebben

Laboratóriumi műszerek megvalósítása ARM alapú mikrovezérlővel és Linux-szal

Laboratóriumi műszerek megvalósítása ARM alapú mikrovezérlővel és Linux-szal Laboratóriumi műszerek megvalósítása ARM alapú mikrovezérlővel és Linux-szal Fuszenecker Róbert Budapesti Műszaki Főiskola Kandó Kálmán Műszaki Főiskolai Kar 2007. október 17. Laboratóriumi berendezések

Részletesebben

Beágyazott és Ambiens Rendszerek

Beágyazott és Ambiens Rendszerek Beágyazott és Ambiens Rendszerek 5. gyakorlat tematikája Futási idő mérése, időmérés A gyakorlat során a következő témakörökkel ismerkedünk meg: futási idő mérésének technikája, néhány tipikus utasítás

Részletesebben

ÉRZÉKELŐK ÉS BEAVATKOZÓK I. GY1.1 SENSACT0 PÉLDAPROGRAM

ÉRZÉKELŐK ÉS BEAVATKOZÓK I. GY1.1 SENSACT0 PÉLDAPROGRAM ÉRZÉKELŐK ÉS BEAVATKOZÓK I. GY1.1 SENSACT0 PÉLDAPROGRAM Dr. Soumelidis Alexandros 2018.09.06. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG SensAct0

Részletesebben

3.6. HAGYOMÁNYOS SZEKVENCIÁLIS FUNKCIONÁLIS EGYSÉGEK

3.6. HAGYOMÁNYOS SZEKVENCIÁLIS FUNKCIONÁLIS EGYSÉGEK 3.6. AGYOMÁNYOS SZEKVENCIÁIS FUNKCIONÁIS EGYSÉGEK A fenti ismertető alapján elvileg tetszőleges funkciójú és összetettségű szekvenciális hálózat szerkeszthető. Vannak olyan szabványos funkciók, amelyek

Részletesebben

Újrakonfigurálható eszközök

Újrakonfigurálható eszközök Újrakonfigurálható eszközök 4. Verilog példaprogramok EPM240-hez Hobbielektronika csoport 2017/2018 1 Debreceni Megtestesülés Plébánia Tartalom C-M240 fejlesztői kártya, felhasznált kivezetések 15-fdiv-LED:

Részletesebben

2. Elméleti összefoglaló

2. Elméleti összefoglaló 2. Elméleti összefoglaló 2.1 A D/A konverterek [1] A D/A konverter feladata, hogy a bemenetére érkező egész számmal arányos analóg feszültséget vagy áramot állítson elő a kimenetén. A működéséhez szükséges

Részletesebben

_INVHU000_WriteReadParameter.cxf Frekvenciaváltók

_INVHU000_WriteReadParameter.cxf Frekvenciaváltók INV-HU-000 A FB feladata A dokumentáció tartalma Szimbólum A CP1H vagy a CP1L PLC és frekvenciaváltó(k) automatikus kommunikációja: _INVHU000_WriteReadParameter A frekvenciaváltó üzemi paramétereinek írása,

Részletesebben

Mikrovezérlők Alkalmazástechnikája

Mikrovezérlők Alkalmazástechnikája Gingl Zoltán, 2017, Szeged Mikrovezérlők Alkalmazástechnikája 18 szept. 1 18 szept. 2 Analóg jelekből kétállapotú jel Két bemeneti feszültség, V n,v p Logikai kimenet: 1, ha V p >V n 0, egyébként Hiszterézis

Részletesebben

MSP430 programozás Energia környezetben. Digitális szenzorok I2C kommunikációval

MSP430 programozás Energia környezetben. Digitális szenzorok I2C kommunikációval MSP430 programozás Energia környezetben Digitális szenzorok I2C kommunikációval 1 I2C kommunikáció Az I2C (Inter-Integrated Circuit = integrált áramkörök közötti) kétvezetékes soros kommunikációs sínt

Részletesebben

Balatonőszöd, 2013. június 13.

Balatonőszöd, 2013. június 13. Balatonőszöd, 2013. június 13. Egy tesztrendszer kiépítése Minőséges mérőláncok beépítése Hibák generálása Költséghatékony HW környezet kialakítása A megvalósított rendszer tesztelése Adatbázis kialakítása

Részletesebben

Mérő- és vezérlőberendezés megvalósítása ARM alapú mikrovezérlővel és Linux-szal

Mérő- és vezérlőberendezés megvalósítása ARM alapú mikrovezérlővel és Linux-szal Mérő- és vezérlőberendezés megvalósítása ARM alapú mikrovezérlővel és Linux-szal Fuszenecker Róbert Budapesti Műszaki Főiskola Kandó Kálmán Műszaki Főiskolai Kar 2007. július 18. A mérőberendezés felhasználási

Részletesebben

A Texas Instruments MSP430 mikrovezérlőcsalád

A Texas Instruments MSP430 mikrovezérlőcsalád 1.4.1. A Texas Instruments MSP430 mikrovezérlőcsalád A Texas Instruments MSP430-as mikrovezérlői 16 bites RISC alapú, kevert jelű (mixed signal) processzorok, melyeket ultra kis fogyasztásra tervezték.

Részletesebben

Dr. Oniga István DIGITÁLIS TECHNIKA 8

Dr. Oniga István DIGITÁLIS TECHNIKA 8 Dr. Oniga István DIGITÁLIS TECHNIA 8 Szekvenciális (sorrendi) hálózatok Szekvenciális hálózatok fogalma Tárolók RS tárolók tárolók T és D típusú tárolók Számlálók Szinkron számlálók Aszinkron számlálók

Részletesebben

A/D és D/A konverterek vezérlése számítógéppel

A/D és D/A konverterek vezérlése számítógéppel 11. Laboratóriumi gyakorlat A/D és D/A konverterek vezérlése számítógéppel 1. A gyakorlat célja: Az ADC0804 és a DAC08 konverterek ismertetése, bekötése, néhány felhasználási lehetőség tanulmányozása,

Részletesebben

Villamos jelek mintavételezése, feldolgozása. Mérésadatgyűjtés, jelfeldolgozás 9. előadás

Villamos jelek mintavételezése, feldolgozása. Mérésadatgyűjtés, jelfeldolgozás 9. előadás Villamos jelek mintavételezése, feldolgozása (ellenállás mérés LabVIEW támogatással) Számítógépes mérőrendszerek Mérésadatgyűjtés, jelfeldolgozás 9. előadás Dr. Iványi Miklósné, egyetemi tanár Schiffer

Részletesebben

Digitális tárolós oszcilloszkópok

Digitális tárolós oszcilloszkópok 1 Az analóg oszcilloszkópok elsősorban periodikus jelek megjelenítésére alkalmasak, tehát nem teszik lehetővé a nem periodikusan ismétlődő vagy csak egyszeri alkalommal bekövetkező jelváltozások megjelenítését.

Részletesebben

Mérési útmutató. A/D konverteres mérés. // Első lépésként tanulmányozzuk a digitális jelfeldolgozás előnyeit és határait.

Mérési útmutató. A/D konverteres mérés. // Első lépésként tanulmányozzuk a digitális jelfeldolgozás előnyeit és határait. Mérési útmutató A/D konverteres mérés 1. Az A/D átalakítók főbb típusai és rövid leírásuk // Első lépésként tanulmányozzuk a digitális jelfeldolgozás előnyeit és határait. Csoportosítás polaritás szempontjából:

Részletesebben

Az interrupt Benesóczky Zoltán 2004

Az interrupt Benesóczky Zoltán 2004 Az interrupt Benesóczky Zoltán 2004 1 Az interrupt (program megszakítás) órajel generátor cím busz környezet RESET áramkör CPU ROM RAM PERIF. adat busz vezérlõ busz A periféria kezelés során információt

Részletesebben

2. rész PC alapú mérőrendszer esetén hogyan történhet az adatok kezelése? Írjon pár 2-2 jellemző is az egyes esetekhez.

2. rész PC alapú mérőrendszer esetén hogyan történhet az adatok kezelése? Írjon pár 2-2 jellemző is az egyes esetekhez. Méréselmélet és mérőrendszerek (levelező) Kérdések - 2. előadás 1. rész Írja fel a hiba fogalmát és hogyan számítjuk ki? Hogyan számítjuk ki a relatív hibát? Mit tud a rendszeres hibákról és mi az okozója

Részletesebben

Ismerkedés az MSP430 mikrovezérlőkkel

Ismerkedés az MSP430 mikrovezérlőkkel Ismerkedés az MSP430 mikrovezérlőkkel 1 Mikrovezérlők fogalma Mikroprocesszor: Egy tokba integrált számítógép központi egység (CPU). A működés érdekében körbe kell építeni külső elemekkel (memória, perifériák,

Részletesebben

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Bevezetés A laborgyakorlatok alapvető célja a tárgy későbbi laborgyakorlataihoz szükséges ismeretek átadása, az azokban szereplő

Részletesebben

Fizikai mérések Arduino-val

Fizikai mérések Arduino-val Fizikai mérések Arduino-val Csajkos Bence, Veres József Csatári László Sándor mentor Megvalósult az Emberi Erőforrások Minisztériuma megbízásából az Emberi Erőforrás Támogatáskezelő a 2015/2016. tanévre

Részletesebben

Analóg-digitális átalakítás. Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék

Analóg-digitális átalakítás. Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék Analóg-digitális átalakítás Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék Mai témák Mintavételezés A/D átalakítók típusok D/A átalakítás 12/10/2007 2/17 A/D ill. D/A átalakítók A világ analóg, a jelfeldolgozás

Részletesebben

ARM Cortex magú vezérlők Energia felhasználás Energiatakarékos üzemmódok

ARM Cortex magú vezérlők Energia felhasználás Energiatakarékos üzemmódok ARM Cortex magú vezérlők Energia felhasználás Energiatakarékos üzemmódok Scherer Balázs Budapest University of Technology and Economics Department of Measurement and Information Systems BME-MIT 2015 Fogyasztás

Részletesebben

Hobbi Elektronika. A digitális elektronika alapjai: Sorrendi logikai áramkörök 3. rész

Hobbi Elektronika. A digitális elektronika alapjai: Sorrendi logikai áramkörök 3. rész Hobbi Elektronika A digitális elektronika alapjai: Sorrendi logikai áramkörök 3. rész 1 Felhasznált anyagok M. Morris Mano and Michael D. Ciletti: Digital Design - With an Introduction to the Verilog HDL,

Részletesebben

Jeltárolás. Monitorozás

Jeltárolás. Monitorozás Jeltárolás Monitorozás 2/10 a jeleket általában rögzíteni kell a feldolgozás előtt, de a folyamatos monitorozás is nélkülözhetetlen papiríró, oszcilloszkóp, audiomonitor papiríró: toll, vagy hő; súrlódás,

Részletesebben

11. Analóg/digitális (ADC) és Digital/analóg (DAC) átalakítók

11. Analóg/digitális (ADC) és Digital/analóg (DAC) átalakítók 1 11. Analóg/digitális (ADC) és Digital/analóg (DAC) átalakítók A digitális jelekkel dolgozó mikroprocesszoros adatgyűjtő és vezérlő rendszerek csatlakoztatása az analóg jelekkel dolgozó mérő- és beavatkozó

Részletesebben

Mechatronika és mikroszámítógépek

Mechatronika és mikroszámítógépek Mechatronika és mikroszámítógépek 2018/2019 I. félév Órajelek, időzítők, megszakítások (4. lab) Órajel Internal Oscillator Control Register (OSCICN 0xB2) Bit Symbol Leírás 7 MSCLKE Missing Clock enable

Részletesebben

ÉRZÉKELŐK ÉS BEAVATKOZÓK I. GY1. 32-BITES MIKROSZÁMÍTÓGÉPEK

ÉRZÉKELŐK ÉS BEAVATKOZÓK I. GY1. 32-BITES MIKROSZÁMÍTÓGÉPEK ÉRZÉKELŐK ÉS BEAVATKOZÓK I. GY1. 32-BITES MIKROSZÁMÍTÓGÉPEK Dr. Soumelidis Alexandros 2018.09.06. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG Mivel

Részletesebben

Mérési utasítás Mikrokontroller programozás 2.sz. mérés

Mérési utasítás Mikrokontroller programozás 2.sz. mérés Mérési utasítás Mikrokontroller programozás 2.sz. mérés Szükséges ismeretanyag: - IBM PC kezelése, szövegszerkesztés, Double Commander - SB80C515 mikrokontroller felépítése, utasításai - HyperTerminál

Részletesebben

Hobbi Elektronika. A digitális elektronika alapjai: Sorrendi logikai áramkörök 2. rész

Hobbi Elektronika. A digitális elektronika alapjai: Sorrendi logikai áramkörök 2. rész Hobbi Elektronika A digitális elektronika alapjai: Sorrendi logikai áramkörök 2. rész 1 Felhasznált anyagok M. Morris Mano and Michael D. Ciletti: Digital Design - With an Introduction to the Verilog HDL,

Részletesebben

Bevezetés a mikrovezérlők programozásába: MAX6958: Hétszegmenses LED kijelző vezérlő

Bevezetés a mikrovezérlők programozásába: MAX6958: Hétszegmenses LED kijelző vezérlő Bevezetés a mikrovezérlők programozásába: MAX6958: Hétszegmenses LED kijelző vezérlő 1 Lab 20 projektek MiniPirate.ino Arduino Mini Pirate interaktív vizsgálóprogram, amelyet most az I2C busz kézivezérlésére

Részletesebben

Programozás és Digitális technika I. Pógár István eng.unideb.hu/pogari

Programozás és Digitális technika I. Pógár István eng.unideb.hu/pogari Programozás és Digitális technika I. Pógár István pogari@eng.unideb.hu eng.unideb.hu/pogari Ajánlott irodalom Massimo Banzi Getting Started with Arduino Michael Margolis Make an Android Controlled Robot

Részletesebben

Digitális technika (VIMIAA01) Laboratórium 9

Digitális technika (VIMIAA01) Laboratórium 9 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA01) Laboratórium 9 Fehér Béla Raikovich Tamás,

Részletesebben

Villamos jelek mintavételezése, feldolgozása. LabVIEW előadás

Villamos jelek mintavételezése, feldolgozása. LabVIEW előadás Villamos jelek mintavételezése, feldolgozása (ellenállás mérés LabVIEW támogatással) LabVIEW 7.1 2. előadás Dr. Iványi Miklósné, egyetemi tanár LabVIEW-7.1 EA-2/1 Ellenállás mérés és adatbeolvasás Rn ismert

Részletesebben

Villamos jelek mintavételezése, feldolgozása. LabVIEW 7.1

Villamos jelek mintavételezése, feldolgozása. LabVIEW 7.1 Villamos jelek mintavételezése, feldolgozása (ellenállás mérés LabVIEW támogatással) LabVIEW 7.1 előadás Dr. Iványi Miklósné, egyetemi tanár LabVIEW-7.1 KONF-5_2/1 Ellenállás mérés és adatbeolvasás Rn

Részletesebben

Dr. Schuster György szeptember 27.

Dr. Schuster György szeptember 27. Real-time operációs rendszerek RTOS 2012. szeptember 27. Általános ismérvek: ARM Cortex M3 mag 80 MHz órajel frekvencia (50 MHz flash-ből) 256 kbájt flash 96 kbájt RAM ARM Cortex Sys Tick Timer belső ROM

Részletesebben

Mikrovezérlők programozása

Mikrovezérlők programozása Mikrovezérlők programozása Nagy Gergely BME EET 2012. április 4. ebook ready 1 Bevezetés A mikrovezérlők programozása Bitműveletek Egy egyszerű program felépítése Az inicializáló függvény 2 Az számláló

Részletesebben

Vegyes témakörök. 5. Gagyiszkóp házilag hangfrekvenciás jelek vizsgálata. Hobbielektronika csoport 2018/2019. Debreceni Megtestesülés Plébánia

Vegyes témakörök. 5. Gagyiszkóp házilag hangfrekvenciás jelek vizsgálata. Hobbielektronika csoport 2018/2019. Debreceni Megtestesülés Plébánia Vegyes témakörök 5. Gagyiszkóp házilag hangfrekvenciás jelek vizsgálata 1 Analóg és digitális oszcilloszkópok Analóg oszcilloszkóp: a katódsugárcső vízszintes eltérítését egy ramp generátor a függőleges

Részletesebben

ALPHA és ALPHA XL műszaki leírás

ALPHA és ALPHA XL műszaki leírás ALPHA és ALPHA XL műszaki leírás ALPHA műszaki leírás: Általános jellemzők Alpha sorozat Környezeti hőmérséklet 0 55ºC Működési hőmérséklet 0 55ºC Tárolási hőmérséklet -30 70ºC Védelmi típus IP20 Zavarvédettség

Részletesebben

A/D és D/A átalakítók gyakorlat

A/D és D/A átalakítók gyakorlat Budapesti Műszaki és Gazdaságtudományi Egyetem A/D és D/A átalakítók gyakorlat Takács Gábor Elektronikus Eszközök Tanszéke (BME) 2013. február 27. ebook ready Tartalom 1 A/D átalakítás alapjai (feladatok)

Részletesebben

A töltőfolyadék térfogatváltozása alapján, egy viszonyítási skála segítségével határozható meg a hőmérséklet.

A töltőfolyadék térfogatváltozása alapján, egy viszonyítási skála segítségével határozható meg a hőmérséklet. 1. HŐTÁGULÁSON ALAPULÓ ÁTALAKÍTÓK: HŐMÉRSÉKLET A hőmérséklet változását elmozdulássá alakítják át 1.1 Folyadéktöltésű hőmérők (helyzet változássá) A töltőfolyadék térfogatváltozása alapján, egy viszonyítási

Részletesebben

PIC tanfolyam 2013 tavasz 2. előadás

PIC tanfolyam 2013 tavasz 2. előadás PIC tanfolyam 2013 tavasz 2. előadás Horváth Kristóf SEM körtag SCH1315 szoba psoft-hkristof@amiga.hu Miről lesz ma szó? Elektromos szükségletek Oszcillátor Konfigurációs bitek Reset Energiatakarékos módok

Részletesebben

LCD kijelzős digitális tároló szkóp FFT üzemmóddal

LCD kijelzős digitális tároló szkóp FFT üzemmóddal LCD kijelzős digitális tároló szkóp FFT üzemmóddal Type: HM-10 Y2 Y Pos Trig Level HOLD Y1 Bemenet vál. Bemenet Ablak pozició Kijelző 1) Y Pos jel baloldalon egy kis háromszög 0V helyzetét mutatja 2) Trig

Részletesebben

MSP430 programozás Energia környezetben. Digitális szenzorok

MSP430 programozás Energia környezetben. Digitális szenzorok MSP430 programozás Energia környezetben Digitális szenzorok 1 Adatgyűjtés, adatkonverzió A külvilág fizikai jellemzői többnyire az idő függvényének folytonos változói. Ezek érzékelése és digitálisan feldolgozhatóvá

Részletesebben

MSP430 programozás Energia környezetben. LED kijelzok második rész

MSP430 programozás Energia környezetben. LED kijelzok második rész MSP430 programozás Energia környezetben LED kijelzok második rész 1 Lab13 SPI_595_7seg Egyszerű mintaprogram kétszámjegyű hétszegmenses LED kijelzővel, 74HC595 shift regiszterrel, SPI programkönyvtár használattal

Részletesebben

Tartalom. Port átalakítók, AD/DA átalakítók. Port átalakítók, AD/DA átalakítók H.1. Port átalakítók, AD/DA átalakítók Áttekintés H.

Tartalom. Port átalakítók, AD/DA átalakítók. Port átalakítók, AD/DA átalakítók H.1. Port átalakítók, AD/DA átalakítók Áttekintés H. Tartalom Port átalakítók, Port átalakítók, Port átalakítók, Port átalakítók, Áttekintés.2 Soros port átalakítók.4.6.1 Port átalakítók, Áttekintés Port átalakítók, Soros port jelátalakítók és /RS485/422

Részletesebben

Mechatronika és mikroszámítógépek. 2018/2019 I. félév. Külső megszakítások

Mechatronika és mikroszámítógépek. 2018/2019 I. félév. Külső megszakítások Mechatronika és mikroszámítógépek 2018/2019 I. félév Külső megszakítások Megszakítás, Interrupt A megszakítás egy olyan esemény, vagy feltétel teljesülése, amely felfüggeszti a program futását, a vezérlést

Részletesebben