STM32 mikrovezérlők programozása ARM Keil környezetben
|
|
- Regina Pintér
- 4 évvel ezelőtt
- Látták:
Átírás
1 STM32 mikrovezérlők programozása ARM Keil környezetben 7. Analóg Digitális átalakító (ADC) 1
2 Felhasznált és ajánlott irodalom Joseph Yiu: Cortex-M for Beginners Joseph Yiu: Thee Definnitive Guide To Thee ARM CORTEX-M3 Muhammad Ali Mazidi, Shujen Chen, Eshragh Ghaemi: STM32 Arm Programming for Embedded Systems Alexander Tarasov: Курс «Штурмуем STM32» Warren Gay: Beginning STM32 - Developing with FreeRTOS, libopencm3 and GCC ARM Keil MDK Gettiing started STM32F103C8 adatlap és termékinfo STM32F103 Family Reference Manual 2
3 Az ADC főbb jellemzői Az STM32F103C8 mikrovezérlő 2 db 12-bites ADC-vel rendelkezik Bemenő feszültség tartománya: 0 < V IN < 3.6 V (V SS < V IN < V DDA ) Konverziós idő: 1 56 MHz ( MHz) Szingli és folytonos konverziós módok Pásztázó mód több csatorna automatikus méréséhez Önkalibrálás Csatornánként beállítható sorrend és mintavételezési idő Injektált csatornák közbevetetti mérése Külső triggerelés a reguláris és az injektált csatornák méréséhez Duál módú mérések a két ADC összekapcsolásával DMA adatátviteli kérelem generálása konverzió végén 3
4 Az ADC blokkvázata max. 14 MHz /2, /4, /6, /8 max. 72 MHz 4
5 Az ADC funkcionális leírása ADC ki-/bekapcsolás: az ADCx_CR2 regiszter ADON bitjével ADC órajel: APB2 busz PCLK2 órajeléből leosztással (/2, /4, /6, /8), ami az RCC_CFGR regiszter ADC_PRE[1:0] bitjeivel állítható be Csatorna kiválasztás: elvileg 16+2, gyakorlatilag csak 10+2 csatorna áll rendelkezésre, melyek csoportokba rendezhetők: reguláris csatornák: max pásztázandó csatorna, melyek száma és tetszőleges sorrendje az ADCx_SQRn regiszterekben adható meg injektált csatornák: legfeljebb 4 db pásztázandó csatorna, melyek melyek száma és sorrendje az ADCx_JSQR regiszterben adható meg Belső hőmérő: az ADC1_IN16 csatornán érhető el V25 = (1.43 ± 0.09) V, Avg_Slope = (4.3 ± 0.6) mv Belső referencia: (1.20±0.04) V, ADC1_IN17 csatornán érhető el 5
6 Szingli konverziós mód Ebben a módban az ADC egyetlen konverziót végez A konverzió indítható az ADC_CR2 regiszter ADON bitjével, vagy külső triggerjellel, miközben a CONT bit 0-ra van állítva Ahogy a kiválasztotti csatornában a konverzió véget ér: Ha reguláris csatornában mértünk: Az eredmény a 16-bites ADC_DR regiszterbe kerül Az EOC (End Of Conversion) jelzőbit 1-be áll és megszakítás keletkezik, ha az EOCIE engedélyező bit 1-be van állítva Ha injektált csatonában történt a mérés: Az eredmény a 16-bites ADC_DRJ1 regiszterbe kerül A JEOC (End Of Conversion Injected) jelzőbit 1-be áll és megszakítás keletkezik, ha a JEOCIE engedélyező bit 1-be van állítva Az ADC ezután leáll 6
7 A reguláris csatornákhoz tartozó regiszterek A reguláris csatornák használatához az ADC-k alábbi regisztereit használjuk Az üzemmódot a CR1, CR2 regiszterekben állíthatjuk be, a csatorná(ka)t az SQRn regiszterek választják ki, a mintavételezési időt az SMPRn regiszterek szabják meg Regiszternév ADC_SR Funkció ADC Status register ADC_CR1 ADC Control Register 1. ADC_CR2 ADC Control Register 2. ADC_SMPR1 ADC sample time register 1. ADC_SMPR2 ADC sample time register 2. ADC_SQR1 ADC regular sequence register 1. ADC_SQR2 ADC regular sequence register 2. ADC_SQR3 ADC regular sequence register 3. ADC_DR ADC regular data register 7
8 Az ADC fontosabb regiszterei ADC_SR ADC Status Register STRT - Regular channel Start flaag, JSTRT - Injected channel Start flaag JEOC End of conversion (injected), EOC End of conversion (regular) AWD Analog watchdog eseményjelző ADC_CR1 ADC Control Register 1. SCAN többcsatornás pásztázás engedélyezése 8
9 Az ADC fontosabb regiszterei ADC_CR2 ADC Control register 2. EXTSEL[2:0] triggerforrás választás EXTTRIG triggerelés engedélyezés SWSTART szoftvveres triggerelés ALIGN jobbra/balra igazítás DMA DMA mód engedélyezés CONT folyamatos mód ADON ADC bekapcsolás 9
10 Az ADC fontosabb regiszterei ADC_SMPR1/ADC_SMPR2 ADC mintavételezési idő megadása 10
11 Az ADC fontosabb regiszterei ADC_SQR1 - SQR3 ADC szekvenciák megadása 11
12 Program07_1 Az STM32F103C8 mikrovezérlő AN1 (PA1) analóg bemenetére kötötti potméter csúszkáról levetti feszültséget mérjük A konverziót az ADC1_CR2 regiszterben a SWSTART bit 1-be állításával indítjuk, külső triggerjel forrásként kell konfingurálni Az eredménytől függően (ha a 8. bit = 1), akkor kigyújtjuk a beépítetti LED-et, egyébként pedig leoltjuk 12
13 Program07_1/main.c #include "stm32f10x.h" int main (void) { int result; //--- PC13, a beépített LED konfigurálása RCC->APB2ENR = RCC_APB2ENR_IOPCEN; // GPIOC órajel engedélyezés GPIOC->CRH &= ~(GPIO_CRH_CNF13 GPIO_CRH_MODE13); // pin13 CNF/Mode bitek törlése GPIOC->CRH = GPIO_CRH_MODE13_1; // CNF:00, Mode:10 PPout, 2MHz GPIOC->BSRR = GPIO_BSRR_BS13; // GPIOC 13. bitset (LED ki) //--- PA1 analóg bemenet konfigurálása RCC->APB2ENR = RCC_APB2ENR_IOPAEN; // GPIOA engedélyezés GPIOA->CRL &= ~GPIO_CRL_MODE1; // PA1 analóg bemenet GPIOA->CRL &= ~GPIO_CRL_CNF1; // CNF=00, Mode=00 //--- ADC1 konfigurálása RCC->APB2ENR = RCC_APB2ENR_ADC1EN; // ADC1 órajel engedélyezés RCC->CFGR &= ~RCC_CFGR_ADCPRE_0; // ADC prescaler = 6 RCC->CFGR = RCC_CFGR_ADCPRE_1; // ADCCLK = 72/6 = 12 MHz ADC1->CR2 = ADC_CR2_EXTTRIG // External trigger engedélyezés ADC_CR2_EXTSEL; // EXTSEL=111 SW trigger választása ADC1->SQR3 = 1; // Ch 1-gyel indul a konverziós sorozat ADC1->SQR1 = 0; // A konverzió sorozat hossza = 1 ADC1->CR2 = ADC_CR2_ADON; // ADC1 engedélyezése 13
14 Program07_1/main.c } while (1) { ADC1->CR2 = ADC_CR2_SWSTART; while(!(adc1->sr & ADC_SR_EOC)); result = ADC1->DR; if (result & 0x100) GPIOC->BSRR = GPIO_BSRR_BR13; else GPIOC->BSRR = GPIO_BSRR_BS13; } // Konverzió indítása // Konverzió végére várunk // Az eredmény kiolvasása (törli az EOC bitet!) // Ha bit8 = 1, akkor // LED be // különben // LED ki 14
15 Program07_2 Az STM32F103C8 mikrovezérlő belső hőmérőjének (AN16) jelét mérjük és számítjuk át Celsius fokokra A konverziót Timer2 CH2 csatornájának CC2 eseményével (PWM1 módban CNT = CCR2 egyezés) keltjük, 1 másodpercenként Az eredményt az UART1 soros porton (RB6) kiíratjuk, az előző előadás uart_irq mintapéldájában bemutatotti módon 15
16 #include "stm32f10x.h" #include <stdio.h> extern void buffer_init (void); extern void USART1_init (void); void Timer2_Init(void); void ADC1_Init(void); void GPIO_Init(void); Program07_2/main.c A kiíratáshoz kellenek int main (void) { int data; double volt, temp; buffer_init(); // RX / TX bufferek inicializálása USART1_init(); // USART1 configuration Timer2_Init(); // TIM2 konfigurálás: 1 Hz trigger ADC1_Init(); // ADC1 konfigurálás belsö homerohöz enable_irq(); // Megszakítások globális engedélyezése printf("adc internal temperature sensor \r\n"); while (1) { // végtelen ciklus while(!(adc1->sr & ADC_SR_EOC)); // Konverzió végére várunk data = ADC1->DR; /* Temperature (in C) = {V25 - VSENSE ) / Avg_Slope} + 25 */ /* V25 = 1.41V, slope = 4.5 mv/c */ volt = (double)data*3.3 / 4096; /* convert ADC output to voltage */ temp = ( volt) / ; /* convert voltage to temperature C */ printf("%d, %.2f C\r\n", data, temp); } } 16
17 Program07_2/main.c /* TIMER2 CH2 konfigurálása 1 Hz-es triggereléshez */ void Timer2_Init() { RCC->APB1ENR = RCC_APB1ENR_TIM2EN; // TIM2 órajel engedélyezése TIM2->CR1 = 0; TIM2->CR2 = 0; TIM2->PSC = SystemCoreClock/ ; // 10 khz-re osztjuk le az órajelet TIM2->ARR = ; // 1000-ig számlálunk (1000 ms) TIM2->CNT = 0; // Számláló nullázása TIM2->CCMR1 = 0x6800; // Ch2 PWM1 mód, preload enable TIM2->CCER = TIM_CCER_CC2E; // Ch2 engedélyezése TIM2->CCR2 = 50-1; TIM2->CR1 = TIM_CR1_CEN; // Számlálás engedélyezés } OC2M = 110 PWM1 mód, OC2PE = 1 Preload register enable, CC2S = 00 output mode 17
18 Program07_2/main.c void ADC1_Init() { RCC->APB2ENR = RCC_APB2ENR_ADC1EN; // ADC1 órajel engedélyezés RCC->CFGR &= ~RCC_CFGR_ADCPRE_0; // ADC prescaler = 6 RCC->CFGR = RCC_CFGR_ADCPRE_1; // ADCCLK = 72/6 = 12 MHz ADC1->CR1 = 0; ADC1->CR2 = ADC_CR2_EXTTRIG // External trigger engedélyezés ADC_CR2_EXTSEL_0 // EXTSEL=011, TIM2 CC2 event ADC_CR2_EXTSEL_1; ADC1->SMPR1 = ADC_SMPR1_SMP16; // 111: Mintavétel ciklus ADC1->SQR3 = 16; // Ch 16. a belsö hömérö ADC1->SQR1 = 0; // A konverzió sorozat hossza=1 ADC1->CR2 = ADC_CR2_ADON // ADC1 engedélyezése ADC_CR2_TSVREFE; // A hömérö bekapcsolása } EXTSEL= 011 Timer2 CC2 event, EXTTRIG=1 triggering enable, ALIGN=0 jobbra igazítás CONT=0 single conversion mode, ADON=1 ADC power ON 18
19 Program07_2 futási eredmény A 72 MHz-en futó MCU a kiírás szerint elég melegnek tűnik, de vegyük fingyelembe, hogy a hőmérő nincs kalibrálva 19
20 20
ARM Cortex-M0+ mikrovezérlő programozása KEIL MDK 5 környezetben. 11. Impulzus-szélesség moduláció (PWM)
ARM Cortex-M0+ mikrovezérlő programozása KEIL MDK 5 környezetben 11. Impulzus-szélesség moduláció (PWM) 1 Felhasznált anyagok, ajánlott irodalom Muhammad Ali Mazidi, Shujen Chen, Sarmad Naimi, Sepehr Naimi:
MSP430 programozás Energia környezetben. Analóg jelek mérése
MSP430 programozás Energia környezetben Analóg jelek mérése 1 Hőmérés a beépített szenzorral /* TemperatureSensor: Hőmérés a beépített hőmérővel. A jobb feloldás érdekében a beépített 1.5 V-os referenciához
ARM Cortex-M0+ mikrovezérlő programozása KEIL MDK 5 környezetben. 7. Analóg perifériák
ARM Cortex-M0+ mikrovezérlő programozása KEIL MDK 5 környezetben 7. Analóg perifériák 1 Felhasznált anyagok, ajánlott irodalom Joseph Yiu: The Definitive Guide to ARM Cortex -M0 and Cortex-M0+ Processors
Mechatronika és mikroszámítógépek. 2016/2017 I. félév. Analóg-digitális átalakítás ADC, DAC
Mechatronika és mikroszámítógépek 2016/2017 I. félév Analóg-digitális átalakítás ADC, DAC AD átalakítás Cél: Analóg (időben és értékben folytonos) elektromos mennyiség kifejezése digitális (értékében nagyságában
Jelfeldolgozás a közlekedésben. 2017/2018 II. félév. Analóg-digitális átalakítás ADC, DAC
Jelfeldolgozás a közlekedésben 2017/2018 II. félév Analóg-digitális átalakítás ADC, DAC AD átalakítás Cél: Analóg (időben és értékben folytonos) elektromos mennyiség kifejezése digitális (értékében nagyságában
I. C8051Fxxx mikrovezérlők hardverfelépítése, működése. II. C8051Fxxx mikrovezérlők programozása. III. Digitális perifériák
I. C8051Fxxx mikrovezérlők hardverfelépítése, működése 1. Adja meg a belső RAM felépítését! 2. Miben különbözik a belső RAM alsó és felső felének elérhetősége? 3. Hogyan érhetők el az SFR regiszterek?
Járműfedélzeti rendszerek I. 5. előadás Dr. Bécsi Tamás
Járműfedélzeti rendszerek I. 5. előadás Dr. Bécsi Tamás Megszakítások (Interrupts: IT) Megszakítás fogalma Egy aszinkron jelzés (pl. gomblenyomás) a processzor felé (Interrupt Request: IRQ), hogy valamely
ARM Cortex-M0+ mikrovezérlő programozása KEIL MDK 5 környezetben. 5. Időzítők, számlálók 1. rész
ARM Cortex-M0+ mikrovezérlő programozása KEIL MDK 5 környezetben 5. Időzítők, számlálók 1. rész 1 Felhasznált anyagok, ajánlott irodalom Joseph Yiu: The Definitive Guide to ARM Cortex -M0 and Cortex-M0+
Mintavételezés tanulmányozása. AD - konverzió. Soros kommunikáció
Mintavételezés tanulmányozása. AD - konverzió. Soros kommunikáció A gyakorlat célja A gyakorlat során a dspic30f6010 digitális jelprocesszor Analóg Digital konverterét tanulmányozzuk. A mintavételezett
Dr. Oniga István DIGITÁLIS TECHNIKA 9
r. Oniga István IGITÁLIS TEHNIKA 9 Regiszterek A regiszterek több bites tárolók hálózata S-R, J-K,, vagy kapuzott tárolókból készülnek Fontosabb alkalmazások: adatok tárolása és adatmozgatás Funkcióik:
Labor 2 Mikrovezérlők
Labor 2 Mikrovezérlők ATMEL AVR - ARDUINO BUDAI TAMÁS 2015. 09. 06. Tartalom Mikrovezérlők Mikrovezérlők felépítése, működése Mikrovezérlő típusok, gyártók Mikrovezérlők perifériái Mikrovezérlők programozása
Dr. Oniga István DIGITÁLIS TECHNIKA 9
r. Oniga István IGITÁLIS TEHNIKA 9 Regiszterek A regiszterek több bites tárolók hálózata S-R, J-K,, vagy kapuzott tárolókból készülnek Fontosabb alkalmazások: adatok tárolása és adatmozgatás Funkcióik:
ARM Cortex-M0+ mikrovezérlő programozása KEIL MDK 5 környezetben. 5. Időzítők, számlálók 2. rész
ARM Cortex-M0+ mikrovezérlő programozása KEIL MDK 5 környezetben 5. Időzítők, számlálók 2. rész 1 Felhasznált anyagok, ajánlott irodalom Joseph Yiu: The Definitive Guide to ARM Cortex -M0 and Cortex-M0+
MSP430 programozás Energia környezetben. Az I/O portok kezelése
MSP430 programozás Energia környezetben Az I/O portok kezelése 1 Egyszerű I/O vezérlés Digitális I/O pinmode(pin, mode) kivezetés üzemmódjának beállítása digitalwrite(pin, state) - kimenetvezérlés digitalread(pin)
Újrakonfigurálható eszközök
Újrakonfigurálható eszközök 15. Cypress PSOC 5LP DMA adatátvitel Hobbielektronika csoport 2017/2018 1 Debreceni Megtestesülés Plébánia Felhasznált irodalom és segédanyagok Cypress: CY8C58LP FamilyDatasheet
Mérési jegyzőkönyv. az ötödik méréshez
Mérési jegyzőkönyv az ötödik méréshez A mérés időpontja: 2007-10-30 A mérést végezték: Nyíri Gábor kdu012 mérőcsoport A mérést vezető oktató neve: Szántó Péter A jegyzőkönyvet tartalmazó fájl neve: ikdu0125.doc
Bevezetés a mikrovezérlők programozásába: Az Arduino, mint logikai analizátor
Bevezetés a mikrovezérlők programozásába: Az Arduino, mint logikai analizátor 1 Hasznos eszközök hibakereséshez Logikai áramkörök Logikai teszter Analóg áramkörök Voltmérő Logikai analizátor Oszcilloszkóp
MSP430 programozás Energia környezetben. Szervó motorok vezérlése
MSP430 programozás Energia környezetben Szervó motorok vezérlése 1 Szervo motorok Felépítés Jelalak 2 Servo programkönyvtár A gyári Servo programkönyvtár max. 8 db szervót kezel, s ezekhez felhasználja
ATMEL ATMEGA MIKROVEZÉRLŐ-CSALÁD
Misák Sándor ATMEL ATMEGA MIKROVEZÉRLŐ-CSALÁD Nanoelektronikai és Nanotechnológiai Részleg DE TTK v.0.1 (2007.02.13.) 1. előadás 1. Általános ismeretek. 2. Sajátos tulajdonságok. 3. A processzor jellemzői.
ÖNÁLLÓ LABOR Mérésadatgyűjtő rendszer tervezése és implementációja
ÖNÁLLÓ LABOR Mérésadatgyűjtő rendszer tervezése és implementációja Nagy Mihály Péter 1 Feladat ismertetése Általános célú (univerzális) digitális mérőműszer elkészítése Egy- vagy többcsatornás feszültségmérés
Járműfedélzeti rendszerek I. 4. előadás Dr. Bécsi Tamás
Járműfedélzeti rendszerek I. 4. előadás Dr. Bécsi Tamás Rendszer órajel Órajel osztás XTAL Divide Control (XDIV) Register 2 129 oszthat Órajel források CKSEL fuse bit Külső kristály/kerámia rezonátor Külső
Yottacontrol I/O modulok beállítási segédlet
Yottacontrol I/O modulok beállítási segédlet : +36 1 236 0427 +36 1 236 0428 Fax: +36 1 236 0430 www.dialcomp.hu dial@dialcomp.hu 1131 Budapest, Kámfor u.31. 1558 Budapest, Pf. 7 Tartalomjegyzék Bevezető...
Az MSP430 mikrovezérlők digitális I/O programozása
10.2.1. Az MSP430 mikrovezérlők digitális I/O programozása Az MSP430 mikrovezérlők esetében minden kimeneti / bemeneti (I/O) vonal önállóan konfigurálható, az P1. és P2. csoportnak van megszakítás létrehozó
Az vevő- és vezérlőáramkör programja
Az vevő- és vezérlőáramkör programja Központizár-vezérlés - IR vevő- és vezérlőáramkör INCLUDE 89C2051.mc ******************************************************************************** VÁLTOZÓK ********************************************************************************
GIGADEVICE 32 BITES ARM CORTEX MIKRO- KONTROLLEREK AZ ENDRICH KÍNÁLATÁBAN A GPIO ÉS AZ ADC PROGRAMOZÁSA
GIGADEVICE 32 BITES ARM CORTEX MIKRO- KONTROLLEREK AZ ENDRICH KÍNÁLATÁBAN A GPIO ÉS AZ ADC PROGRAMOZÁSA A cikksorozat elsô részében áttekintettük a GigaDevice GD32 ARM Cortex RISC MCU-sorozat architektúráját,
Mintavételes szabályozás mikrovezérlő segítségével
Automatizálási Tanszék Mintavételes szabályozás mikrovezérlő segítségével Budai Tamás budai.tamas@sze.hu http://maxwell.sze.hu/~budait Tartalom Mikrovezérlőkről röviden Programozási alapismeretek ismétlés
Labor gyakorlat Mikrovezérlők
Labor gyakorlat Mikrovezérlők ATMEL AVR ARDUINO 1. ELŐADÁS BUDAI TAMÁS Tartalom Labor 2 mikrovezérlők modul 2 alkalom 1 mikrovezérlők felépítése, elmélet 2 programozás, mintaprogramok Értékelés: a 2. alkalom
Nagyteljesítményű mikrovezérlők Energiatakarékos üzemmódok
Nagyteljesítményű mikrovezérlők Energiatakarékos üzemmódok Scherer Balázs Budapest University of Technology and Economics Department of Measurement and Information Systems BME-MIT 2015 Fogyasztás és energiatakarékos
A LOGSYS GUI. Fehér Béla Raikovich Tamás, Laczkó Péter BME MIT FPGA laboratórium
BUDAPESTI MŐSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK A LOGSYS GUI Fehér Béla Raikovich Tamás, Laczkó Péter BME MIT atórium
Silabs STK3700, Simplicity Studio laborgyakorlat
Silabs STK3700, Simplicity Studio laborgyakorlat Scherer Balázs Budapest University of Technology and Economics Department of Measurement and Information Systems BME-MIT 2016 Saját Firmware library Saját
Programozási segédlet DS89C450 Fejlesztőpanelhez
Programozási segédlet DS89C450 Fejlesztőpanelhez Készítette: Fekete Dávid Processzor felépítése 2 Perifériák csatlakozása a processzorhoz A perifériák adatlapjai megtalálhatók a programozasi_segedlet.zip-ben.
ARM Cortex-M0+ mikrovezérlő programozása KEIL MDK 5 környezetben. 13. DMA közvetlen memória hozzáférés
ARM Cortex-M0+ mikrovezérlő programozása KEIL MDK 5 környezetben 13. DMA közvetlen memória hozzáférés 1 Felhasznált anyagok, ajánlott irodalom ARM University Program: Course/Lab Material for Teaching Embedded
4.1.1. I 2 C, SPI, I 2 S, USB, PWM, UART, IrDA
4.1.1. I 2 C, SPI, I 2 S, USB, PWM, UART, IrDA A címben található jelölések a mikrovezérlők kimentén megjelenő tipikus perifériák, típus jelzései. Mindegyikkel röviden foglalkozni fogunk a folytatásban.
Mikrovezérlők programozása
Analóg és digitális rsz-ek megvalósítása prog. mikroák-kel BMEVIEEM371 Budapesti Műszaki és Gazdaságtudományi Egyetem Mikrovezérlők programozása Nagy Gergely Elektronikus Eszközök Tanszéke (BME) 2013.
Labor gyakorlat Mikrovezérlők
Labor gyakorlat Mikrovezérlők ATMEL AVR ARDUINO 1. ELŐADÁS BUDAI TAMÁS 2015. 09. 06. Tartalom Labor 2 mikrovezérlők modul 2 alkalom 1 mikrovezérlők felépítése, elmélet 2 programozás, mintaprogramok Értékelés:
T Bird 2. AVR fejlesztőpanel. Használati utasítás. Gyártja: BioDigit Kft. Forgalmazza: HEStore.hu webáruház. BioDigit Kft, 2012. Minden jog fenntartva
T Bird 2 AVR fejlesztőpanel Használati utasítás Gyártja: BioDigit Kft Forgalmazza: HEStore.hu webáruház BioDigit Kft, 2012 Minden jog fenntartva Főbb tulajdonságok ATMEL AVR Atmega128 típusú mikrovezérlő
MPLAB IDE - SIM - - Rövid ismertető a használathoz - Kincses Levente 3E22 89/ November 14. Szabadka
MPLAB IDE - SIM - - Rövid ismertető a használathoz - 3E22 89/2004 2006. November 14 Szabadka - 2 - Tartalomjegyzék TARTALOMJEGYZÉK 3 SIMULATOR I/O 4 SIMULATOR STIMULUS 4 STIMULUS VEZÉRLŐ (CONTROLLER) 5
Bevezetés a mikrovezérlők programozásába: Programciklusok szervezése, analóg I/O
Bevezetés a mikrovezérlők programozásába: Programciklusok szervezése, analóg I/O 1 Ajánlott irodalom Aduino LLC.: Arduino Language Reference ATMEL: ATmega328p mikrovezérlő adatlapja Brian W. Kernighan,
Bevezetés a mikrovezérlők programozásába: Fényérzékelés, fénymérés
Bevezetés a mikrovezérlők programozásába: Fényérzékelés, fénymérés 1 Lab 19 projektek LDR_test.ino tesztprogram a fényérzékeny ellenálláshoz (LDR) TLS2561_and_LDR.ino LDR kalibrálása TLS2561 fénymérővel
Hordozható adatgyűjtő
Hordozható adatgyűjtő Témalaboratórium jegyzőkönyv 2016/17. I. félév Vagner Jázon Konzulens: Dr. Kovácsházy Tamás Tartalomjegyzék Specifikáció... 2 Bevezetés... 2 A téma értelmezése... 2 Az elvégzendő
The modular mitmót system. DPY kijelző kártya C API
The modular mitmót system DPY kijelző kártya C API Dokumentációkód: -D 01.0.0.0 Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Beágyazott Információs Rendszerek
MSP430 programozás Energia környezetben. Kitekintés, további lehetőségek
MSP430 programozás Energia környezetben Kitekintés, további lehetőségek 1 Még nem merítettünk ki minden lehetőséget Kapacitív érzékelés (nyomógombok vagy csúszka) Az Energia egyelőre nem támogatja, csak
Vegyes témakörök. A KAT120B kijelző vezérlése Arduinoval
Vegyes témakörök A KAT120B kijelző vezérlése Arduinoval 1 KAT120B hívószám kijelző A KAT120B kijelző a NEMO-Q International AB egy régi terméke. A cég ma is fogalmaz különféle hívószám kijelzőket bankok,
Labor gyakorlat Mikrovezérlők
Labor gyakorlat Mikrovezérlők ATMEL AVR ARDUINO 1. ELŐADÁS BUDAI TAMÁS Tartalom Mikrovezérlők Mikrovezérlők felépítése, működése Mikrovezérlő típusok, gyártók Mikrovezérlők perifériái Mikrovezérlők programozása
NI PCI-6251 multifunkciós mérésadatgyűjtő kártya specifikációja
NI PCI-6251 multifunkciós mérésadatgyűjtő kártya specifikációja ANALÓG BEMENET Csatornaszám AD felbontása Max konverziós frekvencia 16 SE (8 DIFF) 16 bit 1,25 MHz (egycsatornás) 1 MHz (többcsatornás) Bemeneti
Arduino bevezető Szenzorhálózatok és alkalmazásaik
Arduino bevezető Szenzorhálózatok és alkalmazásaik VITMMA09 Okos város MSc mellékspecializáció Mi az Arduino? Nyílt hardver és szoftver platform 8 bites Atmel mikrokontroller köré építve Ökoszisztéma:
Mikrovezérlők Alkalmazástechnikája
Gingl Zoltán, 2015, Szeged Mikrovezérlők Alkalmazástechnikája 2015.12.06. 11:51 Analóg perifériák és használatuk 1 Gingl Zoltán, 2012, Szeged Mikrovezérlők Alkalmazástechnikája 2015.12.06. 11:51 Analóg
11.3.1. Az MSP430 energiatakarékos használata
11.3.1. Az MSP430 energiatakarékos használata A Texas Instruments ##LINK: www.ti.com## által fejlesztett MSP430 ##Mixed Signal Processor## család tagjai létrehozásakor a tervezők fontos célja volt a rendkívül
MSP430 programozás Energia környezetben. LED kijelzok második rész
MSP430 programozás Energia környezetben LED kijelzok második rész 1 Lab13 SPI_595_7seg Egyszerű mintaprogram kétszámjegyű hétszegmenses LED kijelzővel, 74HC595 shift regiszterrel, SPI programkönyvtár használattal
Bevezetés az elektronikába
Bevezetés az elektronikába 13. Arduino programozás analóg I/O Hobbielektronika csoport 2018/2019 1 Debreceni Megtestesülés Plébánia PWM: impulzus-szélesség moduláció PWM = pulse width modulation (impulzus-szélesség
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Multiplexer (MPX) A multiplexer egy olyan áramkör, amely több bemeneti adat közül a megcímzett bemeneti adatot továbbítja a kimenetére.
Multi-20 modul. Felhasználói dokumentáció 1.1. Készítette: Parrag László. Jóváhagyta: Rubin Informatikai Zrt.
Multi-20 modul Felhasználói dokumentáció. Készítette: Parrag László Jóváhagyta: Rubin Informatikai Zrt. 49 Budapest, Egressy út 7-2. telefon: +36 469 4020; fax: +36 469 4029 e-mail: info@rubin.hu; web:
Laboratóriumi műszerek megvalósítása ARM alapú mikrovezérlővel és Linux-szal
Laboratóriumi műszerek megvalósítása ARM alapú mikrovezérlővel és Linux-szal Fuszenecker Róbert Budapesti Műszaki Főiskola Kandó Kálmán Műszaki Főiskolai Kar 2007. október 17. Laboratóriumi berendezések
Beágyazott és Ambiens Rendszerek
Beágyazott és Ambiens Rendszerek 5. gyakorlat tematikája Futási idő mérése, időmérés A gyakorlat során a következő témakörökkel ismerkedünk meg: futási idő mérésének technikája, néhány tipikus utasítás
ÉRZÉKELŐK ÉS BEAVATKOZÓK I. GY1.1 SENSACT0 PÉLDAPROGRAM
ÉRZÉKELŐK ÉS BEAVATKOZÓK I. GY1.1 SENSACT0 PÉLDAPROGRAM Dr. Soumelidis Alexandros 2018.09.06. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG SensAct0
3.6. HAGYOMÁNYOS SZEKVENCIÁLIS FUNKCIONÁLIS EGYSÉGEK
3.6. AGYOMÁNYOS SZEKVENCIÁIS FUNKCIONÁIS EGYSÉGEK A fenti ismertető alapján elvileg tetszőleges funkciójú és összetettségű szekvenciális hálózat szerkeszthető. Vannak olyan szabványos funkciók, amelyek
Újrakonfigurálható eszközök
Újrakonfigurálható eszközök 4. Verilog példaprogramok EPM240-hez Hobbielektronika csoport 2017/2018 1 Debreceni Megtestesülés Plébánia Tartalom C-M240 fejlesztői kártya, felhasznált kivezetések 15-fdiv-LED:
2. Elméleti összefoglaló
2. Elméleti összefoglaló 2.1 A D/A konverterek [1] A D/A konverter feladata, hogy a bemenetére érkező egész számmal arányos analóg feszültséget vagy áramot állítson elő a kimenetén. A működéséhez szükséges
_INVHU000_WriteReadParameter.cxf Frekvenciaváltók
INV-HU-000 A FB feladata A dokumentáció tartalma Szimbólum A CP1H vagy a CP1L PLC és frekvenciaváltó(k) automatikus kommunikációja: _INVHU000_WriteReadParameter A frekvenciaváltó üzemi paramétereinek írása,
Mikrovezérlők Alkalmazástechnikája
Gingl Zoltán, 2017, Szeged Mikrovezérlők Alkalmazástechnikája 18 szept. 1 18 szept. 2 Analóg jelekből kétállapotú jel Két bemeneti feszültség, V n,v p Logikai kimenet: 1, ha V p >V n 0, egyébként Hiszterézis
MSP430 programozás Energia környezetben. Digitális szenzorok I2C kommunikációval
MSP430 programozás Energia környezetben Digitális szenzorok I2C kommunikációval 1 I2C kommunikáció Az I2C (Inter-Integrated Circuit = integrált áramkörök közötti) kétvezetékes soros kommunikációs sínt
Balatonőszöd, 2013. június 13.
Balatonőszöd, 2013. június 13. Egy tesztrendszer kiépítése Minőséges mérőláncok beépítése Hibák generálása Költséghatékony HW környezet kialakítása A megvalósított rendszer tesztelése Adatbázis kialakítása
Mérő- és vezérlőberendezés megvalósítása ARM alapú mikrovezérlővel és Linux-szal
Mérő- és vezérlőberendezés megvalósítása ARM alapú mikrovezérlővel és Linux-szal Fuszenecker Róbert Budapesti Műszaki Főiskola Kandó Kálmán Műszaki Főiskolai Kar 2007. július 18. A mérőberendezés felhasználási
A Texas Instruments MSP430 mikrovezérlőcsalád
1.4.1. A Texas Instruments MSP430 mikrovezérlőcsalád A Texas Instruments MSP430-as mikrovezérlői 16 bites RISC alapú, kevert jelű (mixed signal) processzorok, melyeket ultra kis fogyasztásra tervezték.
Dr. Oniga István DIGITÁLIS TECHNIKA 8
Dr. Oniga István DIGITÁLIS TECHNIA 8 Szekvenciális (sorrendi) hálózatok Szekvenciális hálózatok fogalma Tárolók RS tárolók tárolók T és D típusú tárolók Számlálók Szinkron számlálók Aszinkron számlálók
A/D és D/A konverterek vezérlése számítógéppel
11. Laboratóriumi gyakorlat A/D és D/A konverterek vezérlése számítógéppel 1. A gyakorlat célja: Az ADC0804 és a DAC08 konverterek ismertetése, bekötése, néhány felhasználási lehetőség tanulmányozása,
Villamos jelek mintavételezése, feldolgozása. Mérésadatgyűjtés, jelfeldolgozás 9. előadás
Villamos jelek mintavételezése, feldolgozása (ellenállás mérés LabVIEW támogatással) Számítógépes mérőrendszerek Mérésadatgyűjtés, jelfeldolgozás 9. előadás Dr. Iványi Miklósné, egyetemi tanár Schiffer
Digitális tárolós oszcilloszkópok
1 Az analóg oszcilloszkópok elsősorban periodikus jelek megjelenítésére alkalmasak, tehát nem teszik lehetővé a nem periodikusan ismétlődő vagy csak egyszeri alkalommal bekövetkező jelváltozások megjelenítését.
Mérési útmutató. A/D konverteres mérés. // Első lépésként tanulmányozzuk a digitális jelfeldolgozás előnyeit és határait.
Mérési útmutató A/D konverteres mérés 1. Az A/D átalakítók főbb típusai és rövid leírásuk // Első lépésként tanulmányozzuk a digitális jelfeldolgozás előnyeit és határait. Csoportosítás polaritás szempontjából:
Az interrupt Benesóczky Zoltán 2004
Az interrupt Benesóczky Zoltán 2004 1 Az interrupt (program megszakítás) órajel generátor cím busz környezet RESET áramkör CPU ROM RAM PERIF. adat busz vezérlõ busz A periféria kezelés során információt
2. rész PC alapú mérőrendszer esetén hogyan történhet az adatok kezelése? Írjon pár 2-2 jellemző is az egyes esetekhez.
Méréselmélet és mérőrendszerek (levelező) Kérdések - 2. előadás 1. rész Írja fel a hiba fogalmát és hogyan számítjuk ki? Hogyan számítjuk ki a relatív hibát? Mit tud a rendszeres hibákról és mi az okozója
Ismerkedés az MSP430 mikrovezérlőkkel
Ismerkedés az MSP430 mikrovezérlőkkel 1 Mikrovezérlők fogalma Mikroprocesszor: Egy tokba integrált számítógép központi egység (CPU). A működés érdekében körbe kell építeni külső elemekkel (memória, perifériák,
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Bevezetés A laborgyakorlatok alapvető célja a tárgy későbbi laborgyakorlataihoz szükséges ismeretek átadása, az azokban szereplő
Fizikai mérések Arduino-val
Fizikai mérések Arduino-val Csajkos Bence, Veres József Csatári László Sándor mentor Megvalósult az Emberi Erőforrások Minisztériuma megbízásából az Emberi Erőforrás Támogatáskezelő a 2015/2016. tanévre
Analóg-digitális átalakítás. Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék
Analóg-digitális átalakítás Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék Mai témák Mintavételezés A/D átalakítók típusok D/A átalakítás 12/10/2007 2/17 A/D ill. D/A átalakítók A világ analóg, a jelfeldolgozás
ARM Cortex magú vezérlők Energia felhasználás Energiatakarékos üzemmódok
ARM Cortex magú vezérlők Energia felhasználás Energiatakarékos üzemmódok Scherer Balázs Budapest University of Technology and Economics Department of Measurement and Information Systems BME-MIT 2015 Fogyasztás
Hobbi Elektronika. A digitális elektronika alapjai: Sorrendi logikai áramkörök 3. rész
Hobbi Elektronika A digitális elektronika alapjai: Sorrendi logikai áramkörök 3. rész 1 Felhasznált anyagok M. Morris Mano and Michael D. Ciletti: Digital Design - With an Introduction to the Verilog HDL,
Jeltárolás. Monitorozás
Jeltárolás Monitorozás 2/10 a jeleket általában rögzíteni kell a feldolgozás előtt, de a folyamatos monitorozás is nélkülözhetetlen papiríró, oszcilloszkóp, audiomonitor papiríró: toll, vagy hő; súrlódás,
11. Analóg/digitális (ADC) és Digital/analóg (DAC) átalakítók
1 11. Analóg/digitális (ADC) és Digital/analóg (DAC) átalakítók A digitális jelekkel dolgozó mikroprocesszoros adatgyűjtő és vezérlő rendszerek csatlakoztatása az analóg jelekkel dolgozó mérő- és beavatkozó
Mechatronika és mikroszámítógépek
Mechatronika és mikroszámítógépek 2018/2019 I. félév Órajelek, időzítők, megszakítások (4. lab) Órajel Internal Oscillator Control Register (OSCICN 0xB2) Bit Symbol Leírás 7 MSCLKE Missing Clock enable
ÉRZÉKELŐK ÉS BEAVATKOZÓK I. GY1. 32-BITES MIKROSZÁMÍTÓGÉPEK
ÉRZÉKELŐK ÉS BEAVATKOZÓK I. GY1. 32-BITES MIKROSZÁMÍTÓGÉPEK Dr. Soumelidis Alexandros 2018.09.06. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG Mivel
Mérési utasítás Mikrokontroller programozás 2.sz. mérés
Mérési utasítás Mikrokontroller programozás 2.sz. mérés Szükséges ismeretanyag: - IBM PC kezelése, szövegszerkesztés, Double Commander - SB80C515 mikrokontroller felépítése, utasításai - HyperTerminál
Hobbi Elektronika. A digitális elektronika alapjai: Sorrendi logikai áramkörök 2. rész
Hobbi Elektronika A digitális elektronika alapjai: Sorrendi logikai áramkörök 2. rész 1 Felhasznált anyagok M. Morris Mano and Michael D. Ciletti: Digital Design - With an Introduction to the Verilog HDL,
Bevezetés a mikrovezérlők programozásába: MAX6958: Hétszegmenses LED kijelző vezérlő
Bevezetés a mikrovezérlők programozásába: MAX6958: Hétszegmenses LED kijelző vezérlő 1 Lab 20 projektek MiniPirate.ino Arduino Mini Pirate interaktív vizsgálóprogram, amelyet most az I2C busz kézivezérlésére
Programozás és Digitális technika I. Pógár István eng.unideb.hu/pogari
Programozás és Digitális technika I. Pógár István pogari@eng.unideb.hu eng.unideb.hu/pogari Ajánlott irodalom Massimo Banzi Getting Started with Arduino Michael Margolis Make an Android Controlled Robot
Digitális technika (VIMIAA01) Laboratórium 9
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA01) Laboratórium 9 Fehér Béla Raikovich Tamás,
Villamos jelek mintavételezése, feldolgozása. LabVIEW előadás
Villamos jelek mintavételezése, feldolgozása (ellenállás mérés LabVIEW támogatással) LabVIEW 7.1 2. előadás Dr. Iványi Miklósné, egyetemi tanár LabVIEW-7.1 EA-2/1 Ellenállás mérés és adatbeolvasás Rn ismert
Villamos jelek mintavételezése, feldolgozása. LabVIEW 7.1
Villamos jelek mintavételezése, feldolgozása (ellenállás mérés LabVIEW támogatással) LabVIEW 7.1 előadás Dr. Iványi Miklósné, egyetemi tanár LabVIEW-7.1 KONF-5_2/1 Ellenállás mérés és adatbeolvasás Rn
Dr. Schuster György szeptember 27.
Real-time operációs rendszerek RTOS 2012. szeptember 27. Általános ismérvek: ARM Cortex M3 mag 80 MHz órajel frekvencia (50 MHz flash-ből) 256 kbájt flash 96 kbájt RAM ARM Cortex Sys Tick Timer belső ROM
Mikrovezérlők programozása
Mikrovezérlők programozása Nagy Gergely BME EET 2012. április 4. ebook ready 1 Bevezetés A mikrovezérlők programozása Bitműveletek Egy egyszerű program felépítése Az inicializáló függvény 2 Az számláló
Vegyes témakörök. 5. Gagyiszkóp házilag hangfrekvenciás jelek vizsgálata. Hobbielektronika csoport 2018/2019. Debreceni Megtestesülés Plébánia
Vegyes témakörök 5. Gagyiszkóp házilag hangfrekvenciás jelek vizsgálata 1 Analóg és digitális oszcilloszkópok Analóg oszcilloszkóp: a katódsugárcső vízszintes eltérítését egy ramp generátor a függőleges
ALPHA és ALPHA XL műszaki leírás
ALPHA és ALPHA XL műszaki leírás ALPHA műszaki leírás: Általános jellemzők Alpha sorozat Környezeti hőmérséklet 0 55ºC Működési hőmérséklet 0 55ºC Tárolási hőmérséklet -30 70ºC Védelmi típus IP20 Zavarvédettség
A/D és D/A átalakítók gyakorlat
Budapesti Műszaki és Gazdaságtudományi Egyetem A/D és D/A átalakítók gyakorlat Takács Gábor Elektronikus Eszközök Tanszéke (BME) 2013. február 27. ebook ready Tartalom 1 A/D átalakítás alapjai (feladatok)
A töltőfolyadék térfogatváltozása alapján, egy viszonyítási skála segítségével határozható meg a hőmérséklet.
1. HŐTÁGULÁSON ALAPULÓ ÁTALAKÍTÓK: HŐMÉRSÉKLET A hőmérséklet változását elmozdulássá alakítják át 1.1 Folyadéktöltésű hőmérők (helyzet változássá) A töltőfolyadék térfogatváltozása alapján, egy viszonyítási
PIC tanfolyam 2013 tavasz 2. előadás
PIC tanfolyam 2013 tavasz 2. előadás Horváth Kristóf SEM körtag SCH1315 szoba psoft-hkristof@amiga.hu Miről lesz ma szó? Elektromos szükségletek Oszcillátor Konfigurációs bitek Reset Energiatakarékos módok
LCD kijelzős digitális tároló szkóp FFT üzemmóddal
LCD kijelzős digitális tároló szkóp FFT üzemmóddal Type: HM-10 Y2 Y Pos Trig Level HOLD Y1 Bemenet vál. Bemenet Ablak pozició Kijelző 1) Y Pos jel baloldalon egy kis háromszög 0V helyzetét mutatja 2) Trig
MSP430 programozás Energia környezetben. Digitális szenzorok
MSP430 programozás Energia környezetben Digitális szenzorok 1 Adatgyűjtés, adatkonverzió A külvilág fizikai jellemzői többnyire az idő függvényének folytonos változói. Ezek érzékelése és digitálisan feldolgozhatóvá
MSP430 programozás Energia környezetben. LED kijelzok második rész
MSP430 programozás Energia környezetben LED kijelzok második rész 1 Lab13 SPI_595_7seg Egyszerű mintaprogram kétszámjegyű hétszegmenses LED kijelzővel, 74HC595 shift regiszterrel, SPI programkönyvtár használattal
Tartalom. Port átalakítók, AD/DA átalakítók. Port átalakítók, AD/DA átalakítók H.1. Port átalakítók, AD/DA átalakítók Áttekintés H.
Tartalom Port átalakítók, Port átalakítók, Port átalakítók, Port átalakítók, Áttekintés.2 Soros port átalakítók.4.6.1 Port átalakítók, Áttekintés Port átalakítók, Soros port jelátalakítók és /RS485/422
Mechatronika és mikroszámítógépek. 2018/2019 I. félév. Külső megszakítások
Mechatronika és mikroszámítógépek 2018/2019 I. félév Külső megszakítások Megszakítás, Interrupt A megszakítás egy olyan esemény, vagy feltétel teljesülése, amely felfüggeszti a program futását, a vezérlést