Fehérjék: tartalomjegyzék
|
|
- Áron Balog
- 9 évvel ezelőtt
- Látták:
Átírás
1 Fehérjék: tartalomjegyzék 1) Bevezető 2) A fehérjék szerkezeti hierarchiája: - elsődleges szerkezet (aminosav sorrend) - másodlagos szerkezet (a-hélix, b-redő, stb.) - harmadlagos szerkezet (domének és modulok) - negyedleges szerkezet (alegység-struktúrák) 3) A fehérjék térszerkezet-viszgálati módszerei 4) A fehérjék belső mozgékonysága 5) Bevezetés az enzimek világába - oxidoreduktázok (az alkohol-dehidrogenáz) - transzferázok - hidrolázok (a szerinproteázok, a lizozim) - liázok - izomerázok - ligázok 6) Érdekes fehérjék
2 1) Bevezető - az élő rendszerekben a víz után a fehérje a legelterjedtebb molekulatípus, - a fehérjék lokális koncentrációja igen magas, - sokrétű feladatot látnak el: motorfehérjék, enzimek, antitestek, hormonok, szállítanak, etc. - a sejtben előforduló szinte összes kémiai átalakítást fehérjék végzik RNS vírus: DNS vírus: Baktérium: 1-25 gén gén gén Ember ( bp): gén ~ fehérjét kódol Növény: > gén A fehérjék természetes lineáris polimerek: poliamidok
3 Poliamid polimerek: kémiai összetétel Egyetlen amino-karbonsavból is felépíthetünk lineáris poliamid rendszereket: 1 mol e-kaprolaktám poliaddíciós reakciója 1 mol vízzel elindítható, amely e-peptideket eredményez (~260 C /N 2 atmoszféra, 4-5 óra reakcióidő után az ismert műanyagot a poliamid 6-ot vagy más néven a Nylon 6-ot kapjuk).
4 Poliamid polimerek: az amidkötés téralkata A határszerkezetek szemléltetik hogy 2 nemkötő elektronpár 3 centrumra (, C és N) delokalizálódik, így a C-N kötésnek is van kettőskötés jellege, s ezért válik a peptidkötés síkalkatúvá: 6 atom (C a,c, és a C a, N NH,H NH ) egy síkban van. Az amidkötés adatai: Az amid síkalkatú, s ennek következménye, hogy a polipeptidlánc nem teljesen flexibilis. A főláncban az ismétlődő amidokat a C α atomok kötik össze. Az N NH -C α és a C α -C kovalens σ-kötések mentén az elfordulás viszonylagosan szabad, annak mértékét a φ és a ψ torziósszögek nagysága méri. (Az oldalláncok torziósszög értékeit a χ(i) változók rögzítik.)
5 2) A fehérjék szerkezeti hierarchiája: - elsődleges szerkezet (aminosavsorrend) - másodlagos szerkezet (a-hélix, b-redő, stb.) - harmadlagos szerkezet (domének és modulok) - negyedleges szerkezet (alegység-struktúrák) Az elsődleges szerkezet a fehérjét felépítő aminosavak sorrendje: balról jobbra, az N-terminálistól a C-terminális felé írjuk és rajzoljuk a polipeptidláncot. A kémiai összetételt, azaz az aminosavakat és azok sorrendjét a megfelelő gén(ek) kódolják. H-Thr--His--Ile--Ser--Ser--Ile-Met-Pro-Leu-Glu-H
6 A fehérjék szerkezeti hierarchiája: - elsődleges szerkezet (aminosavsorrend) - másodlagos szerkezet (a-hélix, b-redő, stb.) - harmadlagos szerkezet (domének és modulok) - negyedleges szerkezet (alegység-struktúrák) A szabályos (periodikus és aperiodikus) valamint szabálytalannak (fokozott belső mozgásúnak leírt, rendezetlennek) mondott fehérjerészek együttese. Elsőként Linus Pauling javasolta az a-hélix és a b-redőzött rétegek megjelölést. E két fajta, valamint a többi tipikus konformációs építőelem a Ramachandranfelület jellegzetes régióiban azonosítható. Meghatározásukhoz gyakran ismétlődő alapalkatok (foldamer) és mintázatok (pl. H-híd) felismerése vezet. a-hélix b-redő -kanyar tipikus peptidkonformerek elhelyezkedése a Ramachandran-felületen: 0 o j,y 360 o intervallum esetén a E=E(j, y) térképen
7 A másodlagos szerkezeti elemek: a-hélix, b-redő, stb. Polipeptidek térszerkezete szabályos,tipikus konformerek szabálytalan, atipikus konformerek periodikus, homo-konformerek aperiodikus, hetero-konformerek f(i) = f(i 1) és y(i) = y (i 1) , a-, π- hélix, - b-redőzött réteg, - kollagén-hélix (PPII szerkezet) f(i) f(i 1) és y(i) y (i 1) b-kanyar szerkezetek: - I (és I ) típusú - II (és II ) típusú - VIa (és VIb) típusú - VIII típusú
8 A másodlagos szerkezeti elemek: a-hélix, b-redő, stb. - alfa hélix (α-hélix): a természetes L-aminosavak esetében a jobb (csavar)menet téralkat a szokásos (rugó). Itt minden (i+4). amidcsoport H-donor az i. amid C= felé. alfa hélix: Pauling-Corey-Branson C-terminális jobbmenetes a-hélix balmenetes a-hélix N-terminális f(i) = f(i 1) ~ 54º és y(i) = y (i 1) ~ 45º memo: a 2 db a-hélixből feltekeredő coiled-coil szerkezet, balmenetes szupramolekuláris komplexet eredményez. => harmadlagos szerkezet
9 A másodlagos szerkezeti elemek: a-hélix, b-redő, stb. Helikális vagy spirális téralkat: lehet jobbmenetes vagy balmenetes 1) ha a spirális szerkezeti elemnek nincs kitüntetett vége (vagy eleje) (pl. rugó) akkor is lehet a tükörképi párja. 2) ha a spirális szerkezeti elemnek van kitüntetett vége (vagy eleje): pl. oszlop (töve és teteje), csavarhúzó (feje), peptid hélix (N- és C-term.) N-term. C-term. A jobbkéz szabály: tehát ez egy jobbmenetes csavar tehát ez egy jobbmenetes a-hélix memo: Jobbkezesek a fehérjékben található a-hélixek,a DNS A és B formái, stb. def.: Nézzük a hélixet a hossztengelye mentén. Ha a helikális elmozdulás, amely a nézőtől távolodik az óramutató járásával megegyező irányú, akkor az a hélix jobbmenetes. (Ezt a hélix típust szokás P-helixnek (plusznak) nevezni.)
10 A másodlagos szerkezeti elemek: a-hélix, b-redő, stb. Az a-hélix tipikus geometriai jellemzői: jobbmenetes 3,6 aminosav menetenként 0,54 nm menetmagasság 0,15 nm emelkedés/aminosav periodikus: 5 csavar/18 aminosavrész után d = 1,05 nm R-csoportok a palástra merőlegesen kifelé H-kötések hélix tengellyel párhuzamosak Robert Brainard Corey ( ) Az a-hélix és a b-redő felfedezője Animáció
11 A másodlagos szerkezeti elemek: a-hélix, b-redő, stb. A kollagén: (a görög kolla ( enyv ) és gennao ( nemz, létrehoz ) elemekből, tehát enyvképző. a kollagén téralkata: a természetes L-aminosavak esetében az egyes szálak balcsavarmenetűek. Ideális aminosav összetétel: - PG-. X Y Gly X Y Gly Y Gly X Y Gly X Gly X Y Gly X Y a tropokollagén: a három kollagén szál együttese, amely jobbmenetes hélixet eredményez! (1954) f(i) = f(i 1) ~ 60º és y(i) = y (i 1) ~ +135º memo: Testtömegünk közel negyedét ez a fehérje teszi ki; hialuronsavval és kondroitin szulfáttal kiegészülve a bőr, a porc, az ín, az ízület és csont meghatározó komponense. Animáció
12 A másodlagos szerkezeti elemek: a-hélix, b-redő, stb. b-redőzött réteg (vagy b-redő) téralkat esetén - antiparallel és - parallel redőket különböztetünk meg. Ezen másodlagos szerkezeti forma a gerincatomok H-hidas összekapcsolódásának következménye, melyben az oldalláncok csak közvetetten vesznek részt s ezért sokfajta aminosav azonosítható a a különböző b-redőkben. (Az oldalláncok a redő síkja alatt és felett helyezkednek el) - az antiparallel redőzött réteg térszerkezet: f(i) = f(i 1) ~ 150º y(i) = y (i 1) ~ +150º Animáció
13 A parallel redőzött réteg térszerkezet: N C a C N H N C a C N H H C a C N H C a C N C a C a C N H C N H Egy érdekes példa: a selyemszál: - aminosav összetétele konzervatív (Gly:Ala:Ser = 3:2:1) - szekvenciális összetétele: Gly Ala Gly Ala Gly Ser - térszerkezete jellegzetes b-szál jellemzői: feszes lánc nem nyújtható hajlékony rétegek elcsúszhatnak selyemfény rétegek fénytörése
14 A másodlagos szerkezeti elemek: a-hélix, b-redő, stb. -a b-kanyar térszerkezet: -a hurkok: i+1 i+2 i i+3
15 A fehérjék szerkezeti hierarchiája: - elsődleges szerkezet (aminosavsorrend) - másodlagos szerkezet (a-hélix, b-redő, stb.) - harmadlagos szerkezet (domének és modulok) - negyedleges szerkezet (alegység-struktúrák) Egy fehérje harmadlagos szerkezete azonos az azt felépítő egyetlen polipeptidlánc 3D- vagy térszerkezetével. A másodlagos szerkezeti elemek feltekeredése következtében létrejövő téralkat egy időátlagban kvázi azonos konformer. Jellegzetes hidrofób- és ionos (só-híd) kölcsönhatások, illetve a diszulfid-hidak stabilizálják a kialakult 3D szerkezetet. A fehérjék téralkatát stabilizáló 5-fajta kötés: peptidkötés, hidrogén-híd (kötés), diszulfid kötés, ionos kötések, hidrofób erők (kötés)
16 A harmadlagos szerkezet (domének és modulok) Milyen erősek a fehérjéket összetartó kötések és erők? Kovalens kötés Hidrogén-híd Ionos-kötés Van der Waals Hidrofób erők ~100 kcal/mol ~3 kcal/mol ~ 5 kcal/mol ~1 kcal/mol ~3 kcal/mol megosztott elektronok víz-víz teljes töltésátadás fluktuál nem igazi kötés szerves-vizes H-híddal kompetícióban indukált dipól entrópia vezérelt szerves-szerves erős száraz kristályokban csak sztérikus közelség esetén csak vízben hatásos erős gyenge, orientáció érzékeny vízben gyenge gyenge gyenge A biomolekulák harmadlagos szerkezetének kialakítása során a gyenge kötések (kölcsönhatások) összessége igen jelentős.
17 túl közel ideális túl távol taszítás egyensúly vonzás Van der Waals- (hidrofób) potenciál 3 2,5 V/ek r 0 = 2.58 Å - túl távol aszimmetrikusan polarizált elektronfelhők vonzása - túl közel elektronfelhők egymásba hatolása taszítást okoz 2 1,5 1 0,5 0-0,5-1 -1,5 (r 0 /r) -12 (r 0 /r) (r 0 /r) ,5 3 3,5 4 4,5 5 ideális (van der Waals) távolság -(r 0 /r) -6 r Johannes Diderik van der Waals ( ) -2
18 A harmadlagos szerkezet (domének és modulok) a-domén szerkezetek: négyes hélixköteg (four-helix bundle) citokróm b 562 (a légzési elektrontranszportlánc része) Keratin fibrilláris szerkezeti fehérje a-keratin (haj, gyapjú, köröm) és b-keratin (köröm, kagylóhéj, teknőspáncél) coiled-coil GCN4 transzkripciós faktor Aktin: mikrofilament monomer egysége Miozin
19 A harmadlagos szerkezet (domének és modulok) b-redő topológiák N C aszpartát transzkarbamoiláz enzim C N bab-motívumok flavodoxin (redox fehérje) Greek key motívum C N C N tripszin (vágva) plasztocianin (elektrontranszporter)
20 A harmadlagos szerkezet (domének és modulok) A bab-motívum: C N részlet az alkohol dehidrogenáz enzim szerkezetéből (szalagmodell)
21 A harmadlagos szerkezet (domének és modulok) Még a globuláris fehérjék térszerkezete is sokféle lehet.
22 A fehérjék feltekeredése A szerkezeti biokémia dogmája Általánosan elfogadott, hogy az aminosav-szekvencia meghatározza a térszerkezetet Bizonyíték: denaturációs-renaturációs kísérletek (Anfinsen) A fehérje natív térszerkezete az esetek túlnyomó többségében a globális energiaminimumnak felel meg Hogyan találja meg a fehérje a natív térszerkezetet? Levinthal-paradoxon: egy polipeptidlánc lehetséges konformációs állapotainak száma csillagászati: (pl. 100 aminosav, 9 gerinckonformer/aminosav: x ) Az ismert fehérjék néhány másodperc (vagy rövidebb idő) alatt feltekerednek: nincs idő a lehetséges téralkatok töredékének kipróbálására sem (világegyetem kora < s) A feltekeredés adott útvonalon (útvonalakon) zajlik, lényeges a lokális kölcsönhatások és az azok révén kialakuló szerkezeti magok szerepe Alapvető feltekeredési modellek: másodlagos szerkezeti elemek kialakulása hidrofób összeomlás feltekeredett (folded) fehérje kitekeredett (unfolded) fehérje feltekeredési mag (folding nucleus)
23 A ribonukleáz redukciója és denaturálódása Chrisian B. Anfinsen 1972 Nobel-díj Ribonukleáz feltekeredése A ribonukleáz renaturálódása feltekeredés folding
24 A harmadlagos szerkezet (domének és modulok) Fehérjék denaturálásához használt reagensek: kaotróp molekulák Fehérjék denaturálásához használt reagensek: az SS- kötések redukciójához
25 A harmadlagos szerkezet (domének és modulok) definíció: 50%-os feltekeredés: amikor a molekulák fele feltekeredett, ám a másik fele kitekeredett marad. memo: nincs félig feltekeredés!!!
26 A harmadlagos szerkezet A hődenaturálás: Ubiquitin (76 as., 8,5kDa) DSC: Differential Scanning Calorimetry C p,exp / (mj o C -1 ) T m 50 o C Θ/ o C Az Ubiquitin DSC termogramja alapján a fehérje 40 o C alatt megtartja natív téralkatát, aztán endotermikus konformáció változáson megy át. T m, olvadáspont (~50 o C olvadási hőmérséklet, melting temperature) az a hőmérséklet, ahol egy adott nyomáson a folyadék és a szilárd fázis egyensúlyban van. Ribonukleáz T 1 T m = 47 o C (320K). ph=7 és T=298K a fehérje letekeredéshez szükséges DG mindössze 22.5 kj.mol -1, ami alig több, mint egy erősebb H-híd (DG 20 kjmol -1 ). Hogy lehet ez, amikor ugyanez a fehérje tele van a-hélixszel és b-redővel, amely egy sor H-hidat tartalmaz? Atkins de Paula 118
27 Példa: DG = DH-TDS = = 4 kcal.mol -1 Ribonukleáz T 1 Ha T=298K akkor a fehérje letekeredéshez szükséges DG mindössze 22.5 kj.mol -1, ami alig több, mint egy H-híd (DG 20 kjmol -1 ). Kérdés: Hogy lehet ez, amikor ugyanez a fehérje tele van a-hélixszel és b-redővel, amely egy sor H-hidat tartalmaz? Becsüljük meg a DH-t: ~ 4 menet hélix 3.6*4 ~ 15 a.s ~ 12 H-híd ~ 12*2= 24 kcal.mol -1 ~ 3 hosszabb b-redő 3*8 ~ 24 a.s ~ 22 H-híd ~ 22*2 = 44 kcal.mol -1 Σ DH > 68 kcal.mol -1 Atkins de Paula 118 Becsüljük meg a DS-t: 1) Legyen a fehérje letekeredett állapotában minden aminosavnak 3 lehetséges és egyforma valószínűséggel megjelenő gerinc konformere. Ekkor S = R ln (3 100 ). 2) Ha feltekeredik egy ötös peptid rész (pl. kanyar) és annak már csak 1 lehetséges konformere van, akkor S = R ln (3 95 ) már csak. (A változás Rln(3 5 ) ami szobahőn (T=25 o C) ~ 3.2 kcal.mol -1. 3) Ha az egész feltekeredik, mit 20 db. pentapeptid darab, akkor az S ~ 20* 3.2 = 64 kcal.mol- 1.
28 A fehérjék szerkezeti hierarchiája: - elsődleges szerkezet (aminosavsorrend) - másodlagos szerkezet (a-hélix, b-redő, stb.) - harmadlagos szerkezet (domének és modulok) - negyedleges szerkezet (alegység-struktúrák) A fehérjék negyedleges szerkezetének kialakulása során több, akár eltérő, akár azonos polipeptidlánc vagy fehérje kapcsolódik össze, s alkot funkcionális egységet. A keletkező dimerek, trimerek, tetramerek stb. akkor nevezzük homo-dimernek, homo-trimernek stb. ha a felépítő egységek azonosak. Ha eltérőek, akkor a hetero- előtagot használjuk. Az IL-8 biológiai szerepe: a legfontosabb a célsejteken (fehérvérsejteken) a kemotaxis kiváltása.
29 A negyedleges szerkezet A hemoglobin térszerkezete és működése: kék: a-alegységek, sárga: b-alegységek, lila: vas centrumok eritrocita, thrombocita, leukocita vörösvérsejt, vérlemezke, fehérvérsejt A hemoglobin a vörösvértest szállító metalo-fehérje, amely az oxigén transzportban vesz részt. (A gerincesekben jellegzetes) Egyetlen Glu Val aminosav csere befolyásolja a hemoglobin tészerkezetét és működését, amely fiziológiás koncentrációban a sarlósejtes anémia betegségéhez vezet. (De a maláriával szemben ellenállóbb a szervezet.) sarló alakú vörösvérsejtek
30 A negyedleges szerkezet Több doménből felépülő fehérjék a működéshez elengedhetetlen a domének kooperativitása sejt-mátrix kapcsolatot kialakító fehérjék (integrinek) aktiválódása során jellegzetes makroszkopikus szerkezetváltozás következik be.
31 Fehérjék: tartalomjegyzék 1) Bevezető 2) A fehérjék szerkezeti hierarchiája: - elsődleges szerkezet (aminosav sorrend) - másodlagos szerkezet (a-hélix, b-redő, stb.) - harmadlagos szerkezet (domének és modulok) - negyedleges szerkezet (alegység-struktúrák) 3) A fehérjék térszerkezet-viszgálati módszerei 4) A fehérjék belső mozgékonysága 5) Bevezetés az enzimek világába - oxidoreduktázok (az alkohol-dehidrogenáz) - transzferázok - hidrolázok (a szerinproteázok, a lizozim) - liázok - izomerázok - ligázok 6) Érdekes fehérjék
32 3) A fehérjék térszerkezet-viszgálati módszerei Fehérjék analitika és térszerkezet-vizsgálati módszerei: Az atomi szintű szerkezetkutatás legfontosabb eszközei: - NMR-spektroszkópia - röntgen-krisztallográfia - molekula-modellezés
33 A fehérjék térszerkezet-viszgálati módszerei Mit rejt a kristály? Fehérje röntgenkrisztallográfia: kémiai Nobel-díj, 1962 Max Perutz, John Kendrew kristályban az egyes atomok helye térben jól meghatározott részletgazdag térszerkezet
34 A negyedleges szerkezet Mit rejt az oldat: NMR-spektroszkópia Fehérje NMR: kémiai Nobel-díj, 2002 Kurt Wüthrich anyagszükséglet: 1 mm vizes oldatból μl szerkezeti sokaság
35 4) A fehérjék belső mozgékonysága A makroszkopikus mozgás mikroszkopikus háttere: a táncrend 10 cm 0,1 mm szervezet sejtek 1 nm 0,1 m fehérjemolekulák sejtalkotók
36 A fehérjék belső mozgékonysága Minden fehérje határozott, belsőleg kódolt mozgékonysággal rendelkezik: szinkronizáltabb mozgás, rendezettebb téralkat szinkronizálatlan mozgás, rendezetlenebb téralkat memo: egymásba ágyazott, eltérő időskálájú mozgások ~ 1s 10 5 s ~ 1h s ~ 1év
37 A fehérjék belső mozgási időskálája hurkok és kanyarok záródása 0.1ms 10ms másodlagos szerkezeti elemek 10ns 1ms feltekeredés 1ms 1h H/D R ex Rot. Dif. korrel. idő 1ns<t c < 10ns gerinc dinamika 1ps 10ns t lokális aggregáció 1 s 1 év t effektiv = t C +t lok. oldallánc forgás 0.1ps 10 ps
38 Fehérjék: tartalomjegyzék 1) Bevezető 2) A fehérjék szerkezeti hierarchiája: - elsődleges szerkezet (aminosav sorrend) - másodlagos szerkezet (a-hélix, b-redő, stb.) - harmadlagos szerkezet (domének és modulok) - negyedleges szerkezet (alegység-struktúrák) 3) A fehérjék térszerkezet-viszgálati módszerei 4) A fehérjék belső mozgékonysága 5) Bevezetés az enzimek világába - oxidoreduktázok (az alkohol-dehidrogenáz) - transzferázok - hidrolázok (a szerinproteázok, a lizozim) - liázok - izomerázok - ligázok 6) Érdekes fehérjék
39 5) Bevezetés az enzimek világába energia a sejtben előforduló szinte összes kémiai átalakítást biológiai katalizátorok, az enzimek végzik! - a legtöbb enzim fehérje - az átalakítás sebessége akár szeres lehet a biokatalízis hatására. - így lehetséges, hogy a reakciók végbemennek már 37 o C-on és neutrális ph-n. specificitás: az enzim nagy affinitással kötödik mind a saját szubsztrátjához, mind a termékhez. (E. Fischer kulcs-zár modell megalkotása.) memo: Arrhenius egyenlet (a sebességi egyenlet T függése): k= A exp ( E a /RT) E a k növekvő E a Tipikus enzimreakció: Keeler 138 reakció koordináta T(K) enzim + szubsztrát enzim-szubsztrát komplex enzim + termék A reakció helye: az aktív hely ( centrum ), ahová a szubsztrát tipikusan nem-kovalans kötésen keresztül kötődik. Az enzimreakciók leggyakrabban teljesen sztereospecifikusak.
40 Bevezetés az enzimek világába példa: egy lipáz enzimmel történő észterhidrolízis: alapreakció: a lipáz enzimek a zsírsavészterek szelektív hidrolízisében vesznek részt. A glicerin rész megfelelő pontján hidrolizálnak: sztereospecificitás: legyen az észter királis és használjunk egy racemátot megfigyelés: az egyik enantiomer észter elhidrolizál, a másik nem vagy csak nagyon lassan. (a jelenség neve: kinetikus rezolválás) F racemát észter kiindulási anyag C Et H lipáz H F C C Et (R)-(+)-2-fluorhexánsav-etil-észter >99% enantiomer túlsúly H magyarázat: (S)-(+)-2-fluorhexánsav >69% enantiomer túlsúly - a lipáz aktív zsebébe nem fér be az (R)-enantiomer, ezért az visszamarad és a hidrolízis során 99%-ig dúsul, - míg az (S)-(-)-sav éppen 69%-ban keletkezik. F H Et
41 Geometriai specificitás megadja, hogy mennyire szigorúan csak egyetlen szubsztrátot fogad el az enzim: pl: 1) Karboxipeptidáz A a polipeptidlánc C-terminálisáról lehasít egy aminosavat, ha az nem Arg, Lys, Pro és a megelőző aminosav nem Pro. 2) kimotripszin: észtert is, amidot is hidrolizál. R N H peptid R' + H 2 kimotripszin R + H 3 N + R' Inhibitor: molekula, amely az enzimműködésre negatívan hat, azt gátolja. Kompetitív inhibitor: amelyik a szubsztráttal versenyez az aktív helyért vagy annak bekötését oda gátolja. R N H R' + H 2 Kofaktor: nem-fehérje jellegű, de az enzimhez ideiglenesen kötött molekula/ion, olyan amelyik a katalízist segíti (apoenzim [fehérje] + kofaktor = holoenzim) Koenzim: (spec. kofaktor): olyan segédmolekula, amely nincs permanensen az enzimhez kötve pl. NAD Prosztetikus csoport: (spec. kofaktor): olyan molekula, amely permanensen az enzimhez van kötve pl. Fe-S centrum, hem, stb. memo: sok vízoldható vitamin koenzim prekurzor: nikotinsav NAD, pantoténsav CoA észter Fe 2+ kimotripszin R H + H R' H Koenzim A N niacin
42 Szerinproteázok (sok egymással nem - feltétlenül - rokon fehérje) A fehérjék lebontó enzimek (proteázok): pl. kimotripszin, tripszin és elasztáz (Azért szerinproteáz, mert van benne egy a katalízis szempontjából döntő fontosságú Ser.) A Kimotripszin: specificitása: főleg Trp, Tyr, Phe, de Leu, Met után is hasítja az amidkötést memo: észtereket is hidrolizál memo: a tripszin más specificitású: Arg vagy Lys után hasít. Az inaktív kimotripszinogénből (245 as.) két dipeptid kihasadása és egy refolding során képződik az enzim. A konformációs átrendeződés eredményeként sztérikusan közel kerül a katalitikus triád 3 eleme. A katalitikus triád: Asp His Ser
43 Szubsztrátkötő hely Aktív hely, benne a katalitikus triáddal oxianion üreg ez a peptidkötés fog elhasadni szubsztrátkötő zseb egy aromás (R1) csoporttal rendelkező szubsztrát N- terminális része
44 Biodegradáció: Az amidok hidrolízise kapcsán a kémiai reakciótípusok: - nukleofil addíció, - elimináció A szerinproteázok működési mechanizmusa:
45 Asp 102 H 2 C C H N His 57 CH 2 Ser 195 H 2 Az aktív hely regenerálódása N H R H N C CH 2 R acilezett szerin Asp 102 H 2 C C H N His 57 CH 2 Ser 195 RNH 2 N H CH 2 H C R acilezett szerin
46 Asp 102 H 2 C C H N His 57 CH 2 N H Ser 195 CH 2 tetraéderes intermedier H C R memo: lehet készíteni olyan enzimet, amelyik a fordított folyamatot katalizálja. Asp 102 H 2 C C H N His 57 CH 2 Ser 195 Feltehetőleg a riboszómán a fehérjeszintézis során (RNSrészek közreműködésével) ilyen fordított folyamat zajlik. N H CH 2 regenerált aktív centrum karbonsav termék H C R
47 Összefoglalás: A kimotripszin irreverzibilis inhibitora: pl. DIPF
48 Lizozim: egy tipikus enzimműködés (Lysozyme:= lyse: felold + enzyme) A Lizozim feloldja (kilukasztja) a baktériumok sejtfalát, mivelhogy katalizálja a sejtfal poliszacharid egy adott részének hidrolízisét: Nag-Nam-Nag-Nam-Nag-Nam Alexander Fleming 1922-ben megfázott H H R 1 R 2 R 1 R 3 A B H C R 3 D H E R 3 F R 2 R 1 R 2 R 1 R 2 R 1 R 2 R 1 R 2 H HCH 2 H H H NHCCH 3 b-d-n-acetil-glükozamin (Nag) R 1 = CH 2 H R 2 = NHCCH 3 R 3 = CH(CH 3 )CH H HCH 2 R H R: CH 3 H CH NHCCH 3 b-d-n-acetil-muraminsav (Nam)
49 A Lizozim biokatalizált glikozidkötés hidrolízisének molekuláris háttere: 1) A D-E glükopiranóz gyűrűk elhidrolizálása: David Chilton Phillips memo: a D-gyűrű a bekötés következtében konformációsan eltorzul, a térszerkezet feszült lesz. 2) A molekuláris felismerés és a hexaszacharid (zöld) megkötésének atomi részletei:
50 3) A hidrolízis legvalószínűbb mechanizmusának kétfajta bemutatása: memo: a természetes védekezésünk fontos enzimje tehát a Lizozim, amely patogének (pl. Salmonella, E.coli vagy Pseudomonas) ellen nyújt védelmet.
51 Alkohollebontás (oxidoredukció, aromatizáció): A NADH egyensúlyi reakciója az acetaldehidet etil-alkohollá redukálja. A működés lépései és leírása: 1) A NADH és az aldehid megkötődik, utóbbit a Zn 2+ koordinálja, alkohol-dehidrogenáz enzim (NADH + inhibitor komplex) 2) a nikotinsavamid nitrogénjének nemkötő elektronpárja delokalizálódik, a dihidropiridin gyűrű aromássá válik az egyik C4-es hidrogénatomot anionként leadva. (oxidáció) 3) A hidridion redukálja az acetaldehidet, majd a képződő alkoholát anion protonálódik. A cink mint Lewissav fokozza a karbonil-szén pozitív polározottságát, s így annak elektrofil jellegét. méregtelenítés: ha nagy az alkoholkoncentráció, akkor az egyensúlyi reakció megfordul és az etilalkohol acetaldehidé oxidálódik.
52 az alkohol-dehidrogenáz enzim apoenzim + koenzim + inhibitor (80 kda dimer, az emberben legalább 6 variánsa van, előfordulás, máj és gyomor) memo: Miért mérgezők az alkohol végzetes adalékai: metanol, etilénglikol? NH 2 H feladatuk: - egyensúlyt tartani az alkoholok aldehidek és ketonok között. N N N N H H H H P H P H 2 N H H N H H - méregtelenítés (emlősben): a toxikus alkoholból aldehidet csinál - fermentálás (baci és élesztő): aldehidből alkoholt készít (redukció) A NAD+ (Nikotinsavamid-adenin-dinukleotid) (az élő sejt egyik oxidáló vagy dehidrogénező szere)
53 A kulcs & zár modell (Emil Fischer) Hogyan tervezzünk hatóanyagot vagy gyógyszert? Minél többet meg kell tudnunk a fehérjék dinamikus téralkatáról, annál nagyobb a sikeres tervezés esélye!
54 6) Érdekes fehérjék Újrahasznosítás: mit őrizzünk meg és mit dobjunk ki? Az Ubiquitin Számos sejten belüli folyamat szabályzó és kontroláló fehérjéje a viszonylag kicsi, egy doménből felépülő Ubiquitin. Az evolúció során nem változott: az élesztőben vagy a humán sejtekben rendre ugyanúgy néz ki. Legfontosabb feladata, hogy megjelölje a valamilyen okból sérült fehérjéket, amelyeket később a sejt felismer, majd lebont. A lebontott fehérjék aminosavai újrahasznosításra kerülnek, új peptidek vagy fehérjék épülnek fel belőlük. (Nincs hulladék!)
55 Érdekes fehérjék Sejten belüli kommunikáció és információ-feldolgozás A TNF-a: tumor nekrózis faktor-a A sejtben sok molekula feladata a jelátadás vagy a jelfeldolgozás; melyre jó példa a TNF-a. lyan esetekben, amelyekben az organizmust külső támadás éri (pl. baktériumok) az immunsejtek TNF-a-t termelnek és bocsájtanak ki. A TNF-a túltermelődése a tumoros megbetegedés egy jele.
56 Érdekes fehérjék An army of emergency doctors cares for the health of the proteins in each cell Legend: The small heat shock protein a chaperone ne of the most severe dangers for a cell is the loss of the 3-dimensional structure and function of its proteins. This so-called denaturation can be caused by various influences, among them aging or heat. Denaturation is also the reason why egg white becomes turbid when cooked. Special proteins, the chaperones, rescue denatured proteins by re-folding them. Chaperones thus are the molecular emergency doctors of the cell.
57 Érdekes fehérjék Staples hold our body together Legend: Cadherin ur body consists of trillions of cells that all work together to keep us alive. Between the cells there is a complex network of molecular cables and connection proteins that keep the cells together. They prevent our body from falling apart. Cadherin is one of these connection proteins. It is a long protein that staples together the membranes of two adjacent cells.
58 Érdekes fehérjék A molecular drill Legend: P22 tailspike protein. The semi-transparent surface shows the global shape of the protein. Viruses can infect not only higher organisms, such as birds or humans, but also bacteria. Viruses of this type are called bacteriophages, or phages for short. The bacteriophage P22 infects salmonella that cause, e.g., typhus. In order to infect bacteria, phages have a special injection machine that drills through the membrane of the bacterium. These are the so-called tailspike proteins.
59 Érdekes fehérjék A bacterial defense against antibiotics (b-lactamase/inhibitor complex) In the past years, alarming news about antibiotics-resistant bacteria repeatedly appeared in the media. The enzyme beta-lactamase is one of the main defense mechanisms of bacteria against the class of beta-lactam antibiotics such as the well-known penicillin. These antibiotics have a chemical ring structure called beta-lactam. Beta-lactamase cleaves this ring and hence deactivates the anti-bacterial activity of antibiotics.
60 Érdekes fehérjék How is oxygen transported from the lungs to the cells and why is blood red? Legend: Hemoglobin and its pigment heme (in pink) In our blood, hemoglobin is responsible for transporting oxygen. It consists of four proteins and the red pigment heme. Hemoglobin thus is the reason for the red color of blood. In the lungs, the hemoglobins are loaded with oxygen, which they then transport to the cells of our body. The image shows an enlarged detail of hemoglobin with the oxygen-carrying pigment heme shown in pink.
61 Érdekes fehérjék Why are we hung over after a night of excessive drinking? Legend: Alcohol dehydrogenase Alcohol dehydrogenase is responsible for the degradation of alcohol in our liver. Each molecule of alcohol that we drink ends up in the liver, where it is broken down to acetaldehyde by this protein. The degradation product is, however, even more toxic than alcohol itself, and it causes headaches and digestion problems. Fortunately our liver also has a protein that degrades the toxic acetaldehyde. This protein, however, works slower than its colleague alcohol dehydrogenase, providing one of the limits to our drinking capabilities.
62 Érdekes fehérjék Where poisons attack us Legend: The star-like structure of the nicotine-acetylcholine receptor Nicotine-acetylcholine receptors (AChR) are, e.g., responsible for muscle contraction. In addition, they also play essential roles in the processes of thinking and learning in our brain. AChR are the target of many naturally occurring poisons such as, e.g., nicotine, which leads to the production of adrenaline, or snake and spider venoms that paralyze the muscles. Also synthetic poisons such as the lethal nerve gas Sarin, or clinically used painkillers and anesthetics act through AChR. szarin
63 Érdekes fehérjék Arteriosclerosis: touchy giant proteins transport fat Legend: Two units of apolipoprotein B100 interact In our blood, cholesterol is transported in so-called LDL particles. LDL particles contain several lipids (fats) as well as a lipid membrane. They are kept together by apolipoprotein B100, one of the largest proteins known. The lipids, as well as apob, are very sensitive to oxidation. When oxidized, LDL particles can stick together and deposit on the interior walls of the blood vessels. The result is one of the most frequent causes of death in the western world: arteriosclerosis.
A fehérjék harmadlagos vagy térszerkezete. Még a globuláris fehérjék térszerkezete is sokféle lehet.
A fehérjék harmadlagos vagy térszerkezete Még a globuláris fehérjék térszerkezete is sokféle lehet. A ribonukleáz redukciója és denaturálódása Chrisian B. Anfinsen A ribonukleáz renaturálódása 1972 obel-díj
Fehérjék Bevezető A fehérjék szerkezeti hierarchiája:
Fehérjék Bevezető A fehérjék szerkezeti hierarchiája: - elsődleges szerkezet (aminosav sorrend) - másodlagos szerkezet (α-hélix, β-redő, stb.) - harmadlagos szerkezet (domének és modulok) - negyedleges
Peptid- és fehérjék másodlagos-, harmadlagos- és negyedleges szerkezete
Peptid- és fehérjék másodlagos-, harmadlagos- és negyedleges szerkezete Polipeptidek térszerkezete Tipikus (rendezett) konformerek em tipikus (rendezetlen) konformerek Periodikus vagy homokonformerek Aperiodikus
A fehérjék hierarchikus szerkezete
Fehérjék felosztása A fehérjék hierarchikus szerkezete Smeller László Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Biológiai funkció alapján Enzimek (pl.: tripszin, citokróm-c ) Transzportfehérjék
Fehérjék: tartalomjegyzék
Fehérjék: tartalomjegyzék 1) Bevezető 2) A fehérjék szerkezeti hierarchiája: - elsődleges szerkezet (aminosav sorrend) - másodlagos szerkezet (a-hélix, b-redő, stb.) - harmadlagos szerkezet (domének és
3. Sejtalkotó molekulák III.
3. Sejtalkotó molekulák III. Fehérjék, fehérjeszintézis (transzkripció, transzláció, posztszintetikus módosítások). Enzimműködés 3.1 Fehérjék A genetikai információ egyik fő manifesztálódása Számos funkció
A fehérjék szerkezete és az azt meghatározó kölcsönhatások
A fehérjék szerkezete és az azt meghatározó kölcsönhatások 1. A fehérjék szerepe az élõlényekben 2. A fehérjék szerkezetének szintjei 3. A fehérjék konformációs stabilitásáért felelõs kölcsönhatások 4.
Az élő anyag szerkezeti egységei: víz, nukleinsavak, fehérjék. elrendeződés, rend, rendszer, periodikus ismétlődés
Az élő anyag szerkezeti egységei: víz, nukleinsavak, fehérjék Agócs Gergely 2013. december 3. kedd 10:00 11:40 1. Mit értünk élő anyag alatt? Az élő szervezetet felépítő anyagok. Az anyag azonban nem csupán
Fehérjeszerkezet, és tekeredés. Futó Kinga
Fehérjeszerkezet, és tekeredés Futó Kinga Polimerek Polimer: hasonló alegységekből (monomer) felépülő makromolekulák Alegységek száma: tipikusan 10 2-10 4 Titin: 3,435*10 4 aminosav C 132983 H 211861 N
DNS, RNS, Fehérjék. makromolekulák biofizikája. Biológiai makromolekulák. A makromolekulák TÖMEG szerinti mennyisége a sejtben NAGY
makromolekulák biofizikája DNS, RNS, Fehérjék Kellermayer Miklós Tér Méret, alak, lokális és globális szerkezet Idő Fluktuációk, szerkezetváltozások, gombolyodás Kölcsönhatások Belső és külső kölcsöhatások,
A sejtek élete. 5. Robotoló törpék és óriások Az aminosavak és fehérjék R C NH 2. C COOH 5.1. A fehérjeépítőaminosavak általános
A sejtek élete 5. Robotoló törpék és óriások Az aminosavak és fehérjék e csak nézd! Milyen protonátmenetes reakcióra képes egy aminosav? R 2 5.1. A fehérjeépítőaminosavak általános képlete 5.2. A legegyszerűbb
Peptid- és fehérjék másodlagos-, harmadlagos- és negyedleges szerkezete
Peptid- és fehérjék másodlagos-, harmadlagos- és negyedleges szerkezete Polipeptidek térszerkezete Tipikus (rendezett) konformerek em tipikus (rendezetlen) konformerek Periodikus vagy homokonformerek Aperiodikus
Több oxigéntartalmú funkciós csoportot tartalmazó vegyületek
Több oxigéntartalmú funkciós csoportot tartalmazó vegyületek Hidroxikarbonsavak α-hidroxi karbonsavak -Glikolsav (kézkrémek) - Tejsav (tejtermékek, izomláz, fogszuvasodás) - Citromsav (citrusfélékben,
Szerkesztette: Vizkievicz András
Fehérjék A fehérjék - proteinek - az élő szervezetek számára a legfontosabb vegyületek. Az élet bármilyen megnyilvánulási formája fehérjékkel kapcsolatos. A sejtek szárazanyagának minimum 50 %-át adják.
6. Zárványtestek feldolgozása
6. Zárványtestek feldolgozása... 1 6.1. A zárványtestek... 1 6.1.1. A zárványtestek kialakulása... 2 6.1.2. A feldolgozási technológia... 3 6.1.2.1. Sejtfeltárás... 3 6.1.2.2. Centrifugálás, tisztítás...
9. Előadás Fehérjék Előzmények Peptidkémia Analitikai kémia Protein kémia 1901 E.Fischer : Gly-Gly 1923 F. Pregl : Mikroanalitika 1952 Stein and Moore : Aminosav analizis 1932 Bergman és Zervas : Benziloxikarbonil
Peptidek és fehérjék szerkezetvizsgálata spektroszkópia és in silico módszerekkel
Peptidek és fehérjék szerkezetvizsgálata spektroszkópia és in silico módszerekkel Mik a peptidek és fehérjék? L-konfigurációjú a-aminosavakból felépülő lineáris polimerek 3 betűs kód: -Thr-His-Ile-Ser-Ser-Ile-Met-Pro-Leu-Glu-
Fehérje nanogépezetek
Fehérje nanogépezetek A fehérjék alapvető biológiai funkciói Molekulafelismerés és megkötés Kémiai reakciók irányítása (katalízis) Konformációs átkapcsolások (jelfeldolgozás, szabályozás) Dinamikus szerkezetépítés
Az enzimek katalitikus aktivitású fehérjék. Jellemzőik: bonyolult szerkezet, nagy molekulatömeg, kolloidális sajátságok, alakváltozás, polaritás.
Enzimek Az enzimek katalitikus aktivitású fehérjék Jellemzőik: bonyolult szerkezet, nagy molekulatömeg, kolloidális sajátságok, alakváltozás, polaritás. Az enzim lehet: csak fehérje: Ribonukleáz A, lizozim,
Fehérjeszerkezet, fehérjetekeredés
Fehérjeszerkezet, fehérjetekeredés A fehérjeszerkezet szintjei A fehérjetekeredés elmélete: Anfinsen kísérlet Levinthal paradoxon A feltekeredés tölcsér elmélet 2014.11.05. Aminosavak és fehérjeszerkezet
Az élő szervezetek felépítése I. Biogén elemek biomolekulák alkotóelemei a természetben előforduló elemek közül 22 fordul elő az élővilágban O; N; C; H; P; és S; - élő anyag 99%-a Biogén elemek sajátosságai:
SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI
SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI 12 KRISTÁLYkÉMIA XII. KÖTÉsTÍPUsOK A KRIsTÁLYOKBAN 1. KÉMIAI KÖTÉsEK Valamennyi kötéstípus az atommag és az elektronok, illetve az elektronok egymás közötti
A golyók felállítása a Pool-biliárd 8-as játékának felel meg. A golyók átmérıje 57.2 mm. 15 számozott és egy fehér golyó. Az elsı 7 egyszínő, 9-15-ig
A golyók elhelyezkedése a Snooker alaphelyzetet mutatja. A golyók átmérıje 52 mm, egyszínőek. 15 db piros, és 1-1 db fehér, fekete, rózsa, kék, barna, zöld, sárga. A garázsban állítjuk fel, ilyenkor az
Élettan. előadás tárgykód: bf1c1b10 ELTE TTK, fizika BSc félév: 2015/2016., I. időpont: csütörtök, 8:15 9:45
Élettan előadás tárgykód: bf1c1b10 ELTE TTK, fizika BSc félév: 2015/2016., I. időpont: csütörtök, 8:15 9:45 oktató: Dr. Tóth Attila, adjunktus ELTE TTK Biológiai Intézet, Élettani és Neurobiológiai tanszék
6. A kémiai kötés fajtái
6. A kémiai kötés fajtái 6.1. A kémiai kötés egyszerű, Lewis féle elmélete, kovalens kötés Láttuk, hogy VB elméletben a kötés létrejöttéért az azonos térrészbe kerülő párosítatlan elektronok a felelősek.
Az aminosavak peptidek és fehérjék koronázatlan királyai, kémiai Nobel-díjak:
Az aminosavak peptidek és fehérjék koronázatlan királyai, kémiai obel-díjak: Linus Pauling 1954 obel-díj fehérje szerkezet alapjai Frederick Sanger 1958 obel-díj Az inzulin szekvenálása Sir. John owdery
A biológiai membránok szerkezete és működése. Biológiai alapismeretek
A biológiai membránok szerkezete és működése Biológiai alapismeretek A membránok Alapszerkezetét kettős foszfolipid réteg adja. A lipidek (fluiditás), koleszterin (merevség) alkotják 2 részük: -hidrofób,
Fehérjék rövid bevezetés
Receptorfehérj rjék szerkezetének felderítése Homológia modellezés Fehérjék rövid bevezetés makromolekulák számos biológiai funkció hordozói: enzimatikus katalízis, molekula transzport, immunválaszok,
Makromolekulák. Fehérjetekeredé. rjetekeredés. Biopolimer. Polimerek
Biopolimerek Makromolekulá Makromolekulák. Fehé Fehérjetekeredé rjetekeredés. Osztódó sejt magorsófonala 2011. November 16. Huber Tamá Tamás Dohány levél epidermális sejtjének aktin hálózata Bakteriofágból
A fehérjék hierarchikus szerkezete
Fehérjék felosztása A fehérjék hierarchikus szerkezete Smeller László Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Biológiai funkció alapján Enzimek (pl.: tripszin, citokróm-c ) Transzportfehérjék
Szimulációk egyszerősített fehérjemodellekkel. Szilágyi András
Szimulációk egyszerősített fehérjemodellekkel Szilágyi András Szimulációs módszerek alkalmazhatósági tartományai Egyszerősített modellek Három típusát mutatjuk be: Játék rácsmodellek Realisztikusabb rácsmodellek
Szakközépiskola 9-10. évfolyam Kémia. 9-10. évfolyam
9-10. évfolyam A szakközépiskolában a kémia tantárgy keretében folyó személyiségfejlesztés a természettudományos nevelés egyik színtereként a hétköznapi életben hasznosulni képes tudás épülését szolgálja.
Hatékony tumorellenes készítmények előállítása target és drug molekulák kombinációjával (Zárójelentés)
Hatékony tumorellenes készítmények előállítása target és drug molekulák kombinációjával (Zárójelentés) Prof. Dr. Mező Gábor tudományos tanácsadó Kutatásunk célja az volt, hogy olyan biokonjugátumokat készítsünk,
A felvétel és a leadás közötti átalakító folyamatok összességét intermedier - köztes anyagcserének nevezzük.
1 Az anyagcsere Szerk.: Vizkievicz András Általános bevezető Az élő sejtekben zajló biokémiai folyamatok összességét anyagcserének nevezzük. Az élő sejtek nyílt anyagi rendszerek, azaz környezetükkel állandó
Országos Középiskolai Tanulmányi Verseny 2011/2012. tanév. Kémia II. kategória 2. forduló. Megoldások
ktatási Hivatal rszágos Középiskolai Tanulmányi Verseny 011/01. tanév Kémia II. kategória. forduló Megoldások I. feladatsor 1. D 5. A 9. B 1. D. B 6. C 10. B 14. A. C 7. A 11. E 4. A 8. A 1. D 14 pont
1. Tömegszámváltozás nélkül milyen részecskéket bocsáthatnak ki magukból a bomlékony atommagok?
A 2004/2005. tanévi Országos Középiskolai Tanulmányi Verseny első (iskolai) fordulójának feladatlapja KÉMIÁBÓL I-II. kategória I. FELADATSOR Az I. feladatsorban húsz kérdés szerepel. Minden kérdés után
Bioinformatika 2 5.. előad
5.. előad adás Prof. Poppe László BME Szerves Kémia és Technológia Tsz. Bioinformatika proteomika Előadás és gyakorlat 2009. 03. 21. Fehérje térszerkezet t megjelenítése A fehérjék meglehetősen összetett
Szerkesztette: Vizkievicz András
Fehérjék A fehérjék - proteinek - az élő szervezetek számára a legfontosabb vegyületek. Az élet bármilyen megnyilvánulási formája fehérjékkel kapcsolatos. A sejtek szárazanyagának minimum 50 %-át adják.
A biológiai mozgás molekuláris mechanizmusai
BIOLÓGIAI MOZGÁSOK A biológiai mozgás molekuláris mechanizmusai Kollektív mozgás Szervezet mozgása ( Az évszázad ugrása ) Szerv mozgás BIOLÓGIAI MOZGÁSOK BIOLÓGIAI MOZGÁSOK Ritmusosan összehúzódó szívizomsejt
A nukleinsavak polimer vegyületek. Mint polimerek, monomerekből épülnek fel, melyeket nukleotidoknak nevezünk.
Nukleinsavak Szerkesztette: Vizkievicz András A nukleinsavakat először a sejtek magjából sikerült tiszta állapotban kivonni. Innen a név: nucleus = mag (lat.), a sav a kémhatásukra utal. Azonban nukleinsavak
Nevezze meg a jelölt csontot latinul! Name the bone marked! Nevezze meg a jelölt csont típusát! What is the type of the bone marked?
1 Nevezze meg a jelölt csontot latinul! Name the bone marked! 2 Nevezze meg a jelölt csont típusát! What is the type of the bone marked? 3 Milyen csontállomány található a jelölt csont belsejében? What
1. forduló. MEGOLDÁSOK Pontszerző Matematikaverseny 2015/2016-os tanév
MEGOLDÁSOK Pontszerző Matematikaverseny 2015/2016-os tanév 1. forduló 1. feladat: Jancsi és Juliska Matematikai Memory-t játszik. A játék lényege, hogy négyzet alakú kártyákra vagy műveletsorokat írnak
3. Sejtalkotó molekulák III. Fehérjék, enzimműködés, fehérjeszintézis (transzkripció, transzláció, poszt szintetikus módosítások)
3. Sejtalkotó molekulák III. Fehérjék, enzimműködés, fehérjeszintézis (transzkripció, transzláció, poszt szintetikus módosítások) 3.1 Fehérjék, enzimek A genetikai információ egyik fő manifesztálódása
Biológiai makromolekulák szerkezete
Biológiai makromolekulák szerkezete Biomolekuláris nemkovalens kölcsönhatások Elektrosztatikus kölcsönhatások (sóhidak: 4-6 kcal/m, dipól-dipól: ~10-1 kcal/m Diszperziós erők (~10-2 kcal/m) Hidrogén hidak
NAGYHATÉKONYSÁGÚ FOLYADÉKKROMA- TOGRÁFIA = NAGYNYOMÁSÚ = HPLC
NAGYHATÉKONYSÁGÚ FOLYADÉKKROMA- TOGRÁFIA = NAGYNYOMÁSÚ = HPLC Az alkalmazott nagy nyomás (100-1000 bar) lehetővé teszi nagyon finom szemcsézetű töltetek (2-10 μm) használatát, ami jelentősen megnöveli
A tananyag felépítése: A BIOLÓGIA ALAPJAI. I. Prokarióták és eukarióták. Az eukarióta sejt. Pécs Miklós: A biológia alapjai
A BIOLÓGIA ALAPJAI A tananyag felépítése: Környezetmérnök és műszaki menedzser hallgatók számára Előadó: 2 + 0 + 0 óra, félévközi számonkérés 3 ZH: október 3, november 5, december 5 dr. Pécs Miklós egyetemi
Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
A polipeptidlánc szabályozott lebontása: mit mondanak a fehérjekristályok? Harmat Veronika ELTE Kémiai Intézet, Szerkezeti Kémia és Biológia Laboratórium MTA-ELTE Fehérjemodellező Kutatócsoport A magyar
4. FEHÉRJÉK. 2. Vázanyagok. Az izmok alkotórésze (pl.: a miozin). Inak, izületek, csontok szerves komponensei, az ún. vázfehérjék (szkleroproteinek).
4. FEÉRJÉK 4.0. Bevezetés A fehérjék elsısorban α-l-aminosavakból felépülı biopolimerek. A csak α-laminosavakat tartalmazó fehérjék a proteinek. evüket a görög proteios szóból kapták, ami elsırangút jelent.
Kémia. Tantárgyi programjai és követelményei A/2. változat
5. sz. melléklet Kémia Tantárgyi programjai és követelményei A/2. változat Az 51/2012. (XII. 21.) számú EMMI rendelethez a 6/2014. (I.29.) EMMI rendelet 3. mellékleteként kiadott és a 34/2014 (IV. 29)
A Ca 2+ szerepe a tormaperoxidáz enzim aktív szerkezetében. Szigeti Krisztián
A Ca 2+ szerepe a tormaperoxidáz enzim aktív szerkezetében Doktori értekezés Szigeti Krisztián Semmelweis Egyetem Gyógyszertudományok Doktori Iskola Témavezető: Hivatalos Bírálók: Szigorlati Bizottság
Laboratóriumi technikus laboratóriumi technikus 54 524 01 0010 54 02 Drog és toxikológiai
É 049-06/1/3 A 10/007 (II. 7.) SzMM rendelettel módosított 1/006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján.
BIOLÓGIA VERSENY 10. osztály 2016. február 20.
BIOLÓGIA VERSENY 10. osztály 2016. február 20. Kód Elérhető pontszám: 100 Elért pontszám: I. Definíció (2x1 = 2 pont): a) Mikroszkopikus méretű szilárd részecskék aktív bekebelezése b) Molekula, a sejt
4. SZERVES SAVAK. Az ecetsav biológiai előállítása SZERVES SAVAK. Ecetsav baktériumok. Az ecetsav baktériumok osztályozása ECETSAV. 04.
Az ecetsav biológiai előállítása 4. SZERVES SAVAK A bor után legősibb (bio)technológia: a bor megecetesedik borecet keletkezik A folyamat bruttó leírása: C 2 H 5 OH + O 2 CH 3 COOH + H 2 O Az ecetsav baktériumok
MEDICINÁLIS ALAPISMERETEK AZ ÉLŐ SZERVEZETEK KÉMIAI ÉPÍTŐKÖVEI AZ AMINOSAVAK ÉS FEHÉRJÉK 1. kulcsszó cím: Aminosavak
Modul cím: MEDICINÁLIS ALAPISMERETEK AZ ÉLŐ SZERVEZETEK KÉMIAI ÉPÍTŐKÖVEI AZ AMINOSAVAK ÉS FEHÉRJÉK 1. kulcsszó cím: Aminosavak Egy átlagos emberben 10-12 kg fehérje van, mely elsősorban a vázizomban található.
AMINOSAVAK, FEHÉRJÉK
AMINOSAVAK, FEHÉRJÉK Az aminosavak olyan szerves vegyületek, amelyek molekulájában aminocsoport (-NH2) és karboxilcsoport (-COOH) egyaránt előfordul. Felosztás A fehérjéket feloszthatjuk aszerint, hogy
O k t a t á si Hivatal
O k t a t á si Hivatal A versenyző kódszáma: 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny második forduló KÉMIA I. kategória FELADATLAP Munkaidő: 300 perc Elérhető pontszám: 100 pont ÚTMUTATÓ
AZ S1 SZUBSZTRÁTKÖTŐ HELY SPECIFICITÁSÁNAK SZERKEZETI HÁTTERE PANKREATIKUS SZERIN PROTEÁZOKBAN
AZ S1 SZUBSZTRÁTKÖTŐ HELY SPECIFICITÁSÁNAK SZERKEZETI HÁTTERE PANKREATIKUS SZERIN PROTEÁZOKBAN TÉZISEK Jelinek Balázs Biológia Doktori Iskola Iskolavezető: Prof. Erdei Anna CMHAS, tanszékvezető egyetemi
A fehérjék hierarchikus szerkezete. Szerkezeti hierarchia. A fehérjék építőkövei az aminosavak. Fehérjék felosztása
Fehérjék felosztása A fehérjék hierarchikus szerkezete Smeller László Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Biológiai funkció alapján Enzimek (pl.: tripszin, citokróm-c ) Transzportfehérjék
Fehérjeszerkezet, és tekeredés
Fehérjeszerkezet, és tekeredés Futó Kinga 2013.10.08. Polimerek Polimer: hasonló alegységekből (monomer) felépülő makromolekulák Alegységek száma: tipikusan 10 2-10 4 Titin: 3,435*10 4 aminosav C 132983
Analízis elo adások. Vajda István. 2012. október 3. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)
Vajda István Neumann János Informatika Kar Óbudai Egyetem / 40 Fogalmak A függvények értelmezése Definíció: Az (A, B ; R ) bináris relációt függvénynek nevezzük, ha bármely a A -hoz pontosan egy olyan
INFORMATIKA EMELT SZINT%
Szövegszerkesztés, prezentáció, grafika, weblapkészítés 1. A fényképezés története Táblázatkezelés 2. Maradékos összeadás Adatbázis-kezelés 3. Érettségi Algoritmizálás, adatmodellezés 4. Fehérje Maximális
A borok tisztulása (kolloid tulajdonságok)
A borok tisztulása (kolloid tulajdonságok) Tisztasági problémák a borban Áttetszőség fogyasztói elvárás, különösen a fehérborok esetében Zavarosságok: 1. bor felületén (pl. hártya); 2. borban szétszórtan
BSc záróvizsga tételek Szerves kémia
BSc záróvizsga tételek Szerves kémia A) tételsor 1. Gyökös mechanizmusú szubsztitúciós és addíciós reakciók. A telített szénhidrogének halogénezése. Allil-helyzetű szubsztitúciós halogénezés. A hidrogén-bromid
Kollokviumi vizsgakérdések biokémiából humánkineziológia levelező (BSc) 2015
Kollokviumi vizsgakérdések biokémiából humánkineziológia levelező (BSc) 2015 A kérdés 1. A sejtről általában, a szervetlen alkotórészeiről, a vízről részletesen. 2. A sejtről általában, a szervetlen alkotórészeiről,
Károlyi Mihály Két Tanítási Nyelvű Közgazdasági Szakközépiskola Kémia Helyi Tanterv. A Károlyi Mihály Két Tanítási Nyelvű Közgazdasági Szakközépiskola
A Károlyi Mihály Két Tanítási Nyelvű Közgazdasági Szakközépiskola KÉMIA HELYI TANTERVE a 9. évfolyam számára két tanítási nyelvű osztály közgazdaság ágazaton Készítette: Kaposi Anna, kémia szaktanár Készült:
Pozitron-emissziós tomográf (PET) mire való és hogyan működik?
Pozitron-emissziós tomográf (PET) mire való és hogyan működik? Major Péter Atomoktól csillagokig, 2011. nov. 10. Vázlat Mi az hogy Tomográf? (fajták, képek) Milyen tomográfok vannak, miért van ennyi? Milyen
A fehérje-fehérje kölcsönhatás szerkezeti alapjai és biológiai szerepük: multidiszciplináris megközelítés (zárójelentés)
A fehérje-fehérje kölcsönhatás szerkezeti alapjai és biológiai szerepük: multidiszciplináris megközelítés (zárójelentés) Az ELTE Biokémiai Tanszék tudományos kutatásainak tengelyében évtizedek óta a fehérjék
IKT FEJLESZTŐ MŰHELY KONTAKTUS Dél-dunántúli Regionális Közoktatási Hálózat Koordinációs Központ
Óratervezet: Kémia 7. osztály Témakör: Kémiai kötések Óra anyaga: Molekulák építése, térbeli modellezése Eszközök:, aktív tábla, projektor, számítógépek A tanóra részei Tanári tevékenység Tanulói tevékenység
3. Térvezérlésű tranzisztorok
1 3. Térvezérlésű tranzisztorok A térvezérlésű tranzisztorok (Field Effect Transistor = FET) működési elve alapjaiban eltér a bipoláris tranzisztoroktól. Az áramvezetés mértéke statikus feszültséggel befolyásolható.
Elektrokémia. A nemesfém elemek és egymással képzett vegyületeik
Elektrokémia Redoxireakciók: Minden olyan reakciót, amelyben elektron leadás és elektronfelvétel történik, redoxi reakciónak nevezünk. Az elektronleadás és -felvétel egyidejűleg játszódik le. Oxidálószer
Biológia 3. zh. A gyenge sav típusú molekulák mozgása a szervezetben. Gyengesav transzport. A glükuronsavval konjugált molekulákat a vese kiválasztja.
Biológia 3. zh Az izomösszehúzódás szakaszai, molekuláris mechanizmusa, az izomösszehúzódás során milyen molekula deformálódik és hogyan? Minden izomrosthoz kapcsolódik kegy szinapszis, ez az úgynevezett
Részletes tematika: I. Félév: 1. Hét (4 óra): 2. hét (4 óra): 3. hét (4 óra): 4. hét (4 óra):
Részletes tematika: I. Félév: 1. Hét (4 óra): Szerves Vegyületek Szerkezete. Kötéselmélet Lewis kötéselmélet; atompálya, molekulapálya; molekulapálya elmélet; átlapolódás, orbitálok hibridizációja; molekulák
1. Az élő szervezetek felépítése és az életfolyamatok 17
Élődi Pál BIOKÉMIA vomo; Akadémiai Kiadó, Budapest 1980 Tartalom Bevezetés 1. Az élő szervezetek felépítése és az életfolyamatok 17 Mi jellemző az élőre? 17. Biogén elemek 20. Biomolekulák 23. A víz 26.
Sztereokémia, királis molekulák: (királis univerzum, tükörképi világ?) memo: a földi élet királis elemek sokasága!
Sztereokémia, királis molekulák: (királis univerzum, tükörképi világ?) memo: a földi élet királis elemek sokasága! (pl. a földön az L-aminosavak vannak túlnyomó többségben. - Az enantiomer szelekció, módját
Fehérjebiotechnológia Emri, Tamás Csősz, Éva Tőzsér, József Szerkesztette Tőzsér, József, Debreceni Egyetem
Fehérjebiotechnológia Emri, Tamás Csősz, Éva Tőzsér, József Szerkesztette Tőzsér, József, Debreceni Egyetem Fehérjebiotechnológia írta Emri, Tamás, Csősz, Éva, Tőzsér, József, Tőzsér, József, és Szerzői
Hemoglobin - myoglobin. Konzultációs e-tananyag Szikla Károly
Hemoglobin - myoglobin Konzultációs e-tananyag Szikla Károly Myoglobin A váz- és szívizom oxigén tároló fehérjéje Mt.: 17.800 153 aminosavból épül fel A lánc kb 75 % a hélix 8 db hélix, köztük nem helikális
Amit a Hőátbocsátási tényezőről tudni kell
Amit a Hőátbocsátási tényezőről tudni kell Úton-útfélen mindenki róla beszél, már amikor épületekről van szó. A tervezéskor találkozunk vele először, majd az építkezéstől az épület lakhatási engedélyének
KÉMIA 9-12. évfolyam (Esti tagozat)
KÉMIA 9-12. évfolyam (Esti tagozat) A kémiai alapműveltség az anyagi világ megismerésének és megértésének egyik fontos eszköze. A kémia tanulása olyan folyamat, amely tartalmain és tevékenységein keresztül
Tantárgyi követelmény gimnázium 10. évfolyam
Tantárgyi követelmény gimnázium 10. évfolyam 2015/2016 TARTALOMJEGYZÉK 1. Irodalom és művészetek... 3 2. Anyanyelv és kommunikáció... 4 3. földrajz... 5 4. Történelem és állampolgári ismeretek... 6 5.
Egy antifungális diszulfid fehérje szerkezeti dinamikája és hideg/meleg kitekeredése (avagy PAF, a hűvös sárkány)
Egy antifungális diszulfid fehérje szerkezeti dinamikája és hideg/meleg kitekeredése (avagy PAF, a hűvös sárkány) Batta Gyula Debreceni Egyetem Szerkezeti Biológiai és Molekuláris Felismerési Műhely structbiol.unideb.hu
Gyógyszerhatóanyagok azonosítása és kioldódási vizsgálata tablettából
Gyógyszerhatóanyagok azonosítása és kioldódási vizsgálata tablettából ELTE TTK Szerves Kémiai Tanszék 2015 1 I. Elméleti bevezető 1.1. Gyógyszerkönyv A Magyar gyógyszerkönyv (Pharmacopoea Hungarica) első
EMELT SZINTŰ ÍRÁSBELI VIZSGA
É RETTSÉGI VIZSGA 2014. október 21. KÉMIA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2014. október 21. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA
A szénhidrátok lebomlása
A disszimiláció Szerk.: Vizkievicz András A disszimiláció, vagy lebontás az autotróf, ill. a heterotróf élőlényekben lényegében azonos módon zajlik. A disszimilációs - katabolikus - folyamatok mindig valamilyen
Semmelweis Egyetem Orvosi Biokémia Intézet Orvosi Biokémia és Molekuláris Biológia gyakorlati jegyzet: Transzaminázok TRANSZAMINÁZOK
TRANSZAMINÁZOK Az aminosavak α-aminocsoportjainak α-ketosavakra történő transzferét az aminotranszferázok (transzaminázok) katalizálják. A transzamináz enzimek prosztetikus csoportja a piridoxál- foszfát.
A másodlagos biogén elemek a szerves vegyületekben kb. 1-2 %-ban jelen lévő elemek. Mint pl.: P, S, Fe, Mg, Na, K, Ca, Cl.
A sejtek kémiai felépítése Szerkesztette: Vizkievicz András A biogén elemek Biogén elemeknek az élő szervezeteket felépítő kémiai elemeket nevezzük. A természetben található 90 elemből ez mindössze kb.
BIOFIZIKA. Metodika- 4. Liliom Károly. MTA TTK Enzimológiai Intézet liliom@enzim.hu
BIOFIZIKA 2012 11 26 Metodika- 4 Liliom Károly MTA TTK Enzimológiai Intézet liliom@enzim.hu A biofizika előadások temamkája 1. 09-03 Biofizika: fizikai szemlélet, modellalkotás, biometria 2. 09-10 SZÜNET
Az infravörös spektroszkópia analitikai alkalmazása
Az infravörös spektroszkópia analitikai alkalmazása Egy molekula nemcsak haladó mozgást végez, de az atomjai (atomcsoportjai) egymáshoz képest is állandó mozgásban vannak. Tételezzünk fel egy olyan mechanikai
1. előadás Membránok felépítése, mebrán raftok, caveolák jellemzője, funkciói
1. előadás Membránok felépítése, mebrán raftok, caveolák jellemzője, funkciói Plazmamembrán Membrán funkciói: sejt integritásának fenntartása állandó hő, energia, és információcsere biztosítása homeosztázis
Polikondenzációs termékek
Polikondenzációs termékek 4. hét Kötı és ragasztó anyagok aminoplasztok (UF, MF, UMF) fenoplasztok (PF) poliamidok (PA) szilikonok (SI) Felületkezelı anyagok poliészterek (alkidgyanták) poliamidok (PA)
AZ ÖNEMÉSZTÉS, SEJTPUSZTULÁS ÉS MEGÚJULÁS MOLEKULÁRIS SEJTBIOLÓGIÁJA
TÁMOP 4.1.2.B.2-13/1-2013-0007 ORSZÁGOS KOORDINÁCIÓVAL A PEDAGÓGUSKÉPZÉS MEGÚJÍTÁSÁÉRT MEGHÍVÓ AZ ÖNEMÉSZTÉS, SEJTPUSZTULÁS ÉS MEGÚJULÁS MOLEKULÁRIS SEJTBIOLÓGIÁJA 15 ÓRÁS INGYENES SZAKMAI TOVÁBBKÉPZÉS
A humán tripszinogén 4 expressziója és eloszlási mintázata az emberi agyban
A humán tripszinogén 4 expressziója és eloszlási mintázata az emberi agyban Doktori (PhD) értekezés Siklódi Erika Rozália Biológia Doktori Iskola Iskolavezető: Prof. Erdei Anna, tanszékvezető egyetemi
SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI
SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI 11 KRISTÁLYkÉMIA XI. ATOMOK És IONOK 1. AZ ATOM Az atom az anyag legkisebb olyan része, amely még hordozza a kémiai elem jellegzetességeit. Ezért az ásványtanban
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria IV.
Geometria IV. 1. Szerkessz egy adott körhöz egy adott külső ponton átmenő érintőket! Jelöljük az adott kört k val, a kör középpontját O val, az adott külső pontot pedig P vel. A szerkesztéshez azt használjuk
Archenius egyenlet. fehérje denat. optimum
Bírság A bírság nem mentesít semmi alól. A környezetvédelmi minisztérium vagy a jegyző szabhatja ki (utóbbi esetben a bírság 30%-a az önkormányzatot illeti). ( ) Alap 9-18.000 Ft Környezetveszélyeztetés
TRANSZPORTFOLYAMATOK 1b. Fehérjék. 1b. FEHÉRJÉK TRANSZPORTJA A MEMBRÁNONOKBA ÉS A SEJTSZERVECSKÉK BELSEJÉBE ÁLTALÁNOS
1b. FEHÉRJÉK TRANSZPORTJA A MEMBRÁNONOKBA ÉS A SEJTSZERVECSKÉK BELSEJÉBE ÁLTALÁNOS DIA 1 Fő fehérje transzport útvonalak Egy tipikus emlős sejt közel 10,000 féle fehérjét tartalmaz (a test pedig összesen
KÉMIA. Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ 2003
KÉMIA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ 2003 ű érettségire felkészítő tananyag tanterve /11-12. ill. 12-13. évfolyam/ Elérendő célok: a természettudományos gondolkodás
Immunhisztokémiai módszerek
Immunhisztokémiai módszerek Fixálás I. Fixálás I. A szövet eredeti szerkezetének megőrzéséhez, az enzimatikus lebontó folyamatok gátlásához: fixálószerek! kompromisszumkeresés - alkoholok: vízelvonók!!!
Röntgendiffrakció, tömegspektrometria, infravörös spektrometria.
A biomolekuláris szerkezet és dinamika vizsgálómódszerei: Röntgendiffrakció, tömegspektrometria, infravörös spektrometria. Smeller László A molekuláris szerkezet és dinamika vizsgáló módszereinek áttekintése
2. SZÉNSAVSZÁRMAZÉKOK. Szénsav: H 2 CO 3 Vízvesztéssel szén-dioxiddá alakul, a szén-dioxid a szénsav valódi anhidridje.
2. ZÉAVZÁMAZÉKK 2.1. zénsavszármazékok szerkezete, elnevezése zénsav: 2 3 Vízvesztéssel szén-dioxiddá alakul, a szén-dioxid a szénsav valódi anhidridje. 2 + 1. ábra: A szénsav szén-dioxid egyensúly A szén-dioxid