Miskolci Egyetem Műszaki Anyagtudományi Kar Vegyipari Gépészeti Intézeti Tanszék

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Miskolci Egyetem Műszaki Anyagtudományi Kar Vegyipari Gépészeti Intézeti Tanszék"

Átírás

1 Miskolci Egyetem Műszaki Anyagtudományi Kar Vegyipari Gépészeti Intézeti Tanszék APG 70 adalékanyag felhasználási technológiájának tervezése DIPLOMAMUNKA Készítette: Hajdu Boglárka Konzulens: Dr. Szepesi L. Gábor, egyetemi docens 2014.

2 Igazolás Alulírott Hajdu Boglárka (Neptun kód: D6MFTM, született: Nyíregyháza, ) Igazolom, és büntetőjogi felelősségem tudatában kijelentem, hogy a leadott szakdolgozat a saját munkám. Miskolc, december 2. Hallgató Az igazolást átvettem. Miskolc, december 2. Tanszékvezető

3 A szerzői jogok részleges átadásáról szóló nyilatkozat Alulírott Hajdu Boglárka (Neptun kód: D6MFTM szül.hely: Nyíregyháza év: 1989 hónap: 07 nap: 22 ) ezúton nyilatkozom, hogy a dolgozat nem tartalmaz a tudományos etikát, valamint vállalatok és intézmények érdekeit sértő bizalmas információkat. Dolgozatom az Egyetemi Könyvtár részére mind elektronikus-, mind nyomtatott formában átadható, és annak tartalma a Szerző nevének és a Dolgozat címének feltüntetésével nyilvános tárhelyre feltölthető. Miskolc, december 2. Hallgató Az igazolást átvettem. Miskolc,. Intézetigazgató

4 Diplomamunka feladatkiírás Hajdu Boglárka Msc levelező tagozatos hallgató részére Dolgozat címe: APG 70 adalékanyag felhasználási technológiájának tervezése Elvégzendő feladatok: - Ismertesse a tenzidek tulajdonságait, csoportosítsa őket - Részletesen ismertesse a folyadékok szállítására alkalmas szivattyúkat - Válasszon szivattyút nagy viszkozitású folyadék szállítására - Határozza meg az adott csővezetékrendszer és szivattyú munkapontját - Ellenőrizze, hogy az adott csővezetékrendszer igényel-e hőszigetelést a megadott feltételek mellett. A Diplomamunka leadási határideje: december 3. A Diploma terjedelme: min. 50, max 60 A/4 oldal Konzulens: Dr. Szepesi L. Gábor, egyetemi docens, Vegyipari Gépészeti Intézeti Tanszék Miskolc, december 3. Intézetigazgató i

5 Köszönetnyilvánítás Köszönetemet szeretném kifejezni témavezetőmnek, Dr. Szepesi L. Gábor egyetemi docensnek, hogy lehetővé tette a diplomamunkám megírását. Köszönettel tartozom munkám elkészítésében nyújtott szakmai segítségéért és útmutató tanácsaiért. Megköszönöm Kulcsár Ildikónak, a Cudy Future Kft. ügyvezetőjének hasznos szakmai tanácsait, támogatását, mely nélkülözhetetlen volt munkám megírásához. Hálával tartozom páromnak, Tamaga Norbertnek és családomnak, hogy megteremtették azt a nyugodt családi légkört, amely nélkül a diplomamunkám nem készült volna el. ii

6 Tartalomjegyzék 1. Bevezetés Cégismertető Felületaktív anyagok A tenzidek csoportosítása Kationaktív tenzidek Anionaktív tenzidek Amfoter tenzidek Nemionos tenzidek A határfelületi aktivitás gyakorlati jelentősége Diszpergáló hatás Nedvesítő hatás Emulgeáló hatás Habképző hatás Szennyvivő hatás Mosóhatás Korróziógátló hatás A tenzidek felhasználása Felületi feszültség Alkil-poliglükozidok APG Szivattyúk A szivattyúk osztályozása iii

7 4.2. Áramlástechnikai elven működő szivattyúk Centrifugál szivattyú Mamut szivattyú Sugárszivattyúk Volumetrikus elven működő szivattyúk Dugattyús szivattyúk Membránszivattyúk Fogaskerék-szivattyúk Fogaskerék-szivattyúk jelleggörbéi Szivattyú jelleggörbe és munkapont A folyadékszállítás elméleti összefüggései Az áramlás jellege Hőszigetelés Hővezetés A hővezetés differenciál egyenlete Fourier II Kísérleti rész A szivattyú kiválasztása Üzemi alaprajz Számítási feladat Összefoglalás Summary Irodalomjegyzék iv

8 Absztrakt Munkahelyemen, a nyíregyházi székhelyű, Cudy Future Kft.-nél háztartás vegyipari és ipari tisztítószerek fejlesztésével, gyártásával, kereskedelmével foglalkozunk. Diplomamunkám során fő célkitűzésem egy nagy viszkozitású folyadékok szállításra alkalmas szivattyú kiválasztása volt, amely képes szállítani az AGP 70 nevű adalékanyagot. A Kft. termékeinek nagy része tartalmazza az APG 70 felületaktív anyagot. A gyártási folyamatokat jelentősen lerövidíti, ha ezen anyag szállítása az üzem területén az egyes gyártási folyamatoknál szivattyú segítségével történik. v

9 1. Bevezetés A jelenlegi fogyasztási termékekre irányuló növekvő követelmények miatt egyre nehezebb a felületaktív anyagok piacára bekerülni. Az új sikeres felületaktív anyagoknak méregtanilag (toxikológialiag) biztonságosnak, biológiailag azonnal lebonthatónak, más anyagokkal kombinálhatónak kell lenniük. Végezetül ezeket a tulajdonságokat ötvözni kell egy jó költség/teljesítmény aránnyal. A tenzidek, vagy más néven felületaktív anyagok olyan vegyületek, amelyek emulgeáló hatásuk révén leoldják a bőrfelszínről, textíliáról, vagy bármely más felületről a szennyeződéseket és a zsírt. A mosószerek, mosogatószerek, tisztítószerek, illetve a kozmetikumok közül a kézmosók, tusfürdők, samponok, arclemosók, de még a legtöbb fogkrém is ilyen tenzideket tartalmaz. A legismertebb tenzid a szappan. A tenzidek a zsírkedvelő részükkel a zsírokhoz, olajokhoz, a vízkedvelő részükkel pedig a vízhez kapcsolódnak, így a vízben gyakorlatilag a szennyeződött zsírral emulziót képeznek, majd ezt az emulziót lehet tiszta vízzel leöblíteni. A felületaktív anyag megnevezés onnan származik, hogy a tenzidek arra is képesek, hogy csökkentsék a víz felületi feszültségét, ami így be tud hatolni a legapróbb résekbe is, és a szennyeződéseket onnan is el tudja távolítani. A tenzidek fontos alapanyagai a háztartás vegyipari és ipari tisztítószereknek. A diplomamunkám első részében csoportosítom a tenzideket kémiai szerkezetük szerint és ismertetem a legfőbb tulajdonságaikat. Majd bemutatom a folyadékok szállítására, mozgatására alkalmas szivattyúkat, ismertetem a folyadékszállítás elméleti összefüggéseit. Munkám célja, hogy a nagy viszkozitású APG 70 felületaktív anyag szállítására a legalkalmasabb szivattyút kiválasszam, valamint a csővezetékrendszer és a választott szivattyú munkapontját meghatározzam. Zárásként számításokkal ellenőrzőm, hogy a csővezetékrendszer adott technológiai feltételek mellett igényel-e hőszigetelést. 1

10 2. Cégismertető A Cudy Future Kft ben alakult, alapítói Kulcsár Ildikó vegyész és édesapja, Kulcsár Antal. A Kft. háztartás vegyipari és ipari tisztítószerek fejlesztésével, gyártásával, kereskedelmével és üzemhigiéniai szaktanácsadással foglalkozik. A cég székhelye és telephelye Nyíregyházán, a Tünde u. 18. sz. alatt található. A Kft. 100%-ban magyar tulajdonú vállalkozás, minden terméke hazai, Szabolcs-Szatmár- Bereg megyei munkaerővel készül, így támogatja a helyi gazdaságot. A cég vezetője, Kulcsár Ildikó több mint tíz éves szakmai tapasztalattal rendelkezik. Termékeiket folyamatosan fejlesztik, felhasználva a vegyipar legújabb kutatási eredményeit és a vevőik igényeit. Saját fejlesztésű tisztítószereket gyártanak és forgalmaznak. A Cudy Future Kft. céljai között első helyen szerepel, hogy tisztítószerei segítségével hozzájáruljon az intézmények és a háztartások veszélyes anyag kibocsátásának, környezeti terhelésének csökkentéséhez. Ennek érdekében jól lebomló, többségénél Ecolabel minősített alapanyagokat használnak, kiválasztásuk során fokozottan odafigyelnek arra, hogy a lehető legkisebb legyen a káros szennyezőanyag tartalmuk. A termékeikben kizárólag olyan színezőanyagokat használnak fel, amelyeket az Európai Unió ide vonatkozó rendeletei élelmiszerekben felhasználható színezékként engedélyez. A termékskála igen gazdag. Textilmosásra gyártanak: folyékony mosógélt, mosóport, textilöblítőket, folttisztítót, mosószappant többféle illatban és illatmentesen is. Konyhai tisztítószereket: mosogatószert, citromsavas vízkőoldót, mosogatógép öblítőt,mosogatóport. Ipari felhasználásra erősen lúgos, illetve savas tisztító- és fertőtlenítő szereket és koncentrátumokat. A Cudy Future Kft. felismerve a minőség gazdasági jelentőségét nagy hangsúlyt fektet a minőségpolitikára. A minőség folyamatos javítására törekszik. A cég alapvetően törekszik termékei olyan módon történő előállítására, amely különböző vevői szegmenseket céloz meg. Széleskörű marketing tevékenysége eredményeként eljut a prémium kategóriát, az általános elvárásokat megfogalmazó, valamint az adott felhasználási célra alkalmas terméket igénylők köréhez. Ezzel együtt igyekszik a termékpaletta változatosságának biztosítására, a minőségi 2

11 színvonal állandóságának megőrzésére, az egyedi vevői igények teljesítésére. A technológiai módszerek ismertetésével, szaktanácsadással segíti elő termékei megelégedettséggel történő felhasználását. Termékeik versenyképességét hatékonyságuk biztosítja, amely a különös gondossággal megtervezett hatóanyag típusokon és hatóanyag tartalmon alapul. Folyamatosan fejlesztik a termékek gyártásának technológiáját, és minden olyan tevékenységet, amely a vevői igények teljes körű kielégítését elősegíti. Értékes stratégiai célként kezelik a beszállítókkal a hosszú távú, megbízható kapcsolatra törekvést a magas minőségi színvonalú alapanyagok beszerzése érdekében. Mindezek elérését, folyamatosan fejlesztett és karbantartott eszközállománnyal, felkészült személyzettel, valamint hatékonyan működő MSZ EN ISO 9001:2009 szabvány szerinti minőségirányítási rendszerrel kívánják megvalósítani. Az MSZ EN ISO 14001:2005 rendszert működtetve folyamatosan javítják a cég környezetvédelmi teljesítményét. Ezért az általuk fejlesztett és előállított termékek életciklusok teljes intervallumában felhasználó- és környezetbarát tulajdonságokat hordoznak magukban. Nagy gondot fordítanak a termékek csomagolási épségének megóvására a termékek előállítása, a tárolása és szállítása során, betartva minden olyan előírást, amellyel a környezetkárosítás megelőzhető. A termékek teljes életútját figyelemmel kisérve a kiürített göngyölegeket visszavásárolják és újra töltik. 3

12 3. Felületaktív anyagok [1] Segédanyagoknak nevezzük azokat az anyagokat, amelyeket valamilyen gyártásfolyamatban alkalmaznak, de a termék alapvetően nem ezekből keletkezik. Kettős szerepük van, egyrészt megkönnyítik, illetve lehetővé teszik a gyártást, másrészt a termékbe beépülve annak tulajdonságait módosítják. A segédanyagokat két fő csoportba sorolhatjuk: felületaktív és nem felületaktív anyagok. A felületaktív anyagokat más néven tenzideknek nevezzük. A felületaktív anyagok tovább csoportosíthatók a vegyület kémiai szerkezete szerint, a nem felületaktív anyagok pedig a felhasználásuk célja szerint A tenzidek csoportosítása A felületaktív anyagok molekulái egy vízoldhatóságot biztosító poláris /hidrofil/ részből és egy apoláris /hidrofób/ részből állnak. A tenzidek felületi feszültséget csökkentő hatása vizes oldataikban érvényesül főként, mert a víz felületi feszültsége /a folyadék-gáz határfelületen/ relatíve nagy. A tenzidek tulajdonságainak kialakításában meghatározó szerepet kap a hidrofil és hidrofób rész minősége és egymáshoz viszonyított nagysága. Bármely poláris csoport szerepelhet hidrofil csoportként. A hidrofób csoport lehet gyűrűs, de általában nagy szénatomszámú /10-18 szénatom/ alkilcsoport. A tenzideket disszociációjuk, illetve kémiai szerkezetük alapján csoportosítják. Eszerint megkülönböztetünk kationaktív, amfoter és nemionos, anionaktív tenzideket Kationaktív tenzidek Az anyag kationaktív, ha az ionos felületaktív anyagban a hidrofób részt tartalmazó ion pozitív töltésű. Felhasználásuk szűkebb körű, mint az anionaktívaké, elsősorban a textiliparban alkalmazzák őket. Néhány típusuk: -monoalkil-ammóniumsók -N-alkil-piridiniumsók -kvaterner ammóniumsók : 4

13 Dietil-fenil-metilammónium-bromid Anionaktív tenzidek A tenzid anionaktív, ha az ionos felületaktív anyagban a hidrofób részt tartalmazó ion negatív töltésű. A legrégebben használt és még manapság is meghatározó anionaktív anyag a szappan, amely kémiailag különböző zsírsavak sóinak keveréke. A szappanok gyártásának alapanyagai a szénatomszámú telitett és telítetlen zsírsavakat tartalmazó zsírok és olajok, vagy gázolajból nyert mesterséges zsírsavak. Szappanokká alakításuk lúgok /NaOH, KOH, Na 2 CO 3, stb./ segítségével történik. Az alkáliszappanok felületaktív tulajdonságai meglehetősen jók, előnyük továbbá, hogy olcsók. Hátrányuk, hogy savas közegben zsírsavaik kicsapódnak /savérzékenység/; lúgos hidrolízisük miatt károsítják a fehérjealapú szálakat, valamint a kemény vizekben oldhatatlan csapadékokat képeznek /mészérzékenység/. Az anionaktív anyagok között meghatározóak a szulfát típusúak, amelyek savanyú kénsav-észterek sói. Szerkezetükre jellemző, hogy a kénatom oxigénen keresztül kapcsolódik a szénatomhoz: R-CH 2 -O-SO 3 Na A szappanok mész- és savállóságát lényegesen javítja, ha karboxilcsoportok mellett hidrogén-szulfát-csoportot is beviszünk a molekulába. Ilyen típusú anyagok a szulfatált olajok, előállításuk kénsav segítségével történik telítetlen vagy hidroxizsírsavakat tartalmazó alapokból. Ilyen olajok pl. a ricinus-, a len-, a kukoricaés az olívaolaj. A szulfatált olajok mosóhatása gyenge, ugyanakkor nedvesítő és diszpergáló képességük megfelelő, emiatt jó textilipari segédanyagok. Az anionaktív tenzidek között leglényegesebbek a szulfonsavak sói, amelyeket szulfonátoknak is neveznek. Szerkezetükre jellemző, hogy a kénatom közvetlenül kapcsolódik az apoláris részhez: R-SO 3 Na 5

14 Amfoter tenzidek Az amfoter felületaktív anyagok molekulájában jelen van savas és bázikus csoport is, amelyek a közeg kémhatásától függően anionként vagy kationként disszociálnak. Jelentőségük kisebb a kationaktív tenzideknél, többnyire textilipari segédanyagok. Sajátos képviselőjük a betain: /CH 3 / 3 N + -CH 2 -COO Nemionos tenzidek A nemionos tenzidek molekulájában több poláris csoport van, azonban ezek a csoportok vizes közegben nem disszociálnak. A hidratálódást a poláris csoportok együttesen eredményezik. Meghatározó fontosságúak az etilén-oxid származékok, amelyek hidrogént tartalmazó vegyületekkel reagálva poli/oxi-etilén/-láncot képeznek. R-X-H + n CH 2 -CH 2 R-X-/CH 2 -CH 2 -O/ n-i -CH 2 -CH 2 -OH O X lehet O /alkohol/, S /merkaptán/, NH /amin/, COO /karbonsav/ A fenti reakciót etoxliezésnek nevezzük. A poli/oxi-etilén/-lánc minden oxigénatomja asszociálja a vízmolekulákat, ezért a lánc erősen hidrofil. Egyedi tulajdonságokkal rendelkező tenzideket kapunk, ha a lánc különböző hidrofób csoportokat tartalmazó alapvegyülethez kapcsolódik. A hidrofil-hidrofób arányt az etilén-oxid mennyiségével lehet változtatni. Az átlagos etoxilezési fok n = Az etoxilezés során keletkező vegyületek további reakciókba vihetők: pl. észterezni lehet a láncvégi hidroxicsoportot. A tenzidek közül az etilén-oxid származékok szerkezete és tulajdonságai variálhatók a legszélesebb skálán. Előnyös sajátosságuk, hogy más tenzidekkel keverve sok esetben mutatnak szinergetikus hatást. Biológiailag ártalmatlan termékek is találhatóak közöttük, amelyeket gyógyszerkészítményekben és kozmetikumokban is felhasználhatnak. Előnyös tulajdonságaik miatt fokozódik az alkalmazásuk, a legszélesebb körben kerülnek felhasználásra, annak ellenére, hogy drágábbak a többi tenzidnél. 6

15 3.2. A határfelületi aktivitás gyakorlati jelentősége A tenzideket a következő tulajdonságaik miatt alkalmazzák: diszpergáló-, nedvesítő-, emulgeáló-, habképző-, szennyvivő-, mosó- és korróziógátló tulajdonság. A felsorolt hatások mind kapcsolatban vannak egymással, valamint a felületi feszültség csökkentésével Diszpergáló hatás Diszpergálás olyan fizikai kémiai folyamat, melynek során bármilyen halmazállapotú anyag igen apró részecskékre felosztva keveredik egy másik anyaggal. Ha szilárd anyagot diszpergálunk folyadékban, szuszpenzió; ha folyadékot diszpergálunk folyadékban, emulzió; ha gázt folyadékban, akkor hab képződik. Diszpergálásnál a tenzidek hatása kettős. Egyfelől elősegítik a diszperzió létrehozását, tehát magát a diszpergálást. Ez főleg szilárd anyagok diszpergálásnál fontos, mert a tenzid nedvesedést könnyítő hatása révén, a folyadék az egyes szemcséket teljesen körül tudja venni, így megakadályozva azt, hogy azok összeálljanak. A tenzid oldata bejut a szilárd szemcsék repedéseibe, ahol a kapillárisokat szétfeszítve tovább aprítja az anyagot. Másfelől a tenzid stabilizálja a kész diszperziót. A felületaktív anyag molekulái úgy veszik körül a diszpergált részecskéket, hogy hidrofil részük a vízbe nyúlik, és ezek taszításával magyarázható a védő-kolloid hatás. Mosás során a dörzsölés mechanikai hatása végzi a diszpergálást, amit a felületaktív anyag segít elő Nedvesítő hatás Nedvesedés során szilárd-gáz határfelület helyett szilárd-folyadék határfelület keletkezik. Vizes oldatokban a felületaktív anyagok nedvesítő hatása főként a víz felületi feszültségének csökkentésén alapszik, ezért szükséges, hogy a tenzid vízben oldódjon. A hőmérséklet-emelésekor erősen nő a víz nedvesítő képessége, ugyanakkor a tenzidek hatása némiképp csökken. Azok a felületaktív anyagok számítanak a legjobb nedvesítőszereknek, amelyeknek apoláris része vagy kondenzált gyűrűt tartalmaz vagy elágazó láncú. A nedvesítésnek lényeges szerepe 7

16 van a mosásnál, a textilszínezésnél, a kőolajbányászatnál, a nyomdászatnál és az útépítésnél Emulgeáló hatás Azokat a diszperz rendszereket, amelyekben adott hőmérsékleten mind a diszperz rész, mind a diszperziós közeg folyékony halmazállapotú, emulziónak nevezzük. A tenzidek emulgeáló hatása a felületi feszültség csökkentésével és a két folyadék határfelületén történő adszorpcióval van összefüggésben. Az emulgeálószereknek kevésbé kell nagy nedvesítő képességűnek lenniük, mint a diszpergálószereknek, ugyanis az emulgeálószereknél a hangsúly a stabilizáló hatáson van. Emulziók stabilizálásakor a tenzid filmszerűen fedi be az emulgeált cseppeket. A gyakorlati tapasztalatok azt mutatják, hogy emulgeálószerek keverékei eredményesebbek, mint a kémiailag egységes tenzidek Habképző hatás Azt a diszperz rendszert, amelyben a diszpergált rész légnemű, az összefüggő diszperziós közeg pedig folyadék, amely vékony hártyákká torzul, habnak nevezzük. A vékony hártyák, az úgynevezett lamellák választják el egymástól a gázbuborékokat. A habok előállításakor mechanikai hatásra (pl. keverésre) a gázbuborékok a folyadék felszíne fölé kerülnek, és a tenzidekből kialakul egy párhuzamos kettősréteg. A habok előállításának elsődleges célja a folyadék-gáz határfelület nagyarányú növelése. Főként mosásnál, illetve tűzoltásnál van nagy jelentőségük. A habok sokszor nem kívánt hatást is kifejtenek, például a mosószerekkel szennyezett vizek felszínén létesülő hab komoly veszélyt jelent a vizek élővilága és öntisztulása számára Szennyvivő hatás A szintetikus felületaktív anyagok segítségével végzett mosás dinamikus egyensúlyra vezető folyamat. Adott idő alatt ugyanannyi szennyeződés kerül a mosólébe, mint amennyi visszarakódik a mosandó felületre. A tenzidek az egyensúlyt a számunkra kedvező irányba tolják el, ezt a tulajdonságukat nevezzük 8

17 szennyvivő hatásnak. A szennyvivő hatás annál nagyobb, minél nagyobb micellákat képez a tenzid, valamint adalékanyagok hozzáadásával is növelhető Mosóhatás Azt az eljárást, amely során mosófolyadék segítségével távolítjuk el a szilárd felületre tapadt szennyeződéseket mosásnak nevezzük. A szennyeződések rendszerint nem alkotnak homogén keveréket. A mosás egymást követő részfolyamatokból áll: első lépésben történik a textília átnedvesítése a vizes tenzidoldattal; második lépésben a leszorított szennyeződés emulgeálása megy végbe a mosófolyadékban. A szilárd szennyeződések diszpergálással kerülhetnek a mosófolyadékba; az így létrejövő szuszpenziót a tenzidek stabilizálják. A jó szennyvivő képesség nagyban hozzájárul a mosás eredményességéhez. A mosóhatás nincs összefüggésben a habzóképességgel, ezáltal a gyengén habzó tenzidek is lehetnek jó mosóhatásúak Korróziógátló hatás A fémfelületek korrózió elleni védelmére is használhatóak némely tenzidek. Ezen anyagokat a motorok üzemanyagaihoz és fémipari hűtő- és kenőemulziókhoz keverik. Használatuk előnyös lehet víztárolókban, hűtő- és fűtővízrendszerekben is. 9

18 3.3. A tenzidek felhasználása A szappant a sumérok már időszámításunk előtt 2500 évvel ismerték, bár eleinte csak kozmetikumként és gyógyszerként alkalmazták. Mosószerként kb éve használják. A tenzidek kutatása, előállítása, ipari szintézise csak a II. világháború után indult fejlődésnek. Jelentőségüket megnöveli, hogy alkalmazásuk új technológiákat tesz lehetővé, illetve javíthatja, egyszerűsítheti és olcsóbbá teheti a hagyományos munkafolyamatokat. Mivel a kedvező hatást általában már kis mennyiségű tenzid is biztosítja, így alkalmazásuk gazdaságos. Háztartás vegyipari segédanyagként mint mosó és tisztítószerek kerülnek alkalmazásra (mosószerek, mosogatószerek, súrolóporok, üveg-, padló-, szőnyegtisztítók, stb.). A tenzidek textilipari segédanyagként is fontosak, és a kozmetikai iparban is nélkülözhetetlenek. Némely termékben a tenzid a készítmény fő tömegét alkotja /samponok, habfürdők/; másokban a tenzid adalékanyag /bőr- és fogápolószerek/. Elengedhetetlen, hogy az itt felhasznált tenzidek a bőrrel jól összeférhetőek legyenek és nem lehetnek toxikusak. A gyógyszeripar a tenzideket kenőcsök, krémek készítésénél, gyártási és gyógyszerformálási segédanyagként alkalmazza. Tenzideket alkalmaznak a növényvédő szerek gyártásánál, kiszerelésénél, ugyanis a hatóanyagok nagy része vízben rosszul oldódik, nehezen szívódik fel, nem tapad. A tenzidek fontos segédanyagok a gumi- és műanyagipari latexek előállításához és stabilizálásához. Az élelmiszeriparban a tenzideket a gyümölcs- és zöldségfélék konzerválószereként, valamint élelmiszerek adalékanyagaként (pl. a kenyér kiszáradásának megakadályozására, és a margarin hőstabilitásának növelésére) hasznosítják. A kőolajbányászatban és feldolgozóiparban a tenzideket szekunder olaj kitermelésnél, vizes kőolajemulziók bontásánál, fúróiszapokban és korróziós inhibitorként használják. A tenzidek felhasználásának fontos területei továbbá: bőr- és szőrmeipar, a lakk- és festékipar, az élelmiszeripar, az építőipar, a papíripar, a fotóipar. 10

19 3.4. Felületi feszültség A felületi feszültség a fázisok határfelületén fellépő jelenség, amely minden olyan anyag sajátossága, amelynek részecskéi között az ütközés mellett más kölcsönhatás is fellép. Annak függvényében, hogy milyen fázisok érintkeznek egymással, különbséget tehetünk folyadék-gáz, folyadék-folyadék, szilárd-folyadék és szilárd-gáz határfelületek és felületi feszültségek között. Egy fázist alkotó részecskék között különbség tehető az alapján, hogy a fázis belsejében vagy a felületén helyezkednek el. Tiszta anyagoknál a felületi réteg felett az anyag gőz állapotú részecskéi vannak, amelyekben a részecskék átlagos távolsága jelentősen nagyobb a vonzerők jelentősen kisebbek -, mint a tömbfázis belsejében. A folyadék belsejében kompenzálják egymást a szomszédos molekulától eredő kohéziós erők, ezzel szemben a felületen ezeknek az eredője a folyadék belseje felé mutat. Tehát a felületi molekulákat a kohéziós erő a folyadék belseje felé próbálja elmozdítani. Ebből adódik, hogy a felület létrehozása vagy megszüntetése munkával jár. A felszín egységnyi hosszú szakaszára merőlegesen ható erőként definiálják a felületi feszültséget [N/m]. Tiszta folyadékok esetében a felületi feszültség az a munka, amely egységnyi új felület létrehozásához szükséges [J/m 2 ] A felületi feszültség az anyag kémiai felépítésével kapcsolatos fontos fizikai állandó, mely nagy mértékben függ a hőmérséklettől. Fontos megemlíteni, hogy a felület feszültség nagy mértékben függ az anyag tisztaságától, ugyanis kismértékű szennyezés is jelentősen megváltoztatja. Ennek megfelelően a koncentrációtól jelentős mértékben függ az oldatok felületi feszültsége. Attól függően, hogy a folyadék felületén nagyobb-e vagy kisebb, mint az oldat belsejében az oldott anyag koncentrációja változik az oldatok felületi feszültsége. Azon anyagokat, melyek csökkentik a felületi feszültséget felület- vagy kapilláraktív anyagoknak nevezzük (pl. mosószerek, tenzidek, alkoholok, stb.) Azon anyagokat, melyek a növelik a felületi feszültséget kapillár inaktív anyagoknak nevezzük (pl. cukrok, erős elektrolitok). [2] 11

20 3.5. Alkil-poliglükozidok Emil Fischer, több mint 100 évvel ezelőtt határozta meg és állította elő laboratóriumban az első alkil-glükozidot. Az irodalomban az alkil-poliglükozidokról először Emil Fischer 1893-ban tett említést. Az alkil-poliglükozidok, mint széles körben ismert, iparilag előállított termékek iránt hosszú ideig csak tudományos érdeklődés mutatkozott. Az alkil-glükozidok tisztítószerként való használatáról szóló szabadalmat 40 évvel később Németországban nyújtották be. Ezután hosszú időre elfeledték, feltehetőleg nem csak azért mert a gyártásuk nehéz volt, hanem mert nagyon sok más felületaktív anyagot gyártottak. Ezt követően mintegy éve a különböző cégek kutatócsoportjai az alkil-glükozidokra irányították figyelmüket és fejlett technikai folyamattal előállították az alkil-poliglükozidokat. Történt néhány fejlesztés a C 8 -C 10 -alkil-poliglükozidokkal kapcsolatban az 1970-es évek közepén a Rohm & Haas amerikai cég és a Seppic francia cég részéről, akik szintén mutattak be termékeket a piacon (Triton BG 10, Triton CG 110), azonban a fogadtatásuk nem volt túl lelkes. Mindaddig nem következett be változás, amíg az 1980-as évek első felében ez a régi felületaktív anyag újra elő nem került, aminek hátterében a növekvő környezetvédelmi hullám állt. Az intenzív használata az anomerikus alkil-glükozidoknak, mint az n-oktil β-dglükoz és n-dodecil β-d-maltóz a biológiában, mint a membrán fehérjék effektív oldódást segítő anyaga, más alkalmazásokkal együtt jelezte, hogy ezek a feületaktív anyagok nagyon biztonságosak. Mindezt egy anyagcsere tanulmánnyal bizonyították, amikor száján át adtak be egy egérnek alkil- β-glükozidet. A kísérlet eredményeként váltak ezek a felületaktív anyagok ajánlott emulgeálószerekké az élelmiszerekben. Az alacsony méregtartalmuk és ökológiai biztonságuk valójában nem meglepő, ha összehasonlítjuk őket a biofelületaktív anyagok csoportjával és rájövünk, hogy mennyire hasonlóak hozzájuk. További kezdeményezések történnek az alkil-poliglükozidok széleskörű alkalmazására és használatuk előnyeit egyre inkább felismerik, különösen a hosszú láncú termékeknél. Olyan vállalatok, mint az A. E. Staley, Procter & Gamble, Henkel, Kao Corp. és Hüls kutatásokat és fejlesztéseket végeznek. A piac erős érdeklődését tükrözi ezen felületaktív anyagok iránt a szabadalmi statisztikák és az irodalmi kiadványok növekedése. 12

21 Számos szabadalom van, amelyek különösen az alkil-poliglükozidok speciális tulajdonságaira alapoznak, beleértve a kompatibilis és szinergikus hatását, amikor más egyéb felületaktív anyagokkal vagy felületaktív anyagok összetevőivel kombinálják. A jelenlegi nagy érdeklődést az alkil-ploiglükozidok iránt magyarázza kiváló ökotoxikológiai tulajdonságaik, illetve a rendkívüli gazdaságos költség/teljesítmény arány és nem utolsó sorban az a magas minőség, amit garantál, annak ellenére, hogy a gyártási folyamat irányítása nehéz. Ezért biztosra vehető, hogy alkil-poliglükozidoknak kiemelkedő szerepük lesz a felületaktív anyagok körében a jövőben is. Az alkil-poliglükozidokat közvetlenül glükózból és zsíralkoholból szintetetizálják. A zsíralkohol lánc hosszának és a glükóz csoportok számának változtatásával az alkil-poliglükozidok szerkezetének tulajdonságai befolyásolhatók. Az alkil-poliglükozidok világszintű gyártásának nemrégiben bekövetkezett növekedése a legfontosabb cukor alapú felületaktív anyagává tette. Az egész világon 60 tonna/év mennyiséget gyártanak. [3, 4, 5] 13

22 APG 70 Az alkil-poliglükozidok (APG) új generációs környezetbarát felületaktív anyagok. Nem ionos felületaktív anyagok, melyek kizárólag növényi nyersanyagokból készülnek. A 1990-es évekig nem gyártották ipari méretben őket. Az alkilpoliglükozidok teljes mértékben lebomlanak biológiailag, nem mérgező és nem irritáló tulajdonságúak, kiváló felületaktív tulajdonságokkal bírnak, ezért elterjedten alkalmazzák tisztítószerek, kozmetikumok, élelmiszerek és gyógyszerek alapanyagaként. Alkalmazásuk: Kemény felületek tisztítószereihez, mint fürdőszobai- és üvegtisztítók mivel csekély a maradékuk, ezáltal a hidratálódásuk és a folthagyásuk kiváló Erős alkáli közeggel szemben mutatott toleranciája rendkívül alkalmassá teszi ipari tisztítószerek komponenseként való használatát Magas elektrolit koncentráció mellet is megmarad a kiváló hidratálódása, ezért ilyen közegben is alkalmas felületaktív komponens [6] Az 1. ábrán az APG 70 termékminta látható. 1. ábra: APG 70 14

23 Az APG 70 fizikai tulajdonságai: Külső megjelenés: Sárgásbarna vagy színtelen viszkózus folyadék Aktív anyag koncentráció: kb. 70% Víztartalma (EN 13267): kb. 30% ph (EN 1262, 5 % vízben): kb. 8 Sűrűség (DIN 51757, 20 C) kb. 1,18 g/cm 3 Dermedési pont: kb. -15 C Forráspont: kb. 100 C Lobbanáspont: > 100 C A felületi feszültség desztillált víz esetén (2. ábra): Felületi feszültség [mn/m] APG ábra: Felületi feszültség desztillált víz esetén Aktívanyag tartalom % (Forrás: APG 70 Safety Data Sheet, BASF, 2008) 15

24 4. Szivattyúk A különböző vegyipari műveletek, vegyipari technológiák üzemeltetése során a leggyakrabban előforduló feladat a folyadékok szállítása, mozgatása a vegyipari berendezésekben. A szállításhoz szivattyúkat használunk. Szivattyúnak nevezzük azon áramlástechnikai munkagépeket, amelyek folyadékokat, folyadékok és gázok vagy gőzök, folyadékok és szilárd anyagok keverékét, mint munkaközeget továbbítanak legtöbbször kisebb nyomású helyről adott távolságra lévő, magasabban elhelyezkedő vagy nagyobb nyomású térbe. Megfelelve a gazdaságossági törekvéseknek, az új technológiai eljárások megjelenésével manapság olyan szivattyúkat terveznek, amelyek kiválóan alkalmazhatók a továbbított folyadék fizikai és kémiai paramétereihez, továbbá a szükséges munkavégző képesség által megszabott feltételekhez. [7, 8, 9] 4.1. A szivattyúk osztályozása A szivattyúkat az alábbi főbb szempontok alapján sorolhatjuk osztályokba működési elv szállított közeg alkalmazási terület Működési elv alapján megkülönböztetjük: az áramlástechnikai elven működők, - turbinaszivattyúk (vagy más néven: örvényszivattyúk, centrifugál szivattyúk), - mamut szivattyúk, - sugárszivattyúk (vízsugár szivattyúk, gőzsugár szivattyúk) stb. a volumetrikus vagy térfogat kiszorítás elvén működők, - dugattyús szivattyúk, - fogaskerék szivattyúk, - membránszivattyúk, - csavarszivattyúk stb. 16

25 A szállított közeg szerinti csoportosítás a következő: vízszivattyúk szennyvízszivattyúk iszapszivattyúk sav- és lúgszivattyúk olajipari termékeket szállító szivattyúk cseppfolyósított gázokat szállító szivattyúk folyékony fémeket szállító szivattyúk vegyi- és élelmiszeripari anyagokat, keverékeket szállító szivattyúk Az alkalmazási területek szerinti csoportosítás: vízvezetéki és csatornarendszeri szivattyúk erőművi szivattyúk vegyipari szivattyúk ásványolaj-ipari szivattyúk mezőgazdasági és élelmiszeripari szivattyúk bányászati szivattyúk [7,8,9] 4.2. Áramlástechnikai elven működő szivattyúk Ezen típusú szivattyúknál az energiaátalakulás egy vagy több lapáttal ellátott forgó csatornákban, az úgynevezett járókerekekben megy végbe. Forgás közben a lapátok közötti terekből örvényszerűen távozik a folyadék, az örvényszivattyú elnevezés innen ered. [10] Centrifugál szivattyú A legáltalánosabban használt folyamatos folyadékszállítást végző szivattyúk a centrifugál szivattyúk, vagy más néven örvényszivattyúk. Jellemzőjük, hogy közvetlenül kapcsolhatóak a hajtómotorral, valamint nincs ide-oda lengő tehetetlen tömegű dugattyújuk, így tág teljesítményhatárok és fordulatszámhatárok között üzemelnek. [8,9] 17

26 A centrifugál szivattyú elvi felépítése a 3. ábrán, szerkezeti kialakítása a 4. ábrán látható. 1 szívócsonk 2 szívótér 3 a járókerék szívótorka 4 járókerék 5 a járókerék lapátja 6 nyomótér (csigaház) 7 nyomócsonk 8 - nyomóvezeték 3. ábra: A centrifugál szivattyú elvi felépítése (Forrás: Dr. Fazekas Lajos: Általános géptan, Debreceni Egyetem Műszaki Kar) 1 járókerék 2 tengely 3 retesz 4 tengelyanya 5 csapágybak 6 közdarab 7 - csigaház 4. ábra: A centrifugál szivattyú szerkezeti kialakítása (Forrás: Dr. Fazekas Lajos: Általános géptan, Debreceni Egyetem Műszaki Kar) Működési elve: A gyorsan forgó járókerék a centrifugál szivattyú energia átalakító része, a forgómozgás révén bevitt energia előbb sebességi, majd nyomási energiává alakul át. A járókerékben a mozgási energia nő meg, ami a szivattyúházban nyomási energiává alakul. A szivattyúban lévő folyadékot a forgó járókerék lapátjai forgásra késztetik, amelyre így centrifugális erő hat. A forgás következtében a folyadék nyomása megnő, ennek hatására kifelé mozdul el a szivattyúház fala irányába, majd 18

27 a nyomócsonkon átfolyva távozik a szivattyúból. A folyadék nyomása a járókerék kilépő felületén megnő, a belépőben csökken, ezért a szívócsonkon keresztül folyadék áramlik be a lapátok közé. [8, 9, 12, 13] Üzemeltetésük: A járókerék nem illeszkedik pontosan a csigaházhoz, így ha a járókerék nincs mozgásban, akkor a folyadék visszafolyik mellette a szívócsőbe. Ugyanakkor, ha a járókereket úgy hozzák mozgásba, hogy a levegőben forog, nem tud szívóhatást gyakorolni. Nem önfelszívóak, ahhoz, hogy a folyadékszállítás elinduljon, indítás előtt fel kell tölteni a szivattyúházat folyadékkal. A szivattyú leállításakor a szívócső végén lábszeleppel gátolják meg a folyadék visszaáramlását. [8,9,12,13] Mamut szivattyú A Mamut-szivattyú, vagy más néven légnyomásos vízemelő a folyadékot nagynyomású gáz segítségével szivattyúzza (5. ábra). A szivattyú egy nagy átmérőjű függőleges termelőcsőből áll, amely a kiszivattyúzandó vízbe merül. A függőleges termelőcsőbe felülről nyúlik be a nyomóvezeték csöve, amelybe a kompresszor által szállított levegőt alulról adagolják be. Bevezetett levegő és a folyadék keveredik, az így keletkezett kisebb fajsúlyú folyadékot a fajsúlykülönbséggel arányos felhajtóerő emeli fel. Előnyös tulajdonsága, hogy nem érzékeny a víz szennyezettségére, továbbá arra sem, ha a szívott térből leszívja az összes folyadékot. Hátránya, hogy hatásfoka viszonylag alacsony, 25-45%. [14] 5. ábra: A mamutszivattyú (Forrás: Dr. Fazekas Lajos: Általános géptan, Debreceni Egyetem Műszaki Kar) 19

28 Sugárszivattyúk A sugárszivattyúk mozgó alkatrész nélküli, folyamatos működésű áramlástechnikai készülékek. Sajátosságuk, hogy a továbbítandó közeget (gáz, gőz, folyadék vagy szilárd anyag) egy rendszerint jóval nagyobb nyomású hajtóközeggel (gáz, gőz vagy folyadék) kevert közegáramlással nagyobb nyomású térbe szállítják. Két alapvető típusa a gőzsugár szivattyú és a vízsugár szivattyú. Felépítésük és működési elvük csaknem azonos, szívásra és nyomásra használhatók. Hatásfokuk nagyon alacsony. [8, 9] 1 primer víz 2 szekunder víz 6. ábra : Vízsugár szivattyú (Forrás: Dr. Fazekas Lajos: Általános géptan, Debreceni Egyetem Műszaki Kar) A vízsugár szivattyú müködési elve (6. ábra): A nagy nyomású primer víz (1) áthalad az egyre szűkülő fúvókán, eközben mozgási energiája nő. A mozgási energiáját a továbbítandó szekunder víznek (2) adja át. A nagy sebességgel áramló folyadékkeverék mozgási energiája nyomási energiává alakul, amint a diffúzorba jut. 20

29 4.3. Volumetrikus elven működő szivattyúk A volumetrikus vagy más néven térfogatkiszorítás elvén működő szivattyúk a szállítandó közeget a munkatér térfogatának periódikus változásával beszívják, majd kiszorítva továbbítják. Előnyük, hogy nagyobb nyomású közegek szállítására is alkalmasak, valamint minimális belső veszteségeik következtében hatásfokuk kedvező. Hátrányuk, hogy nagy fordulatszámon való üzemeltetésüknél fennáll a kavitáció veszélye, és lehetséges a folyadékszállítás egyenlőtlensége. [9] A volumetrikus elven működő szivattyúk csoportosítását az 1. táblázat mutatja. 1. táblázat: Volumetrikus elven működő szivattyúk csoportosítása [16] (Forrás: Dr. Pokorádi László: Energia-átalakító gépek I., Áramlástechnikai gépek, Debrecen, 2002) 21

30 Dugattyús szivattyúk A dugattyú helyzete alapján vízszintes vagy függőleges elrendezésű, működési módját tekintve pedig egyszeres vagy kétszeres működésű dugattyús szivattyúkat különböztetünk meg. Manapság a legnagyobb nyomások eléréséhez ilyen típusú szivattyúkat használnak. Az 7. ábra szemlélteti az egyszeres működésű dugattyús szivattyú működési elvét. A forgó mozgás átalakítása alternáló mozgássá a forgattyús hajtómű feladata. A dugattyú a hengerben mozog előre és hátra, hátramenetkor szívóhatást fejt ki a szelepekre, és az üresen maradó munkatérbe folyadékot szív be. Amint a dugattyú eléri a hátrameneti holtpontot előreindul és a beszívott folyadékot maga előtt nyomja. A nyomószelep kinyílik és engedi a kiszoruló folyadékot a nyomóvezetékbe áramolni. [8,10] 7. ábra: Egyszeres működésű dugattyús szivattyú működési elve (Forrás : Membránszivattyúk A membránszivattyú olyan térfogat-kiszorítás elvén működő szivattyú, amelyben az energiaközvetítő elem a membrán, tehát a munkatér változatásához a membránt kell mozgatni. Szerkezeti kialakításúk alapvetően eltér a dugattyús szivattyúkétól, a szívó- és nyomóteret a rugalmas és hajlékony membrán határolja. A 22

31 membrán rugalmassága miatt ezek a szivattyúk jelentősen kisebb nyomást tudnak biztosítani, mint a dugattyús szivattyúk. Előnyük az egyszerű szerkezet, nem érzékenyek a szilárd szennyeződésekre, ezért alkalmasak sűrű, pépes folyadékok és zagyok továbbítására. A membránt a lökőrúd mozgatja a szivattyútérben, így a munkatérben szakaszosan térfogat növekedés, majd térfogat csökkenés jön létre. Az áramlást szelepek szabályozzák (8. ábra). [8,10] 8. ábra: A membránszivattyú elvi vázlata (Forrás : Fogaskerék szivattyúk Egyszerű szerkezetének és könnyű karbantarthatóságának köszönhetően, a legszélesebb körben elterjedt térfogat kiszorítású szivattyú. A szivattyúház zárt terében két egymással kapcsolódó fogaskerék van tengelyen elhelyezve. A ház egyik oldalához a szívó-, a másikhoz a nyomóvezeték kapcsolódik, a szivattyú a folyadékot az egymásba kapcsolódó fogaskerekek segítségével szívja be és nyomja ki. A fogaskerekek közül az egyiket kívülről hajtjuk, amely a vele kapcsolódó másik fogaskereket hajtja. Forgás közben az egyik kerék fogainak közeibe benyomuló másik kerék fogai végzik el a folyadék kiszorítását. A fogaskerék házban lévő kis hézagok meggátolják a folyadék visszaáramlását a szívóoldalra. Az ilyen szivattyúk tervezésekor figyelembe kell venni, hogy a túl nagy rések rontják a gép hatásfokát, míg a túl kicsi rések a gép tönkremenését eredményezhetik. [8,12,15,] 23

32 A 9. ábrán a fogaskerék-szivattyú látható. 9. ábra: Fogaskerékszivattyú (Forrás: Vegyipari géptan 2., Hidrodinamikai Rendszerek Tanszék, Műegyetem, Budapest Kisebb viszkozitású közegekre tervezett gépek rései kisebbek lehetnek, mint a nagyobb viszkozitásúakéi. Két fő változatuk ismert, a külső- és a belső fogazatú fogaskerék-szivattyú. A külső fogazatú fogaskerék-szivattyú esetében az egyrészes hajtótengelyre ékelt fogaskerekekkel lehetővé válik a nagyobb tengelyátmérő-választás, így hosszabb élettartamú csapággyal működhetnek. Rendszerint hengergörgős csapágyat használnak, amely a szennyeződésekre a legkevésbé érzékeny. Így érhető el az üzemeltetés zavartalansága. Külső és belső csapágyazású típusait különbözetjük meg. A külső csapágyazású szivattyúkat általában gyógyszerek, élelmiszerek, italok szállítására alkalmazzák, míg a belső csapágyazású szivattyúkat főként olajok szállításánál használják. A belső fogazatú fogaskerék-szivattyúknál a két fogaskerék szinte hézagmentes tömítése a töltő közdarabbal és a tengelyirányú nyomáskiegyenlítő tárcsákkal hozzájárul ahhoz hogy, a szállítandó közeg majdnem volumetrikus veszteség nélkül jusson a szivattyúház nyomó-csatlakozásához. [8,12,15,] 24

33 Fogaskerék-szivattyúk jelleggörbéi A fogaskerék-szivattyúknál független változónak a szállítómagasságot, valamint a rendszerint ebből adódó nyomásesést tekintik, és az egyes üzemi jellemzőket ennek függvényében ábrázolják. q v = a fogaskerék-szivattyú folyadékszállítása [m 3 /s] H = szállítómagasság [m] ΔP = a szállítómagasság nyomáskülönbsége (ΔP=ρgH) [Pa] A fogaskerék-szivattyú folyadékszállítását a szállítómagasság függvényében a q v (H) jelleggörbe adja meg. Ennek a görbének egy H tengellyel ΔP tengellyel párhuzamos egyenesnek kellene lennie a résveszteség nélküli szivattyúknál, azonban a valóságban a résveszteségek miatt H ΔP - növekedésével q v csökken. A q v (H) egyenes lejtése is függ a szállítómagasságtól ΔP-től és a hőmérséklettől, mivel a résveszteségek növekszenek a szállítómagassággal bizonyos mértékben a nyomással és a hőmérséklettel. Ha a szivattyúban túl nagy rések vannak, akkor a (1) parciális differenciálhányados-abszolútérték (1) nagy lesz. Túl nagy rések lehetnek megmunkálási pontatlanságok miatt, vagy ha a ház fedelei nem elég merevek és a nagy belső nyomás miatt kihajlanak. A hőmérséklet emelkedése is növeli a parciális differenciálhányados értékét. Ahogyan azt a 10. ábra is mutatja, nagyobb fordulatszámok esetén a görbék kevésbé hajlanak, mint kisebb fordulatszámoknál. 10. ábra: Fordulatszámgörbék 11. ábra: Teljesítménygörbék (Forrás: Dr. Pokorádi László: Energia-átalakító gépek I., Áramlástechnikai gépek, Debrecen, 2002) 25

34 A 11. ábra mutatja a teljesítménygörbéket. A kis nyomáshatárok között dolgozó fogaskerék-szivattyú P(ΔP) görbéje megfelelő közelítéssel linearizálható. A görbék meredeksége csökken kisebb fordulatszámnál. Az 12. ábra állandó fordulatszám esetén egy fogaskerék-szivattyú volumetrikus hatásfokának változását (η v ) ábrázolja. η v értéke 1, amikor nincs nyomáskülönbség a szívó- és nyomótér között. Megfigyelhető, hogy a nyomáskülönbség növekedésével a η v (ΔP) fokozatosan csökkenő parabola jellegű görbe. 12. ábra: Fogaskerék-szivattyú volumetrikus hatásfokának változása állandó fordulatszám esetén (Forrás: Dr. Pokorádi László: Energia-átalakító gépek I., Áramlástechnikai gépek, Debrecen, 2002) A 13. ábrán látható, hogy a volumetrikus hatásfok valamely rögzített ΔP értéknél hogyan változik a fordulatszám függvényében. A résveszteség fajlagosan csökken a fordulatszám növekedésével, ebből következtethetünk arra, hogy a szivattyú fordulatszámának csökkenésével az összhatásfok is romlik. 13. ábra: Fogaskerék-szivattyú volumetrikus hatásfokának változása rögzített ΔP értéknél (Forrás: Dr. Pokorádi László: Energia-átalakító gépek I., Áramlástechnikai gépek, Debrecen, 2002) 26

35 Ha a fogaskerék-szivattyú összhatásfokát a szállítómagasság függvényében ábrázoljuk (14. ábra), akkor látható, hogy kezdetben nő a hatásfok, azonban a H ΔP növekedésével elér egy maximumot, ahol a görbe igen lapos. A hatásfok a maximum elérését követően csökkenni kezd. A görbe jellege függ a szállított közeg hőmérsékletétől is. 14. ábra: Fogaskerék-szivattyú összhatásfoka a szállítómagasság függvényében (Forrás: Dr. Pokorádi László: Energia-átalakító gépek I., Áramlástechnikai gépek, Debrecen, 2002) A szivattyú hatásfokát a fogaskerekek kerületi sebességének függvényében megfigyelve (15. ábra), megállapítható hogy minden nyomásértékhez tartozik egy optimális kerületi sebesség. Azt tapasztalhatjuk, hogy kisnyomású szivattyúknál nincs értelme nagy kerületi sebességeket alkalmazni, jobb megoldás nagyobb modulusú fogaskerekeket használni. [16] 15. ábra: A fogaskerék-szivattyú hatásfoka a kerületi sebesség függvényében (Forrás: Dr. Pokorádi László: Energia-átalakító gépek I., Áramlástechnikai gépek, Debrecen, 2002) 27

36 4.4. Szivattyú jelleggörbe és munkapont A szivattyú minden üzemállapotában egy Q [m3/h] folyadékszállításához egy meghatározott H [m] szállítómagasság tartozik. A Q-H diagramot nevezik rendszerint a szivattyú jelleggörbéjének. A munkapont a szivattyú és a csővezeték egyensúlyi üzemállapota. Azonos átáramló térfogatáram mellett a szivattyú által létrehozott fajlagos munka pontosan annyi, mint a csővezeték igénye. A munkapont (16. ábra) geometriailag a szivattyúk jelleggörbéjének és a csővezeték jelleggörbéjének metszéspontja. [17,18] 16. ábra: Munkapont (MP) meghatározása (Forrás: munkapont kétféle lehet: stabilis vagy labilis. Ha az üzemet a munkapontból kitérítve visszaáll az eredeti munkapont, akkor a munkapont stabilis. Mind a szivattyú (gép), mind a csővezeték jelleggörbéje linearizálható a munkapont körül. A H gyorsító gyorsító munkát megkapjuk, ha a gép (szivattyú) által bevezetett H gép fajlagos munkából kivonjuk a csővezeték által igényelt H cső fajlagos munkát: 28

37 A munkapont stabilitásának feltétele, legyen, ekkor visszaáll a Q MP érték és a Q térfogatáram növekedése negatív fajlagos gyorsító munkát jelent. Labilis a munkapont, ha : A közeg összenyomhatósága növeli a labilis üzem veszélyét, a labilis jelleggörbe ág a 17. ábrán látható. [17,18] 17. ábra: Labilis jelleggörbe ág (Forrás: 29

38 4.5. A folyadékszállítás elméleti összefüggései [13, 19] Folytonossági (kontinuitási) törvény: időben állandó áramlás esetén a folyadék áramlási sebességének és a cső keresztmetszetének szorzata állandó. Ezt nevezzük a folyadék térfogatáramának: Q [m 3 /s] 18.ábra: Segédábra a kontinuitási törvényhez (Forrás: ) ahol: Q 1 =Q 2 A 1 *V 1 =A 2 *V 2 Q=A*v =állandó Q az időegység alatt átáramló folyadéktérfogat A az átáramlott keresztmetszet v az áramlási sebesség A Q=A*v=áll. egyenlet kimondja, hogy egy áramcső mentén az áramlási sebesség fordítottan arányos a hozzá tartozó keresztmetszetek területével. Az áramlási irányban haladva növekvő keresztmetszetekben az áramlás sebessége csökken, és fordítva, csökkenő keresztmetszetekben az áramlás sebessége nő. Bernoulli törvény (energiatörvény): Ideális esetben, veszteségmentes áramlásnál az áramló folyadék helyzeti, nyomási, mozgási energiájának összege két pont között, a csővezeték minden keresztmetszetében állandó. ahol: h 1 + P 1 ρ g + v g = h 2+ P 2 ρ g + v g = állandó h - fajlagos helyzeti energia (szintmagasság) [J/N=m] 30

39 P fajlagos nyomási energia (nyomásmagasság) [J/N=m] ρ g v 2 2 g fajlagos mozgási energia (sebességmagasság) [J/N=m] P - a folyadék nyomása a csővezetékben [N/m 2 ] ρ a folyadék sűrűsége [kg/m 3 ] g nehézségi gyorsulás [9,81 m/s 2 ] v a folyadék áramlási sebessége a csővezetékben [m/s] A fajlagos energia az 1 N súlyú folyadékokra vonatkoztatott energiát jelenti. [J/N] a mértékegysége, ami méterrel [m] is leírható, ezért nevezik a energiamagasságoknak a fajlagos energiákat. Bernoulli egyenlet veszteséges áramlásnál: ahol: h 1 + P 1 ρ g + v g = h 2+ P 2 ρ g + v g + h v h v a fajlagos energiaveszteség (veszteségmagasság) [J/N=m] Veszteséges áramlásnál az áramló folyadék helyzeti, nyomási és mozgási energiájának összege a csővezeték két pontja között a fellépő veszteségek miatt nem állandó. A veszteségek az idomok, szerelvények ellenállásából és a csősúrlódásból adódnak: h v = h v(i,sz) + h v(e) ahol: λ csősúrlódási tényező [-] l egyenes csőszakaszok hossza [m] d belső átmérő [m] v a közeg áramlási sebessége [m/s] g nehézségi gyorsulás [9,81 m/s 2 ] h v(e) = λ l d v 2 2 g 31

40 Idomok, szerelvények vesztesége: h v(i,sz) = Σξ v 2 2 g ahol: Σξ az idomok, szerelvények együttes ellenállástényezője [-] A veszteségek meghatározása egyenértékű csőhossz segítségével: Egyenértékű csőhossz vesztesége megegyezik az idomok, szerelvények veszteségének összegével: l e = d Σk ahol: d - cső belső átmérője [m] k - szerelvények, idomok veszteségtényezői [-] ahol: l g - geometriai csőhossz [m] h v = λ l g + l e d v2 2g 4.6. Az áramlás jellege [19] Az áramlás jellegét a Reynolds-szám mutatja meg, amely egy mértékegység nélküli viszonyszám. A Reynolds-szám az áramlások hasonlósági kritériuma. A csőben létrejövő áramlás a Reynolds-szám értékétől függően lamináris (réteges), valamint turbulens (gomolygó) lehet. Az áramlás jellegét a 19. ábra mutatja. 19. ábra: Az áramlás jellege a) lamináris áramlás b) turbulens áramlás (Forrás: W. Bohl: Műszaki áramlástan, Műszaki Könyvkiadó, Budapest, 1983) 32

41 Különböző folyadékokkal és csőátmérőkkel elvégzett kísérletek eredményeként adódott az általános érvényű Reynolds-egyenlet. Ennek alapján számítható a Reynolds-szám, amely megmutatja az áramlás jellegét: ahol: v - a folyadék áramlási sebessége [m/s] d - a csővezeték belső átmérője [m] Re = v d ϑ θ - a folyadék kinematikai viszkozitása [m 2 /s] Lamináris áramlás A lamináris áramlás során a folyadékrészecskék nem keverednek össze, csak a cső tengelyével párhuzamos áramvonalak mentén mozognak. A tapasztalat azt mutatja, hogy azonos átmérőjű és hosszúságú, azonban különböző belső felületi feszültségű csövekben a csősúrlódási veszteség független az érdességtől. Ha a Reynolds-szám értéke kisebb, az úgynevezett kritikus Reynolds-számnál (Re krit = 2320), akkor az áramlás lamináris. Lamináris áramlás Re < 2320 Turbulens áramlás A turbulens áramlás során a folyadékrészecskék a cső tengelyével párhuzamosan és arra merőlegesen is elmozdulnak. A sebességnek az időben gyorsan változó merőleges összetevői a közeg folyadékrészecskéinek állandó keveredését okozza. A súrlódási veszteség rendszerint függ a csőfal érdességétől is. Ha a Reynolds-szám értéke nagyobb, az úgynevezett kritikus Reynolds-számnál (Re krit = 2320), akkor az áramlás turbulens. Turbulens áramlás Re >

42 5. Hőszigetelés A hőszigetelés-technika a hőtan részterülete, a hőátvitellel foglalkozik. A hőszigetelés célja, hogy az energiaveszteségeket optimális értékre csökkentse, azáltal, hogy a lehető legnagyobb ellenállást helyezi a hőátvitel útjába. Két eltérő hőmérsékletű test között mindig van hőcsere, amelyet csökkenteni lehet más anyagokból készült rétegek közbeiktatásával. A termikus energia áramlásának maximális meggátolása nem lehetséges, az mindig a hőmérsékletcsökkenés irányába áramlik. A hőszigetelt berendezéseknél a hőátvitelben az alábbi tényezők vesznek részt - a hőleadó test, - a hőszigetelő anyag, - a hőfelvevő test. A hőcsere mechanizmusa három részből áll: - hőátadás a hőhordozóból a belső falfelületre, - hővezetés a fal belső felületéről a fal külső felületéig, - hőátadás a fal külső felületéről a környező levegőbe. A hőátvitel vezetéssel, kovekcióval és sugárzással mehet végbe általában egyidejűleg. A hőátvitel mindhárom formája létrejön a szigetelőanyagban is, és ott ez hővezetés. Hővezetés: Hővezetéskor a termikus energiát szilárd, folyékony vagy gáznemű anyagok részecskéinek közvetlen érintkezése szállítja, az elemi részecskék helyváltoztató elmozdulása nélkül. Hőáramlás: egyidejű energia- és tömegáramlást jelent. A hő a fluidum makroszkópikus részeinek áramlása, helyváltoztató mozgása következtében terjed. Hősugárzás: Az energia átvitele elektromágneses hullámok alakjában az egyik testről a másikra a hősugarakat átengedő közegen keresztül történik. [20] 34

43 5.1. Hővezetés Minden test bizonyos ellenállást fejt ki a hő terjedésével szemben, azonban a hőszigetelő anyagoknak van a hővezetéssel szemben a legnagyobb ellenállásuk. Hővezetés vagy más néven kondukció során a hőenergia a hidegebb helyről a melegebb helyre az elemi részecskék helyváltoztató elmozdulása nélkül adódik át. A hőmérsékletnek egy adott test különböző pontjaiban fennálló különbsége elengedhetetlen feltétele a hővezetéssel történő hőátadásnak. Ezáltal a hővezetéssel keletkező hőáram nagysága a testben a hőmérséklet eloszlástól, vagyis a hőmérséklet tér jellegétől függ. Homogén és izotróp közeg t hőmérséklete rendszerint térben és időben változik, tehát a hőmérséklet az adott pont helyzetének és az időnek a függvénye. A hővezetés tapasztalati egyenlete Fourier I. Ha egy fal anyaga homogén, vastagsága állandó, és mérete olyan, hogy a vizsgált felületen (F) a hőáramlással csak a falra merőlegesen mehet végbe, akkor állandósult állapotban az átáramló hőmennyiség arányos a hőmérséklet gradienssel. ahol: dq = λ F dt dx dτ Q az átadott hőmennyiség [Ws] λ a hővezető képesség [W/(mK), J/(msK)] dt/dx az x irányú hőmérséklet esés [K/m] F- keresztmetszet [m 2 ] Stacioner esetben: dq = λ dt dx A hővezetési tényező (λ) azt a hőmennyiséget jelenti, amely 1m vastag anyagréteg 1 m 2 felületén 1s alatt áramlik át, ha a hőmérsékletkülönbség 1 K. A hővezetési tényező hőmérsékletfüggő anyagi jellemző. Számításoknál hőtani táblázatokból kell felvenni a hővezetési tényező hőmérséklethez rendelt értékét. Tapasztalati számításoknál a kezdeti (t 1 ) és végállapotok (t 2 ) megfelelő értékeihez kikeresett λ i értékek súlyozott átlagát kell figyelembe venni. [21,22] 35

44 A hővezetés differenciálegyenlete Fourier II. [21, 22] A térben és időben kialakuló hőmérsékletváltozás között a Fourier-törvény, valamint a termodinamika első és második főtétele alapján létrejövő kapcsolat. Ez a kapcsolat a hővezetés differenciál egyenletével írható le, amely alkalmas egy térben és időben változó hőmérsékletmező definiálására. Feltételezzük, hogy az elemi térfogatú zárt térbe csak x irányú érkező és távozó energiák legyenek, valamint az anyag izotróp és homogén. Az energiamérleg a következőképpen írható fel: dq bevx = λ dy dz t x dτ dq kivx = λ dy dz t x dτ λ dy dz x ( t ) dx dτ x A homogén anyagú térelembe dτ idő alatt bevezett hőáram a dq bevx, a kivezetett hőáram pedig a dq kivx. A vizsgált térben a be- és kilépő hőáram marad: dq ter = dx dy dz ρ c t τ τ dq bevx dq kivx = λ dy dz x ( t t ) dx dτ = dx dy dz ρ c x τ dτ λ 2 t x 2 = ρ c ( t τ ) x A vizsgált térben maradó energia három irányú vezetés esetén: λ dx dy dz ( 2 t x t y t z 2 ) dτ a térben változatlan formában leírható hőáram változásához vezet: dq bevx dq kivx = dx dy dz ρ c t τ dτ A két egyenletből felírható: λ ( 2 t x t y t t z2) = ρ c τ α = λ ρ c α 2 t = t τ 36

45 6. Kísérleti rész 6.1. A szivattyú kiválasztása A szállítandó közeg (APG 70) szivattyúzásához GHA2NK3-B típusú szivattyút választottam a Gorman- Rupp Pumps katalógusból. A szivattyút az alapján választottam, hogy alkalmas-e nagy viszkozitású folyadék szállítására. A 20. ábrán a GHA2NK3-B típusú fogaskerék-szivattyú látható. 20. ábra: GHA2NK3-B típusú fogaskerék-szivattyú (Forrás: Gorman-Rupp: GHA Series Extreme Duty Abrasive G, J, N, R & S HYD Size Rotary Gear Pumps, January 2010) GHA2NK3-B típusú fogaskerék-szivattyú tulajdonságai: - keményített, edzett kopásálló fogazás, kötőelemek, ház, vezérlőegység - kopásálló tömítés - nagyméretű kúpos tömítések az üreges részeken - nagy teherbírású kúpgörgős csapágyazás - külsőleg állítható rotorvég - rugalmas technológiai kialakítás a különböző iparágak számára - golyós csapágyazás terhelési ellenőrzése Működési tartomány: Kapacitás: Nyomás: Viszkozitás: Hőmérséklet: GPM; LMP PSI; 0 14 Bar ,000 SSU; 1 55,000 cst C; F 37

46 Alkalmazási terület: Használható különböző folyékony anyagok esetén, amelyek az öntöttvas házra nem jelentenek veszélyt: pl. festékek, tinta, ragasztó anyagok, emúlziók.[23] A 21. ábrán a választott GHA2NK3-B típusú fogaskerék-szivattyú jelleggörbéje: 21. ábra: GHA2NK3-B típusú fogaskerék-szivattyú jelleggörbéje (Forrás: Gorman-Rupp: GHA Series Extreme Duty Abrasive G, J, N, R & S HYD Size Rotary Gear Pumps, January 2010) 38

7.4. Tömény szuszpenziók vizsgálata

7.4. Tömény szuszpenziók vizsgálata ahol t a szuszpenzió, t o a diszperzióközeg kifolyási ideje, k a szuszpenzió, k o pedig a diszperzióközeg sárásége. Kis szuszpenziókoncentrációnál a sáráségek hányadosa elhanyagolható. A mérési eredményeket

Részletesebben

Mosószerek a 21. században Alkímia ma előadássorozat

Mosószerek a 21. században Alkímia ma előadássorozat Mosószerek a 21. században Alkímia ma előadássorozat Mészáros Róbert Eötvös Loránd Tudományegyetem, Kémiai Intézet vi. Bevezetés Tematika vii. A mosási mechanizmus főbb lépései viii. Mosószer komponesekés

Részletesebben

A kén tartalmú vegyületeket lúggal főzve szulfid ionok keletkeznek, amelyek az Pb(II) ionokkal a korábban tanultak szerint fekete csapadékot adnak.

A kén tartalmú vegyületeket lúggal főzve szulfid ionok keletkeznek, amelyek az Pb(II) ionokkal a korábban tanultak szerint fekete csapadékot adnak. Egy homokot tartalmazó tál tetejére teszünk a pépből egy kanállal majd meggyújtjuk az alkoholt. Az alkohol égésekor keletkező hőtől mind a cukor, mind a szódabikarbóna bomlani kezd. Az előbbiből szén az

Részletesebben

Az oldott oxigén mérés módszereinek, eszközeinek tanulmányozása

Az oldott oxigén mérés módszereinek, eszközeinek tanulmányozása Környezet minősítése gyakorlat 1 Az oldott oxigén mérés módszereinek, eszközeinek tanulmányozása Amint azt tudjuk az oldott oxigéntartalom (DO) nagy jelentőségű a felszíni vizek és néhány esetben a szennyvizek

Részletesebben

Kuti Rajmund. A víz tűzoltói felhasználhatóságának lehetőségei, korlátai

Kuti Rajmund. A víz tűzoltói felhasználhatóságának lehetőségei, korlátai Kuti Rajmund A víz tűzoltói felhasználhatóságának lehetőségei, korlátai A tűzoltóság a bevetések 90%-ban ivóvizet használ tűzoltásra, s a legtöbb esetben a kiépített vezetékes hálózatból kerül a tűzoltó

Részletesebben

ÚJ ELJÁRÁS KATONAI IMPREGNÁLT SZENEK ELŐÁLLÍTÁSÁRA

ÚJ ELJÁRÁS KATONAI IMPREGNÁLT SZENEK ELŐÁLLÍTÁSÁRA III. Évfolyam 2. szám - 2008. június Halász László Zrínyi Miklós Nemzetvédelmi Egyetem, egyetemi tanár halasz.laszlo@zmne.hu Vincze Árpád Zrínyi Miklós Nemzetvédelmi Egyetem, egyetemi docens vincze.arpad@zmne.hu

Részletesebben

A VÍZ OLDOTT SZENNYEZŐANYAG-TARTALMÁNAK ELTÁVOLÍTÁSA IONCSERÉVEL

A VÍZ OLDOTT SZENNYEZŐANYAG-TARTALMÁNAK ELTÁVOLÍTÁSA IONCSERÉVEL A VÍZ OLDOTT SZENNYEZŐANYAG-TARTALMÁNAK ELTÁVOLÍTÁSA IONCSERÉVEL ELTE Szerves Kémiai Tanszék A VÍZ OLDOTT SZENNYEZŐANYAG -TARTALMÁNAK ELTÁVOLÍTÁSA IONCSERÉVEL Bevezetés A természetes vizeket (felszíni

Részletesebben

ÖNSZERVEZŐDŐ AMFIFILIKUS OLIGOMEREK

ÖNSZERVEZŐDŐ AMFIFILIKUS OLIGOMEREK Természettudományi és Technológiai Kar ÖNSZERVEZŐDŐ AMFIFILIKUS LIGMEREK doktori (PhD) értekezés Szöllősi László Zsolt Témavezető: Dr. Zsuga Miklós egyetemi tanár a kémia tudomány doktora Debreceni Egyetem

Részletesebben

(11) Lajstromszám: E 007 800 (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA

(11) Lajstromszám: E 007 800 (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA !HU000007800T2! (19) HU (11) Lajstromszám: E 007 800 (13) T2 MAGYAR KÖZTÁRSASÁG Magyar Szabadalmi Hivatal EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA (21) Magyar ügyszám: E 0 787403 (22) A bejelentés napja:

Részletesebben

I. Atomszerkezeti ismeretek (9. Mozaik Tankönyv:10-30. oldal) 1. Részletezze az atom felépítését!

I. Atomszerkezeti ismeretek (9. Mozaik Tankönyv:10-30. oldal) 1. Részletezze az atom felépítését! I. Atomszerkezeti ismeretek (9. Mozaik Tankönyv:10-30. oldal) 1. Részletezze az atom felépítését! Az atom az anyagok legkisebb, kémiai módszerekkel tovább már nem bontható része. Az atomok atommagból és

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2016. május 13. KÉMIA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2016. május 13. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Kémia

Részletesebben

A tételsor a 12/2013. (III. 28.) NGM rendeletben foglalt szakképesítés szakmai és vizsgakövetelménye alapján készült. 2/43

A tételsor a 12/2013. (III. 28.) NGM rendeletben foglalt szakképesítés szakmai és vizsgakövetelménye alapján készült. 2/43 A vizsgafeladat ismertetése: Vegyipari technikus és vegyianyaggyártó szakképesítést szerzőknek Ismerteti a vegyipari technológiák anyag és energia ellátását. Bemutatja a vegyiparban szükséges fontosabb

Részletesebben

MTA DOKTORI ÉRTEKEZÉS

MTA DOKTORI ÉRTEKEZÉS MTA DOKTORI ÉRTEKEZÉS ELLENTÉTES TÖLTÉSŐ POLIELEKTROLITOK ÉS TENZIDEK ASSZOCIÁCIÓJA Mészáros Róbert Eötvös Loránd Tudományegyetem Kémiai Intézet Budapest, 2009. december Köszönetnyilvánítás Ezúton szeretném

Részletesebben

m n 3. Elem, vegyület, keverék, koncentráció, hígítás m M = n Mértékegysége: g / mol elem: azonos rendszámú atomokból épül fel

m n 3. Elem, vegyület, keverék, koncentráció, hígítás m M = n Mértékegysége: g / mol elem: azonos rendszámú atomokból épül fel 3. Elem, vegyület, keverék, koncentráció, hígítás elem: azonos rendszámú atomokból épül fel vegyület: olyan anyag, amelyet két vagy több különbözı kémiai elem meghatározott arányban alkot, az alkotóelemek

Részletesebben

Környezettechnológia. Dr. Kardos Levente adjunktus Budapesti Corvinus Egyetem Talajtan és Vízgazdálkodás Tanszék

Környezettechnológia. Dr. Kardos Levente adjunktus Budapesti Corvinus Egyetem Talajtan és Vízgazdálkodás Tanszék Környezettechnológia Dr. Kardos Levente adjunktus Budapesti Corvinus Egyetem Talajtan és Vízgazdálkodás Tanszék Szennyvíz Minden olyan víz, ami valamilyen módon felhasználásra került. Hulladéktörvény szerint:

Részletesebben

A fém kezelésének optimalizálása zománcozás eltt. Dr. Reiner Dickbreder, KIESOV GmbH EMAIL Mitteilungen, 2005/3

A fém kezelésének optimalizálása zománcozás eltt. Dr. Reiner Dickbreder, KIESOV GmbH EMAIL Mitteilungen, 2005/3 A fém kezelésének optimalizálása zománcozás eltt. Dr. Reiner Dickbreder, KIESOV GmbH EMAIL Mitteilungen, 2005/3 (Fordította: Dr. Való Magdolna) A zománcozás eltti elkezelés egy igen fontos folyamat. A

Részletesebben

AMMÓNIA TARTALMÚ IPARI SZENNYVÍZ KEZELÉSE

AMMÓNIA TARTALMÚ IPARI SZENNYVÍZ KEZELÉSE AMMÓNIA TARTALMÚ IPARI SZENNYVÍZ KEZELÉSE Dr. Takács János egyetemi docens Miskolci Egyetem Nyersanyagelőkészítési és Környezeti Eljárástechnikai Intézet 1. BEVEZETÉS Számos ipari szennyvíz nagy mennyiségű

Részletesebben

Kazánok. Hőigények csoportosítása és jellemzőik. Hőhordozó közegek, jellemzőik és főbb alkalmazási területeik

Kazánok. Hőigények csoportosítása és jellemzőik. Hőhordozó közegek, jellemzőik és főbb alkalmazási területeik Kazánok Kazánnak nevezzük azt a berendezést, amely tüzelőanyag oxidációjával, vagyis elégetésével felszabadítja a tüzelőanyag kötött kémiai energiáját, és a keletkezett hőt hőhordozó közeg felmelegítésével

Részletesebben

A víz fizikai, kémiai tulajdonságai, felhasználhatóságának korlátai

A víz fizikai, kémiai tulajdonságai, felhasználhatóságának korlátai Kuti Rajmund Szakál Tamás Szakál Pál A víz fizikai, kémiai tulajdonságai, felhasználhatóságának korlátai Bevezetés Az utóbbi tíz évben a klímaváltozás és a globális civilizációs hatások következtében Földünk

Részletesebben

HULLADÉKGAZDÁLKODÁS IV. A vegyipar hulladékai, kezelésük és hasznosításuk

HULLADÉKGAZDÁLKODÁS IV. A vegyipar hulladékai, kezelésük és hasznosításuk HULLADÉKGAZDÁLKODÁS IV. A vegyipar hulladékai, kezelésük és hasznosításuk Előadás anyag nappali tagozatos Környezetmérnöki MSc szakos hallgatóknak Készítette: Dr. Bodnár Ildikó, főiskolai tanár 2013. 1

Részletesebben

GÉPJAVÍTÁS IV. SEGÉDLET

GÉPJAVÍTÁS IV. SEGÉDLET Dr. Fazekas Lajos főiskolai docens GÉPJAVÍTÁS IV. SEGÉDLET T A R T A L O M J E G Y Z É K ELŐSZÓ... 3 1. Selectron-eljárás... 4 1.1. Az eljárás módszer szerinti alapváltozatai a következők... 4 1.1.1. Vékony

Részletesebben

KÉMIA 10. Osztály I. FORDULÓ

KÉMIA 10. Osztály I. FORDULÓ KÉMIA 10. Osztály I. FORDULÓ 1) A rejtvény egy híres ember nevét és halálának évszámát rejti. Nevét megtudod, ha a részmegoldások betűit a számozott négyzetekbe írod, halálának évszámát pedig pici számolással.

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2013. október 22. KÉMIA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2013. október 22. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Részletesebben

Légszennyezés. Légkör kialakulása. Őslégkör. Csekély gravitáció. Gázok elszöktek Föld légkör nélkül maradt 2014.11.13.

Légszennyezés. Légkör kialakulása. Őslégkör. Csekély gravitáció. Gázok elszöktek Föld légkör nélkül maradt 2014.11.13. BME -Vízi Közmű és Környezetmérnöki Tanszék Légszennyezés VÁROSI KÖRNYEZETVÉDELEM 2012 Horváth Adrienn Légkör kialakulása Őslégkör Hidrogén + Hélium Csekély gravitáció Gázok elszöktek Föld légkör nélkül

Részletesebben

Tisztító- és fertőtlenítőszerek

Tisztító- és fertőtlenítőszerek Tisztító- és fertőtlenítőszerek Tisztítószerek A szennyező anyagok eltávolítására felhasznált vegyszerek. Követelmények: hideg, illetve meleg vízben maradéktalanul oldódjék, oldja és lazítsa fel az eltávolítandó

Részletesebben

VONÓELEMES HAJTÁSOK (Vázlat)

VONÓELEMES HAJTÁSOK (Vázlat) VONÓELEMES HAJTÁSOK (Vázlat) Hajtások csoportosítása Közvetlen kapcsolatú Közvetítőelemes Erővel záró hajtások Dörzskerékhajtás Szíjhajtás (laposszíj, ékszíj) Alakkal záró hajtások Fogaskerékhajtás Lánchajtás,

Részletesebben

Felületi feszültség és viszkozitás mérése. I. Felületi feszültség mérése. Felületi feszültség mérés és viszkozimetria 2. Fizikai kémia gyakorlat 1

Felületi feszültség és viszkozitás mérése. I. Felületi feszültség mérése. Felületi feszültség mérés és viszkozimetria 2. Fizikai kémia gyakorlat 1 Fizikai kémia gyakorlat 1 Felületi feszültség mérés és viszkozimetria 2 I. Felületi feszültség mérése 1. Bevezetés Felületi feszültség és viszkozitás mérése A felületi feszültség fázisok határfelületén

Részletesebben

Kémia emelt szintű érettségi írásbeli vizsga ELEMZÉS (BARANYA) ÉS AJÁNLÁS KÉSZÍTETTE: NAGY MÁRIA

Kémia emelt szintű érettségi írásbeli vizsga ELEMZÉS (BARANYA) ÉS AJÁNLÁS KÉSZÍTETTE: NAGY MÁRIA Kémia emelt szintű érettségi írásbeli vizsga ELEMZÉS (BARANYA) ÉS AJÁNLÁS KÉSZÍTETTE: NAGY MÁRIA Idei gyorsjelentés http://eduline.hu/erettsegi_felveteli/2 015/7/16/Az_elmult_7_ev_legrosszab b_eredmenye_szulet_azozlb

Részletesebben

Elektrokémia. A nemesfém elemek és egymással képzett vegyületeik

Elektrokémia. A nemesfém elemek és egymással képzett vegyületeik Elektrokémia Redoxireakciók: Minden olyan reakciót, amelyben elektron leadás és elektronfelvétel történik, redoxi reakciónak nevezünk. Az elektronleadás és -felvétel egyidejűleg játszódik le. Oxidálószer

Részletesebben

KÖRNYEZETGAZDÁLKODÁS. Vízszennyezés Vízszennyezés elleni védekezés. Összeállította: Dr. Simon László Nyíregyházi Főiskola

KÖRNYEZETGAZDÁLKODÁS. Vízszennyezés Vízszennyezés elleni védekezés. Összeállította: Dr. Simon László Nyíregyházi Főiskola KÖRNYEZETGAZDÁLKODÁS Vízszennyezés Vízszennyezés elleni védekezés Összeállította: Dr. Simon László Nyíregyházi Főiskola Vízszennyezés Vízszennyezés minden olyan emberi tevékenység, illetve anyag, amely

Részletesebben

(11) Lajstromszám: E 008 195 (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA

(11) Lajstromszám: E 008 195 (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA !HU00000819T2! (19) HU (11) Lajstromszám: E 008 19 (13) T2 MAGYAR KÖZTÁRSASÁG Magyar Szabadalmi Hivatal EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA (21) Magyar ügyszám: E 07 727742 (22) A bejelentés napja:

Részletesebben

Hidrogén előállítása tejcukor folyamatos erjesztésével

Hidrogén előállítása tejcukor folyamatos erjesztésével BME OMIKK ENERGIAELLÁTÁS, ENERGIATAKARÉKOSSÁG VILÁGSZERTE 44. k. 4. sz. 25. p. 36 43. Energiatermelés, -átalakítás, -szállítás és -szolgáltatás Hidrogén előállítása tejcukor folyamatos erjesztésével A

Részletesebben

Kémiai és fizikai kémiai ismeretek és számítások

Kémiai és fizikai kémiai ismeretek és számítások Kémiai és fizikai kémiai ismeretek és számítások 1. A) A hidrogén és vegyületei a hidrogén atomszerkezete, molekulaszerkezete, izotópjai színe, halmazállapota, oldhatósága, sűrűsége reakciója halogénekkel,

Részletesebben

IX. Szénhidrátok - (Polihidroxi-aldehidek és ketonok)

IX. Szénhidrátok - (Polihidroxi-aldehidek és ketonok) IX Szénhidrátok - (Polihidroxi-aldehidek és ketonok) A szénhidrátok polihidroxi-aldehidek, polihidroxi-ketonok vagy olyan vegyületek, amelyek hidrolízisekor az előbbi vegyületek keletkeznek Növényi és

Részletesebben

A kémiai egyensúlyi rendszerek

A kémiai egyensúlyi rendszerek A kémiai egyensúlyi rendszerek HenryLouis Le Chatelier (1850196) Karl Ferdinand Braun (18501918) A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 011 A kémiai egyensúly A kémiai egyensúlyok

Részletesebben

KONDUKTOMETRIÁS MÉRÉSEK

KONDUKTOMETRIÁS MÉRÉSEK A környezetvédelem analitikája KON KONDUKTOMETRIÁS MÉRÉSEK A GYAKORLAT CÉLJA: A konduktometria alapjainak megismerése. Elektrolitoldatok vezetőképességének vizsgálata. Oxálsav titrálása N-metil-glükamin

Részletesebben

ALULEGYENSÚLYOZOTT FÚRÁSI TECHNOLÓGIA FOLYADÉKAINAK VIZSGÁLATA

ALULEGYENSÚLYOZOTT FÚRÁSI TECHNOLÓGIA FOLYADÉKAINAK VIZSGÁLATA MIKOVINY SÁMUEL FÖLDTUDOMÁNYI DOKTORI ISKOLA A doktori iskola vezetője: Dr. h.c. mult. Dr. Kovács Ferenc akadémikus ALULEGYENSÚLYOZOTT FÚRÁSI TECHNOLÓGIA FOLYADÉKAINAK VIZSGÁLATA Doktori értekezés PhD

Részletesebben

(11) Lajstromszám: E 003 985 (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA. 1. ábra

(11) Lajstromszám: E 003 985 (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA. 1. ábra !HU00000398T2! (19) HU (11) Lajstromszám: E 003 98 (13) T2 MAGYAR KÖZTÁRSASÁG Magyar Szabadalmi Hivatal EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA (21) Magyar ügyszám: E 04 764184 (22) A bejelentés napja:

Részletesebben

2012/4. Pannon Egyetem, MOL Ásványolaj- és Széntechnológiai Intézeti Tanszék, Veszprém RONCSOLÁSMENTES VIZSGÁLATTECHNIKA

2012/4. Pannon Egyetem, MOL Ásványolaj- és Széntechnológiai Intézeti Tanszék, Veszprém RONCSOLÁSMENTES VIZSGÁLATTECHNIKA RONCSOLÁSMENTES VIZSGÁLATTECHNIKA NDT TECHNICS TENZIDEK VÍZBEN VALÓ RÉSZLEGES OLDHATÓSÁGÁNAK JELLEMZÉSE SZÁLOPTIKÁS SPEKTROFOTOMÉTERREL CHARACTERIZING OF WATER PARTIAL SOLUBILITY OF TENZIDES BY SPECTROPHOTOMETER

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2016. május 13. KÉMIA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2016. május 13. 8:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Kémia

Részletesebben

ÖSSZEFOGLALÓ. I. Áttekintés

ÖSSZEFOGLALÓ. I. Áttekintés ÖSSZEFOGLALÓ A nagy mennyiségű szervetlen vegyi anyagok (ammónia, savak és műtrágyák) gyártása számára elérhető legjobb technikákról (Best Available Techniques, BAT) szóló referenciadokumentum (BREF) a

Részletesebben

3. változat. 2. Melyik megállapítás helyes: Az egyik gáz másikhoz viszonyított sűrűsége nem más,

3. változat. 2. Melyik megállapítás helyes: Az egyik gáz másikhoz viszonyított sűrűsége nem más, 3. változat z 1-től 16-ig terjedő feladatokban négy válaszlehetőség van, amelyek közül csak egy helyes. Válaszd ki a helyes választ és jelöld be a válaszlapon! 1. Jelöld meg az egyszerű anyagok számát

Részletesebben

Környezettechnológia. Dr. Kardos Levente adjunktus Budapesti Corvinus Egyetem Talajtan és Vízgazdálkodás Tanszék

Környezettechnológia. Dr. Kardos Levente adjunktus Budapesti Corvinus Egyetem Talajtan és Vízgazdálkodás Tanszék Környezettechnológia Dr. Kardos Levente adjunktus Budapesti Corvinus Egyetem Talajtan és Vízgazdálkodás Tanszék A SZENNYEZÉS ELVÁLASZTÁSA, KONCENTRÁLÁSA FIZIKAI MÓDSZERREL B) Molekuláris elválasztási (anyagátadási)

Részletesebben

MAGYAR RÉZPIACI KÖZPONT. 1241 Budapest, Pf. 62 Telefon 317-2421, Fax 266-6794 e-mail: hcpc.bp@euroweb.hu

MAGYAR RÉZPIACI KÖZPONT. 1241 Budapest, Pf. 62 Telefon 317-2421, Fax 266-6794 e-mail: hcpc.bp@euroweb.hu MAGYAR RÉZPIACI KÖZPONT 1241 Budapest, Pf. 62 Telefon 317-2421, Fax 266-6794 e-mail: hcpc.bp@euroweb.hu Tartalom 1. A villamos csatlakozások és érintkezôk fajtái............................5 2. Az érintkezések

Részletesebben

A XVII. VegyÉSZtorna I. fordulójának feladatai és megoldásai

A XVII. VegyÉSZtorna I. fordulójának feladatai és megoldásai Megoldások: 1. Mekkora a ph-ja annak a sósavoldatnak, amelyben a kloridion koncentrációja 0,01 mol/dm 3? (ph =?,??) A sósav a hidrogén-klorid (HCl) vizes oldata, amelyben a HCl teljesen disszociál, mivel

Részletesebben

Többkomponensű rendszerek I.

Többkomponensű rendszerek I. Többkomponensű rendszerek I. Műszaki kémia, Anyagtan I. 9. előadás Dolgosné dr. Kovács Anita egy.doc. PTE MIK Környezetmérnöki Tanszék Többkomponensű rendszerek Folytonos közegben (diszpergáló, ágyazó

Részletesebben

KOLLOIDOK KÖRÜLÖTTÜNK ÖTLETEK A KOLLOIDOK TANÍTÁSÁHOZ COLLOIDS IN OUR ENVIRONMENT IDEAS FOR TEACHING COLLOIDS

KOLLOIDOK KÖRÜLÖTTÜNK ÖTLETEK A KOLLOIDOK TANÍTÁSÁHOZ COLLOIDS IN OUR ENVIRONMENT IDEAS FOR TEACHING COLLOIDS KOLLOIDOK KÖRÜLÖTTÜNK ÖTLETEK A KOLLOIDOK TANÍTÁSÁHOZ COLLOIDS IN OUR ENVIRONMENT IDEAS FOR TEACHING COLLOIDS Szakmány Csaba Premontrei Szent Norbert Gimnázium, Egyházzenei Szakközépiskola és Diákotthon,

Részletesebben

NÖVÉNYI HATÓANYAGOK KINYERÉSE SZUPERKRITIKUS EXTRAKCIÓVAL

NÖVÉNYI HATÓANYAGOK KINYERÉSE SZUPERKRITIKUS EXTRAKCIÓVAL NÖVÉNYI HATÓANYAGOK KINYERÉSE SZUPERKRITIKUS EXTRAKCIÓVAL Ph.D. értekezés Készítette: Témavezetõ: Csordásné Rónyai Erika Dr. Simándi Béla egyetemi docens Budapesti Mûszaki és Gazdaságtudományi Egyetem

Részletesebben

SZERVETLEN KÉMIAI TECHNOLÓGIA

SZERVETLEN KÉMIAI TECHNOLÓGIA SZERVETLEN KÉMIAI TECHNOLÓGIA ANYAGMÉRNÖK ALAPKÉPZÉS VEGYIPARI TECHNOLÓGIAI SZAKIRÁNY TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR KÉMIAI INTÉZET Miskolc, 2012/2013 1 Tartalomjegyzék

Részletesebben

Hogyan válasszunk ventilátort légtechnikai rendszerekhez?

Hogyan válasszunk ventilátort légtechnikai rendszerekhez? Próhászkáné Varga Erzsébet Hogyan válasszunk ventilátort légtechnikai rendszerekhez? A követelménymodul megnevezése: Fluidumszállítás A követelménymodul száma: 699-06 A tartalomelem azonosító száma és

Részletesebben

Biztonsági adatlap Az 1907/2006EK, a 453/2010/EU 1272/2008EK rendelet szerint

Biztonsági adatlap Az 1907/2006EK, a 453/2010/EU 1272/2008EK rendelet szerint Biztonsági adatlap Az 1907/2006EK, a 453/2010/EU 1272/2008EK rendelet szerint A felülvizsgálat és átdolgozás kelte:2013.04.02. 1. AZ ANYAG/KÉSZÍTMÉNY ÉS A TÁRSASÁG/VÁLLALKOZÁS AZONOSÍTÁSA 1.1. Az anyag

Részletesebben

Javítóvizsga. Kalász László ÁMK - Izsó Miklós Általános Iskola Elérhető pont: 235 p

Javítóvizsga. Kalász László ÁMK - Izsó Miklós Általános Iskola Elérhető pont: 235 p Név: Elérhető pont: 5 p Dátum: Elért pont: Javítóvizsga A teszthez tollat használj! Figyelmesen olvasd el a feladatokat! Jó munkát.. Mi a neve az anyag alkotórészeinek? A. részecskék B. összetevők C. picurkák

Részletesebben

6. Zárványtestek feldolgozása

6. Zárványtestek feldolgozása 6. Zárványtestek feldolgozása... 1 6.1. A zárványtestek... 1 6.1.1. A zárványtestek kialakulása... 2 6.1.2. A feldolgozási technológia... 3 6.1.2.1. Sejtfeltárás... 3 6.1.2.2. Centrifugálás, tisztítás...

Részletesebben

Fejezet a Gulyás Méhészet által összeállított Méhészeti tudástár mézfogyasztóknak (2015) ismeretanyagból. A méz. összetétele és élettani hatása

Fejezet a Gulyás Méhészet által összeállított Méhészeti tudástár mézfogyasztóknak (2015) ismeretanyagból. A méz. összetétele és élettani hatása A méz összetétele és élettani hatása A méz a növények nektárjából a méhek által előállított termék. A nektár a növények kiválasztási folyamatai során keletkezik, híg cukortartalmú oldat, amely a méheket

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

MŰANYAGOK FELDOLGOZÁSA

MŰANYAGOK FELDOLGOZÁSA MŰANYAGOK FELDOLGOZÁSA Műanyagok galvanizálása A kétkomponensű fröccsöntött kemény-lágy formadarabok szelektív galvanizálására a jelenleginél egyszerűbb és olcsóbb eljárást fejlesztettek ki egy új elasztomer

Részletesebben

b./ Hány gramm szénatomban van ugyanannyi proton, mint 8g oxigénatomban? Hogyan jelöljük ezeket az anyagokat? Egyforma-e minden atom a 8g szénben?

b./ Hány gramm szénatomban van ugyanannyi proton, mint 8g oxigénatomban? Hogyan jelöljük ezeket az anyagokat? Egyforma-e minden atom a 8g szénben? 1. Az atommag. a./ Az atommag és az atom méretének, tömegének és töltésének összehasonlítása, a nukleonok jellemzése, rendszám, tömegszám, izotópok, nuklidok, jelölések. b./ Jelöld a Ca atom 20 neutront

Részletesebben

(11) Lajstromszám: E 006 819 (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA

(11) Lajstromszám: E 006 819 (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA !HU000006819T2! (19) HU (11) Lajstromszám: E 006 819 (13) T2 MAGYAR KÖZTÁRSASÁG Magyar Szabadalmi Hivatal EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA (21) Magyar ügyszám: E 04 7669 (22) A bejelentés napja:

Részletesebben

SZERVETLEN KÉMIAI TECHNOLÓGIA

SZERVETLEN KÉMIAI TECHNOLÓGIA SZERVETLEN KÉMIAI TECHNOLÓGIA ANYAGMÉRNÖK BSC ALAPKÉPZÉS VEGYIPARI TECHNOLÓGIAI MODUL (levelező munkarendben) TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR KÉMIAI INTÉZET

Részletesebben

Greenchem program. viaszos észterek mint a fabevonatok alapanyaga

Greenchem program. viaszos észterek mint a fabevonatok alapanyaga Greenchem program viaszos észterek mint a fabevonatok alapanyaga Naložba v vašo prihodnost Operacijo delno financira Evropska unija Evropski sklad za regionalni razvoj Befektetés a jövőbe A projekt az

Részletesebben

1. Asszociációs kolloidok

1. Asszociációs kolloidok 1. Asszociációs kolloidok Az asszociációs kolloidok molekulái aszimmetrikus (un. amfipatikus) felépítésőek. Ezek a poláris fıcsoportot és apoláris molekularészt (8-nál nagyobb szénatomszámú alkil láncot)

Részletesebben

FÜZESABONY VÁROS TELEPÜLÉSFEJLESZTÉSI KONCEPCIÓJA

FÜZESABONY VÁROS TELEPÜLÉSFEJLESZTÉSI KONCEPCIÓJA FÜZESABONY VÁROS TELEPÜLÉSFEJLESZTÉSI KONCEPCIÓJA 2015 Észak-Magyarországi Operatív Program Fenntartható településfejlesztés a kis- és középvárosokban Integrált Településfejlesztési Stratégiák kidolgozása

Részletesebben

AZ ÉGÉSGÁTLÁS KÖRNYEZETI HATÁSAINAK VIZSGÁLATA

AZ ÉGÉSGÁTLÁS KÖRNYEZETI HATÁSAINAK VIZSGÁLATA Bevezető AZ ÉGÉSGÁTLÁS KÖRNYEZETI HATÁSAINAK VIZSGÁLATA A műanyagok felhasználási területe egyre bővül, így mennyiségük is rohamosan növekszik. Elhasználódás után csekély hányaduk kerül csak újrahasznosításra,

Részletesebben

BUDAPESTI MŰSZAKI EGYETEM Anyagtudomány és Technológia Tanszék. Hőkezelés 2. (PhD) féléves házi feladat. Acélok cementálása. Thiele Ádám WTOSJ2

BUDAPESTI MŰSZAKI EGYETEM Anyagtudomány és Technológia Tanszék. Hőkezelés 2. (PhD) féléves házi feladat. Acélok cementálása. Thiele Ádám WTOSJ2 BUDAPESTI MŰSZAKI EGYETEM Anyagtudomány és Technológia Tanszék Hőkezelés. (PhD) féléves házi feladat Acélok cementálása Thiele Ádám WTOSJ Budaest, 11 Tartalomjegyzék 1. A termokémiai kezeléseknél lejátszódó

Részletesebben

(11) Lajstromszám: E 007 328 (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA

(11) Lajstromszám: E 007 328 (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA !HU000007328T2! (19) HU (11) Lajstromszám: E 007 328 (13) T2 MAGYAR KÖZTÁRSASÁG Magyar Szabadalmi Hivatal EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA (21) Magyar ügyszám: E 04 797669 (22) A bejelentés napja:

Részletesebben

O k t a t á si Hivatal

O k t a t á si Hivatal O k t a t á si Hivatal A versenyző kódszáma: 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny második forduló KÉMIA I. kategória FELADATLAP Munkaidő: 300 perc Elérhető pontszám: 100 pont ÚTMUTATÓ

Részletesebben

A tételekhez segédeszköz nem használható.

A tételekhez segédeszköz nem használható. A vizsgafeladat ismertetése: Környezetvédelemmel, biztonságtechnikával, tűzvédelemmel, egészségvédelemmel, kel kapcsolatos legfontosabb jogszabályok, utasítások alapfogalmak, dokumentációk és eljárások

Részletesebben

MUNKAANYAG. Bukovinszky Márta. Otto motorok felépítése és működési elve I. A követelménymodul megnevezése: Gépjárműjavítás I.

MUNKAANYAG. Bukovinszky Márta. Otto motorok felépítése és működési elve I. A követelménymodul megnevezése: Gépjárműjavítás I. Bukovinszky Márta Otto motorok felépítése és működési elve I. A követelménymodul megnevezése: Gépjárműjavítás I. A követelménymodul száma: 0675-06 A tartalomelem azonosító száma és célcsoportja: SzT-001-30

Részletesebben

1. feladat Összesen: 5 pont. 2. feladat Összesen: 30 pont

1. feladat Összesen: 5 pont. 2. feladat Összesen: 30 pont 1. feladat Összesen: 5 pont Írja a felsorolt mutató mellé annak a terméknek a nevét, amelynek jellemzésére szolgál! A) Vízoldható foszfor-pentoxid-tartalom:... B) Hatásszélesség:... C) Cetánszám:... D)

Részletesebben

Biztonsági adatlap Azonosító: 1559. az 1907/2006/EK rendelet szerint Kiadás dátuma: 2008. 04. 04. Oldalszám: 1/5. MEDIKÉMIA Zrt.

Biztonsági adatlap Azonosító: 1559. az 1907/2006/EK rendelet szerint Kiadás dátuma: 2008. 04. 04. Oldalszám: 1/5. MEDIKÉMIA Zrt. Kiadás dátuma: 2008. 04. 04. Oldalszám: 1/5 1. A készítmény és a társaság azonosítása 1.1. A készítmény azonosítása: PRELIX Autoglykol 72 C koncentrátum 1.2. A készítmény felhasználása: fagyálló hűtőfolyadék

Részletesebben

(11) Lajstromszám: E 005 510 (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA

(11) Lajstromszám: E 005 510 (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA !HU0000010T2! (19) HU (11) Lajstromszám: E 00 10 (13) T2 MAGYAR KÖZTÁRSASÁG Magyar Szabadalmi Hivatal EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA (21) Magyar ügyszám: E 04 769233 (22) A bejelentés napja: 2004.

Részletesebben

Síkkromatográfia. Kapacitásaránynak (kapacitási tényezőnek): a mérendő komponens állófázisában (n S ) és mozgófázisában (n M ) lévő anyagmennyiségei.

Síkkromatográfia. Kapacitásaránynak (kapacitási tényezőnek): a mérendő komponens állófázisában (n S ) és mozgófázisában (n M ) lévő anyagmennyiségei. Síkkromatográfia A kromatográfia a többfokozatú, nagyhatékonyságú, dinamikus elválasztási módszerek gyűjtőneve: közös alapjuk az, hogy az elválasztandó komponensek egy állófázis és egy azon, meghatározott

Részletesebben

A Pirolízis Tudásközpont tapasztalatai a hőbontásos technológiák környezeti hatásaival kapcsolatban. Dr. Futó Zoltán

A Pirolízis Tudásközpont tapasztalatai a hőbontásos technológiák környezeti hatásaival kapcsolatban. Dr. Futó Zoltán A Pirolízis Tudásközpont tapasztalatai a hőbontásos technológiák környezeti hatásaival kapcsolatban Dr. Futó Zoltán A pirolízis vizsgálatok fő témakörei Analitikai vizsgálatok Gazdaságossági vizsgálatok

Részletesebben

NEUTRON-DETEKTOROK VIZSGÁLATA. Mérési útmutató BME NTI 1997

NEUTRON-DETEKTOROK VIZSGÁLATA. Mérési útmutató BME NTI 1997 NEUTRON-DETEKTOROK VIZSGÁLATA Mérési útmutató Gyurkócza Csaba, Balázs László BME NTI 1997 Tartalomjegyzék 1. Bevezetés 3. 2. Elméleti összefoglalás 3. 2.1. A neutrondetektoroknál alkalmazható legfontosabb

Részletesebben

KÉMIA A kerettanterv B változata alapján készült A kémia tanításának célja és feladatai

KÉMIA A kerettanterv B változata alapján készült A kémia tanításának célja és feladatai KÉMIA A kerettanterv B változata alapján készült A kémia tanításának célja és feladatai A kémia tanításának célja és feladata, hogy a tanulók fokozatosan sajátítsák el azt a kémiai műveltségtartalmat és

Részletesebben

Sportélettan zsírok. Futónaptár.hu

Sportélettan zsírok. Futónaptár.hu Sportélettan zsírok Futónaptár.hu A hétköznapi ember csak hallgatja azokat a sok okos étkezési tanácsokat, amiket az egészségének megóvása érdekében a kutatók kiderítettek az elmúlt 20 évben. Emlékezhetünk

Részletesebben

Üzemeltetési utasítás

Üzemeltetési utasítás Üzemeltetési utasítás Szántáselmunkáló henger FlexPack - HU - LEMKEN GmbH & Co. KG Weseler Straße 5, D-46519 Alpen Telefon (0 28 02) 81-0, Telefax (0 28 02) 81-220 E-mail: lemken@lemken.com, Internet:

Részletesebben

Titrálás Elmélet és gyakorlat

Titrálás Elmélet és gyakorlat Titrálás Elmélet és gyakorlat A titrálás elmélete Bevezetés Jelen füzet történeti, elméleti és gyakorlati szempontból mutatja be a titrálást; először a végponttitrálással, majd pedig az átcsapási pontos

Részletesebben

- 2 db Erlenmeyer-lombik - 2 db mérőhenger - 2 db tölcsér - labormérleg - szűrőpapír

- 2 db Erlenmeyer-lombik - 2 db mérőhenger - 2 db tölcsér - labormérleg - szűrőpapír 1. A talaj vízmegkötő képességének vizsgálata Kötelező védőeszközök Szükséges eszközök - 2 db Erlenmeyer-lombik - 2 db mérőhenger - 2 db tölcsér - labormérleg - szűrőpapír Szükséges anyagok - talajminták

Részletesebben

(11) Lajstromszám: E 007 802 (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA

(11) Lajstromszám: E 007 802 (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA !HU000007802T2! (19) HU (11) Lajstromszám: E 007 802 (13) T2 MAGYAR KÖZTÁRSASÁG Magyar Szabadalmi Hivatal EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA (21) Magyar ügyszám: E 06 79176 (22) A bejelentés napja:

Részletesebben

Adatfeldolgozó központok energiafelhasználása

Adatfeldolgozó központok energiafelhasználása BME OMIKK ENERGIAELLÁTÁS, ENERGIATAKARÉKOSSÁG VILÁGSZERTE 45. k. 7 8. sz. 2006. p. 81 87. Racionális energiafelhasználás, energiatakarékosság Adatfeldolgozó központok energiafelhasználása Az adatfeldolgozó

Részletesebben

BIZTONSÁGTECHNIKAI ADATLAP Oldalszám 1/1

BIZTONSÁGTECHNIKAI ADATLAP Oldalszám 1/1 BIZTONSÁGTECHNIKAI ADATLAP Oldalszám 1/1 1. A készítmény neve 1. Az anyag/készítmény és a társaság/vállalat azonosítása 1.1. Az anyag vagy a készítmény azonosítása Kereskedelmi elnevezés: 950310 MANNOL

Részletesebben

Tárgyszavak: autógyártás; műszaki követelmények; permeáció; üzemanyag-emisszió; mérési módszer; áteresztés csökkentése.

Tárgyszavak: autógyártás; műszaki követelmények; permeáció; üzemanyag-emisszió; mérési módszer; áteresztés csökkentése. A MÛANYAGOK TULAJDONSÁGAI Tömítések áteresztőképessége Tárgyszavak: autógyártás; műszaki követelmények; permeáció; üzemanyag-emisszió; mérési módszer; áteresztés csökkentése. Szigorodó előírások Áteresztésnek

Részletesebben

Kerámia, üveg és fém-kerámia implantátumok. BME Anyagtudomány és Technológia Tsz.

Kerámia, üveg és fém-kerámia implantátumok. BME Anyagtudomány és Technológia Tsz. Kerámia, üveg és fém-kerámia implantátumok BME Anyagtudomány és Technológia Tsz. Bevezetés A kerámiákat régóta használja az orvostechnika implantátumanyagként, elsõsorban bioinert tulajdonságaik, kopásállóságuk

Részletesebben

A tételhez nem használható segédeszköz.

A tételhez nem használható segédeszköz. A vizsgafeladat ismertetése: Válaszadás a vizsgakövetelmények alapján összeállított, előre kiadott tételsorokból húzott kérdésekre. A szóbeli központilag összeállított vizsgakérdései a 4. Szakmai követelmények

Részletesebben

SZERVES KÉMIA ANYAGMÉRNÖK BSc NAPPALI TÖRZSANYAG MAKKEM 229BL

SZERVES KÉMIA ANYAGMÉRNÖK BSc NAPPALI TÖRZSANYAG MAKKEM 229BL SZERVES KÉMIA ANYAGMÉRNÖK BSc NAPPALI TÖRZSANYAG MAKKEM 229BL TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR KÉMIAI INTÉZET Miskolc, 2011/12. II. félév 1 Tartalomjegyzék 1.

Részletesebben

Alkalmazott kémia. Tantárgy neve Alkalmazott kémia 1.

Alkalmazott kémia. Tantárgy neve Alkalmazott kémia 1. Alkalmazott kémia A tárgy a kémia alapszak (BSC) szakmai törzsanyagának része, melynek teljesítésével két szemeszter alatt 8 kreditet lehet összegyűjteni. Az előadások száma 8. Tantárgy neve Alkalmazott

Részletesebben

TAKÁCS CSABA KÉMIA EMLÉKVERSENY, IX. osztály, III. forduló - megoldás 2010 / 2011 es tanév, XVI. évfolyam 1. a) 2008. dec. 30-án, az ENSZ Közgyűlés 63. ülésszakán Etiópia előterjesztésére határozták el.

Részletesebben

MaxBrillance hideg zsíroldó 5l 2012. szeptember 26. Verzió:1.0 BIZTONSÁGI ADATLAP. MaxBrillance hideg zsíroldó 5l

MaxBrillance hideg zsíroldó 5l 2012. szeptember 26. Verzió:1.0 BIZTONSÁGI ADATLAP. MaxBrillance hideg zsíroldó 5l BIZTONSÁGI ADATLAP MaxBrillance hideg zsíroldó 5l 1. AZ ANYAG/KÉSZÍTMÉNY ÉS A VÁLLALAT/VÁLLALKOZÁS AZONOSÍTÁSA 1.1 A készítmény neve: MaxBrillance hideg zsíroldó 1.2 Rendeltetése: Tisztítószer zsíroldó

Részletesebben

Doktori értekezés KATIONOS POLIELEKTROLITOK ÉS ANIONOS TENZIDEK KÖZÖTTI KÖLCSÖNHATÁS

Doktori értekezés KATIONOS POLIELEKTROLITOK ÉS ANIONOS TENZIDEK KÖZÖTTI KÖLCSÖNHATÁS Doktori értekezés KATIONOS POLIELEKTROLITOK ÉS ANIONOS TENZIDEK KÖZÖTTI KÖLCSÖNHATÁS Készítette: MEZEI AMÁLIA Eötvös Loránd Tudományegyetem Kémiai Intézet, Fizikai Kémiai Tanszék Határfelületi- és Nanoszerkezetek

Részletesebben

A közeli infravörös tartományban végzett spektroszkópia felhasználása a minőségbiztosításban

A közeli infravörös tartományban végzett spektroszkópia felhasználása a minőségbiztosításban TERMELÉSI FOLYAMAT MINÕSÉGKÉRDÉSEI, VIZSGÁLATOK 2.5 2.2 2.3 A közeli infravörös tartományban végzett spektroszkópia felhasználása a minőségbiztosításban Tárgyszavak: közeli infravörös spektroszkópia (KIS);

Részletesebben

POLIÉSZTER ALAPÚ ABLONCZY MŰGYANTA

POLIÉSZTER ALAPÚ ABLONCZY MŰGYANTA POLIÉSZTER ALAPÚ ABLONCZY MŰGYANTA ÁLTALÁNOS TUDNIVALÓK Kötési mechanizmus: A műgyanta a hagyományos ragasztókkal, illetve kötőanyagokkal szemben nem az oldószer elpárologtatásával köt meg, hanem a B komponens

Részletesebben

KÉMIA 7-8. évfolyam A helyi tanterv a kerettanterv B változata alapján készült A kémia tanításának célja és feladatai

KÉMIA 7-8. évfolyam A helyi tanterv a kerettanterv B változata alapján készült A kémia tanításának célja és feladatai KÉMIA 7-8. évfolyam A helyi tanterv a kerettanterv B változata alapján készült A kémia tanításának célja és feladatai A kémia tanításának célja és feladata, hogy a tanulók fokozatosan sajátítsák el azt

Részletesebben

INTEGRÁLT VÁROSFEJLESZTÉSI STRATÉGIA BUDAPEST, VII. KERÜLET ERZSÉBETVÁROS FEJLESZTÉSÉRE

INTEGRÁLT VÁROSFEJLESZTÉSI STRATÉGIA BUDAPEST, VII. KERÜLET ERZSÉBETVÁROS FEJLESZTÉSÉRE INTEGRÁLT VÁROSFEJLESZTÉSI STRATÉGIA BUDAPEST, VII. KERÜLET ERZSÉBETVÁROS FEJLESZTÉSÉRE Budapest, 2008. június 1 Tartalomjegyzék Vezetői összefoglaló... 3 I. Erzsébetváros szerepe a településhálózatban...

Részletesebben

FÖLDMŰVELÉSTAN. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010

FÖLDMŰVELÉSTAN. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 FÖLDMŰVELÉSTAN Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 Előadás Biológiai tényezők és a talajművelés Szervesanyag gazdálkodás I. A talaj szerves anyagai, a szervesanyagtartalom

Részletesebben

7. előad. szló 2012.

7. előad. szló 2012. 7. előad adás Kis LászlL szló 2012. Előadás vázlat Lemez hidak, bordás hidak Lemez hidak Lemezhidak fogalma, osztályozása, Lemezhíd típusok bemutatása, Lemezhidak számítása, vasalása. Bordás hidak Bordás

Részletesebben

Új kötőanyagrendszer előállítása ipari hulladékanyag mechanokémiai aktiválásával

Új kötőanyagrendszer előállítása ipari hulladékanyag mechanokémiai aktiválásával Új kötőanyagrendszer előállítása ipari hulladékanyag mechanokémiai aktiválásával Szerző: Hullár Hanna Dóra, Anyagmérnök BSc, IV. évfolyam Témavezető: Balczár Ida Anna, PhD hallgató Munka helyszíne: PE-MK,

Részletesebben

Kozmetikai és háztartásvegyipari alapismeretek

Kozmetikai és háztartásvegyipari alapismeretek Kozmetikai és háztartásvegyipari alapismeretek 1. A) Határozza meg az anyagi rendszer fogalmát és csoportosítsa az anyagi rendszereket! B) Ismertesse az antibiotikumok fogalmát, hatásmód szerinti csoportosításukat!

Részletesebben

Szakképesítés, szakképesítés-elágazás, rész-szakképesítés, szakképesítés-ráépülés azonosító száma, megnevezése:

Szakképesítés, szakképesítés-elágazás, rész-szakképesítés, szakképesítés-ráépülés azonosító száma, megnevezése: A 10/200 (II. 2.) SzMM rendelettel módosított 1/2006 (II. 1.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben