2005/17. A gázhalmazállapot. Eltérés az ideálistól: reális gázok. A gázok kinetikus elmélete. A Maxwell-Boltzmann eloszlás:
|
|
- Ottó Farkas
- 6 évvel ezelőtt
- Látták:
Átírás
1 A gázhalmazállapot A gáztörvényekhez: pv = n RT V = const.t; const=(n/p)r Az alábbi ábra szövege félrevezető: a 'different gases' nem a kémiai különbségre, hanem a minta mennyiségére, ill. a nyomásra utal A Maxwell-Boltzmann eloszlás: 2005/17 Eltérés az ideálistól: reális gázok A gázok kinetikus elmélete A hőmérséklet az átlagos kin. en. mértéke: E kin = 3/2 k B T Egy szabadsági fokra (ekvipartíció elve szerint) jutó energia: 1/2 k B T Diffúzió (effúzió) : Reális gázok A van der Waals egyenlet: (P + an 2 /V 2 ) (V - bn) = nrt Gas Formula a [(L 2 atm)/mole 2 ] b [L/mole] Helium He Hydrogen H Nitrogen N Oxygen O Carbon dioxide CO Acetylene C 2 H Chlorine Cl n - Butane C 4 H n - Octane C 8 H
2
3 A kristályos szerkezet A kristályszerkezet meghatározása: Röntgen-diffraktométer (X-ray diffr.) Mégegyszer, részletesebben: 2005/18a / 7 Kristályrendszer - 7 elemi cella. Figyeljük a cellák alakját. Rendszerezés az élhosszak és a szögek szerint: A Bragg-törvény θ irányban erősítés van, ha: 2 d sin θ = n λ Rendszerezés Kristályrendszerek: A 14 Bravais-cella: 7 "elemi" + 7 "centrált" Folyt. 2005/18b
4 Fent 7 formát látunk, azonban maga a kristályrács 14-féle lehet (Bravais-cellák) 2005/18b Pl. Kén: rombos (orthorhombic) Cell parameters: a /pm b /pm c /pm α / β / γ / Polimorfia: u.azon kémiai anyag, különböző kr. szerkezet ; elemek esetében: allotróp módosulatok In materials science polymorphism is the ability of a solid material to exist in more than one form or crystal structure. Diamond, graphite and the Buckyball are examples of polymorphs of carbon. α-ferrite, austenite, and δ-ferrite are polymorphs of iron. When found in elemental solids the condition is also called allotropy POLYMER RELIEF. Growing crystals of the pain-relieving drug acetaminophen on different polymer surfaces will yield different crystal structures. One polymer gives rise to tiny prisms (left); another, miniature monoliths (right).
5 Fázisátalakulások: Párolgás, forráspont, kritikus állapot Egyensúlyi gőznyomás (tenzió): Különböző anyagok forráspontja: 2005/19 In container A, the liquid is evaporating. Some of the molecules have enough kinetic energy to escape (turn to a gas) by pushing against the pressure of the atmosphere. Container B shows the flask is saturated. When new molecules of liquid are vaporized, the gas cannot hold additional molecules, therefore some of the molecules condense back to liquid. Néhány anyag tenziója 25 o C-on: Substance Vapor Pressure Density (kpa) (kg/m3) H2O(l) CH3OH(l) C2H5OH(l) C6H6(l) Hg(l) I2(s) A víz tenziója a hőmérséklet függvényében: Boiling Points and Heat of Vaporization Substance Boiling point K Boiling point C Heat of vaporization (10 3 J/kg) Helium Hydrogen Nitrogen Oxygen Ethyl alcohol Mercury Water Sulfur Lead T ( o C) P (kpa) T ( o C) P (kpa) T ( o C) P (kpa) A kritikus állapot kialakulása: Forráspont: tenzió eléri a külső nyomást hyperphysics.phy-astr.gsu.edu/hbase/kinetic/watvap.html Kritikus hőmérséklet és nyomás substance temperature ( o C) critical pressure (atm) NH O CO H 2 O
6 A szuperkritikus szén-dioxid környezetbarát oldószer SUPERCRITICAL CARBON DIOXIDE REACTOR Két példa: 2005/20 These include a 20 ml reaction vessel with borosilicate glass view windows, enabling visual monitoring of the reaction. Pressurised carbon dioxide is charged and exhausted via valves situated at the top. The reactor is either heated in an oven or directly on a hotplate with the temperature regulated by a thermocouple inserted into the body of the vessel. CIC Case Study Supercritical carbon dioxide is currently being intensely investigated as an alternative solvent for synthetic chemistry. The unique tuneable properties of supercritical fluids allow much greater control over reactions than is possible with conventional solvents, and enables excellent pathway selectivity. CIC members have developed novel reactions, which in conventional solvents give mixtures of products, but under supercritical conditions yielded just a single product, which eliminates additional purification steps and minimises waste. Olvadás Melting Points and Heat of Fusion Substance Melting point K Melting point C Helium Hydrogen Nitrogen Oxygen Ethyl alcohol Mercury Water Sulfur Lead Silver Gold Copper Heat of fusion (10 3 J/kg) Néhány anyag hármaspontja: Substance Temperature K Pressure 10 5 Pa Hydrogen Deuterium Neon Oxygen Nitrogen Ammonia Sulfur dioxide Carbon dioxide Water Fázisdiagram, a szuperkritikus állapotot is feltüntetve Fázisdiagramok:
7 Valódi oldatok Néhány oldhatósági adat Solubilities in Water at 293 K (g per 100 g water) NH 4 Cl 37.2 NH 4 NO BaCl 2.2 H 2 O CaCl 2.6 H 2 O 35.8 Ba(NO 3 ) Ca(NO 3 ) 2.4 H 2 O 129 CuCl Cu(NO 3 ) PbCl Pb(NO 3 ) LiCl 83.5 LiNO MgCl AgNO KCl 34.2 KNO NaCl 35.9 NaNO Gázok oldhatósága: Solubilities of Gases in Water at 293 K Gas Ammonia 52.9 Bromine 14.9 Carbon dioxide Solubility a Carbon monoxide Chlorine Hydrogen Hydrogen sulfide Methane Nitrogen Oxygen Sulfur dioxide a Grams of gas dissolved in 100 g of water when the total pressure above the solution is 1 atm. Az oldhatóság hőmérséklet-függése Oldatok gőznyomása (Raoult-törvény) Szemléletes kép: mooni.fccj.org/~ethall/2046/ch11/vp.htm 1. Ha csak az egyik anyag (oldószer) illékony.. p = x p o 2. Ha több illékony komponens van: p A = x A p A o pl. benzol-toluol elegy Ideális elegy forrása p B = x B p B o 2005/21 Azeotróp
8 Intermolekuláris kölcsönhatások a) dipól-dipól; energia ~1/r 3, szabad forgás esetén 1/r /22 Larger and heavier atoms and molecules exhibit stronger dispersion forces than smaller and lighter ones. In a larger atom or molecule, the valence electrons are, on average, farther from the nuclei than in a smaller atom or molecule. They are less tightly held and can more easily form temporary dipoles. The ease with which the electron distribution around an atom or molecule can be distorted is called the polarizability. c) H-híd: energia 3-6 kcal/mol; távolság pillératomok között: A pl. vízmolekulák között: b) London-féle diszperziós ; gyenge, de mindig jelen van, az elektronfelhő pillanatnyi fluktuációi polarizálják a szomszéd atomot. Amino- és OH-csoport vízzel: Nagyságára általános szempont: nagyobb molekulák, kiterjedt elektronfelhő: könnyebben polarizálható. V.ö. Cl 2 és Br 2 olv.pont és forrp. A részecskék közti távolsággal rohamosan csökken: függés ~ 1/r 6 The London dispersion force is the weakest intermolecular force. The London dispersion force is a temporary attractive force that results when the electrons in two adjacent atoms occupy positions that make the atoms form temporary dipoles. This force is sometimes called an induced dipole-induced dipole attraction. London forces are the attractive forces that cause nonpolar substances to condense to liquids and to freeze into solids when the temperature is lowered sufficiently. Because of the constant motion of the electrons, an atom or molecule can develop a temporary (instantaneous) dipole when its electrons are distributed unsymmetrically about the nucleus. H-hidak a peptidek α-hélix konformációjában (Pauling!) sematikusan: H-hidak tartják össze a DNS kettősspirált (Watson és Crick) A-T, ill. G-C bázispárok, pl. Guanin-citozin: A second atom or molecule, in turn, can be distorted by the appearance of the dipole in the first atom or molecule (because electrons repel one another) which leads to an electrostatic attraction between the two atoms or molecules.
9 Kolligatív tulajdonságok Fagyáspontcsökkenés- forráspontemelkedés alapja: Az oldat tenziója csökken. Ozmózis 2005/23 "Féligáteresztő" (szemipermeábilis) hártya: csak a kis molekulák jutnak át Merre mozdul el a folyadékszint? Mértéke jellemző az oldószerre, és arányos az 1000 g oldószerre jutó oldott mólok számával: T f = M R K f ahol M R - Raoult-konc., K f - az oldószerre jellemző adat, molális fagy.p.csökk. Hasonlóan, a forráspontemelkedés: K b... Jelentőség: molekulasúly meghatározása Néhány adat: Solvent Formula Melting Point ( C) Boiling Point ( C) K f ( C/m) K b ( C/m) Water H 2 O Acetic acid HC 2 H 3 O Benzene C 6 H Camphor C 10 H 16 O Carbon disulfide CS Cyclohexane C 6 H Ethanol C 2 H 5 OH Ozmózis és inverz ozmózis Az ozmózis kvantitatív törvénye: van't Hoff kimutatta, hogy teljes analógia a gáztörvénnyel: ΠV = n R T Megj.:Az oldott részecskék számával arányos. Disszociáció esetén (elektrolitok), arányosan nő az ozmózisnyomás. Mérése: az ozmométer elve: Data source: Landolt-Bornstein, 6th Ed., Zahlenverte und Functionen aus Physik, Chemie, Astronomie, Geophysik, und Technik, Vol II, part IIa, Springer-Verlag, Pp and
10 Kolloidok Meghatározás: olyan diszperz rendszer, melyben a diszpergált részecskék mérete legalább egy irányban ~ nm; vagy ilyen méretű diszkontinuitások vannak (porózus anyagok). A rendszer lehet összefüggő háló is (gélek, stb.). IUPAC: node33.html the molecules or polymolecular particles dispersed in a medium have at least in one direction a dimension roughly between 1 nm and 1µm, or that in a system discontinuities are found at distances of that order. It is not necessary for all three dimensions to be in the colloidal range: fibers in which only two dimensions are in this range, and thin films, in which one dimension is in this range, may also be classified as colloidal. Nor is it necessary for the units of a colloidal system to be discrete: continuous network structures, the basic units of which are of colloidal dimensions also fall in this class (e.g. porous solids, gels and foams). Aprítás: durva diszperzió kolloid valódi oldat Különbség valódi oldatoktól: Tyndall-jelenség 2005/24 One of the main problems with the light scattering method is that the polymer solution must be perfectly dust free in order to get good results. To obtain these perfectly clean solutions they are usually filtered very carefully. Despite this difficulty of making a clean solution, light scattering is probably the most widely used technique for measureing molecular weights. It is useful for a very broad range, from 10,000 to 10 million g/mol. 2. Ultracentrifuga Polimeroldatokban a moláris tömeg általában nem egységes (polimeriz. foka különböző): heterodiszperz rendszer Három alapvető típus: Diszperziók felosztása közeg (diszpergá lószer) Szilárd Folyadék Gáz diszperzió polimer oldata micella diszpergált fázis (diszperzum) Szilárd folyadék gáz szil. Szol: rubinüveg * -- (emulzió) vaj szol: keményítő emulzió oldat tej, majonéz aeroszol köd füst légköri köd * aranyszol, üvegszínező Zsigmondy, a kolloidika atyja szil. hab horzsakő hab: szappan-, borotvahab Austrian chemist, born April 1, 1865, Vienna; died September 23, 1929, Göttingen. Richard Adolf Zsigmondy was the son of Adolf Zsigmondy, a physician, who died when Zsigmondy was only 15 years old. Encouraged by their mother, Irma von Szakmary, He first studied chemistry in Vienna, In 1925, Zsigmondy was awarded the Nobel Prize for his work on colloid chemistry and the invention of the ultramicroscope. The ultramicroscope is not an instrument for magnifying images, as in a microscope or other such device. Rather, it is a system of illumination for extremely small objects such as colloidal particles, fog droplets, or smoke particles. Ultramicroscopes are used in the study of Brownian motion, 3. Kromatográfia Gel permeation chromatography has become the most commonly used method in recent years for the determination of molecular weight distribution. The method separates polymers on the basis of size by passing the polymer in solution, through a series of columns that are packed with gel. Intermol. kölcsönhatás kolloid rendszerekben: micella (mosószerek, biológia) Micella: Polimer oldatok vizsgálata. 1. Fényszórás. A legfontosabb módszer; elv: ha a fény fullámhossza és a részecske mérete azonos nagyságrendű, a fény szóródik (scattering). Ennek jellege függ a molekula méretétől.
11 Termokémia Hőmennyiség, hőkapacitás: Q = C T C - hőkapacitás ; extenzív menny.; fajlagos hőkap. (fajhő) Olvadáshők, párolgási hők: Q dimenziója: kj, kcal... 1 cal = J néhány adatot l melléklet Reakcióhő: a változással kapcsolatos hőmennyiség, a rendszer Allotróp módosulatok átalakulása: szempontjából: a rendszerrel közölt hő. S(rombos) S(monoklin) H = kcal/mol Hőtermelő (exoterm) reakció esetén tehát negatív. P(sárga) P(vörös) H = kcal/mol Hess-tétel: a r.hő független az úttól, a kezdeti és végállapot Oldáshők egyértelműen meghatározza. Enthalpy of Solvation (H solv kj/mol) of Some Két eset: Substanc H solv Substance H solv V = const.; Q = U U - belsőenergia AlCl 3 (s) H 2 SO 4 (l) p = const.; Q = H H - entalpia (T mindkét esetben const.) LiNO 3 (s) LiCl(s) Különbség a térfogati munkából adódik. NaNO 3 (s) NaCl(s) 3.88 KNO 3 (s) KCl(s) NaOH(s) NH 4 Cl(s) /25 Entalpiadiagramok: Fázisátalakulásoknál: pl. fűtési görbe Az entalpia definíciója: H = U + pv. megváltozása, ha p = const., H = U + p V, a reakcióhő Termokémiai egyenlet pl. (égéshő): 2C 2 H 2 (g) + 5O 2 (g) 4CO 2 (g) + 2H 2 O(l) H = kj Korábbról: Born-Haber körfolyamat, 14. mell. Képződéshő: azon folyamat reakcióhője, melyben 1 mól anyag elemeiből keletkezik. Következmény tehát: az elemek képződéshője zérus.standard áll.: fentieket pontosítani kell, hiszen az állapojelzőktől függenek: 25 o C, 1 atm. forrás: Brady, T6.1. Substance H f (kj/mol) Substance H f (kj/mol) Substance H f (kj/mol) Al 2 O 3 (s) C 4 H 10 (g) -126 MgCl 2 2H 2 O(s) Al 2 (SO 4 ) 3 (s) C 6 H 6 (l) Mg(OH) 2 (s) AsH 3 (g) CH 3 OH(l) -238 KMnO 4 (s) As 4 O 6 (s) C 2 H 5 OH(l) -278 MnSO 4 (s) As 2 O 5 (s) -925 HCHO(g) (formaldehyde) NH 3 (g) BaCO 3 (s) CH 3 CHO(g) (acetald.) -167 NH 4 Cl(s) BaCl 2 (s) (CH 3 ) 2 CO(l) (acetone) NO(g) Ba(OH) C 6 H 5 CO 2 H(s) (benz. acid) NO 2 (s) +34 BaSO 4 (s) CO(NH 2 ) 2 (s) (urea) N 2 O(g) Br 2 (g) HCl(g) HNO3(l) HBr(g) -36 HCl(aq) O 3 (g) +143 CaCO 3 (s) Cr 2 O 3 (s) P(s, white) 0 CaCl 2 (s) (NH 4 ) 2 Cr 2 O 7 (s) P 4 O 10 (s) CaO(s) K 2 Cr 2 O 7 (s) H 3 PO 4 (s) Ca(OH) 2 (s) CuCl 2 (s) -172 KCl(s) Ca 3 (PO4) 2 (s) CuO(s) -155 SiH 4 (g) +33 CaSO 3 (s) Cu 2 S(s) SiO 2 (s, alpha) CaSO 4 (s) CuS(s) NaF(s) -571 CaSO 4 1/2H 2 O(s) CuSO 4 (s) NaCl(s) -413 CaSO 4 2H 2 O(s) CuSO 4 5H 2 O(s) NaBr(s) -360 C(s, graphite) 0 HF(g) -271 NaI(s) -288 C(s, diamond) H 2 O(l) -286 NaHCO 3 (s) CCl 4 (l) -134 H 2 O(g) -242 Na 2 CO 3 (s) CO(g) -110 H 2 O 2 (l) Na 2 O 2 (s) CO 2 (g) -394 I 2 (g) NaOH(s) CO 2 (aq) HI(g) +26 Na 2 SO 4 (s) H 2 CO 3 (aq) Fe 2 O 3 (s) S(s, rhombic) 0 CS 2 (l) Fe 3 O 4 (s) SO 2 (g) -297 CS 2 (g) +117 PbO(s) SO 3 (g) -396 CH 4 (g) PbO 2 (s) -277 H 2 SO 4 (l) C 2 H 2 (g) +227 Pb(OH) 2 (s) SnCl 4 (l) C 2 H 4 (g) PbSO 4 (s) SnO 2 (s) C 2 H 6 (g) LiCl(s) ZnO(s) -348 C 3 H 8 (g) -104 MgCl 2 (s) ZnSO 4 (s)
12
III. Termodinamikai alapok: a változások energetikája; a folyamatok iránya, egyensúlyok.
III. Termodinamikai alapok: a változások energetikája; a folyamatok iránya, egyensúlyok. III.1. Termokémia Alapfogalmak. U és H, reakcióhő, Hess-tétel, képződéshő Hőmennyiség, hőkapacitás: Q = C ΔT C -
Oldatok - elegyek. Elegyek: komponensek mennyisége azonos nagyságrendű
Oldatok - elegyek Többkomponensű homogén (egyfázisú) rendszerek Elegyek: komponensek mennyisége azonos nagyságrendű Oldatok: egyik komponens mennyisége nagy (oldószer) a másik, vagy a többihez (oldott
2010/21. II.2.4. A kristályos szerkezet Szemléletesen, a kristály felépülése. 1 dimenzióban:
II.2.4. A kristályos szerkezet Szemléletesen, a kristály felépülése. 1 dimenzióban: 2010/21 További finomítás a rács pontcsoport-szimmetriája alapján. A lehetséges rácstípusok ekkor: 7 "egyszerő" + 7 "centrált"=
Oldatok - elegyek. Többkomponensű homogén (egyfázisú) rendszerek. Elegyek: komponensek mennyisége azonos nagyságrendű
Oldatok - elegyek Többkomponensű homogén (egyfázisú) rendszerek Elegyek: komponensek mennyisége azonos nagyságrendű Oldatok: egyik komponens mennyisége nagy (oldószer) a másik, vagy a többihez (oldott
Altalános Kémia BMEVESAA101 tavasz 2008
Folyadékok és szilárd anayagok 3-1 Intermolekuláris erők, folyadékok tulajdonságai 3-2 Folyadékok gőztenziója 3-3 Szilárd anyagok néhány tulajdonsága 3-4 Fázisdiagram 3-5 Van der Waals kölcsönhatások 3-6
Termokémia. Termokémia Dia 1 /55
Termokémia 6-1 Terminológia 6-2 Hő 6-3 Reakcióhő, kalorimetria 6-4 Munka 6-5 A termodinamika első főtétele 6-6 Reakcióhő: U és H 6-7 H indirekt meghatározása: Hess-tétel 6-8 Standard képződési entalpia
Folyadékok és szilárd anyagok
Folyadékok és szilárd anyagok 7-1 Intermolekuláris erők, folyadékok tulajdonságai 7-2 Folyadékok gőztenziója 7-3 Szilárd anyagok néhány tulajdonsága 7-4 Fázisdiagram 7-5 Van der Waals kölcsönhatások 7-6
Általános Kémia, 2008 tavasz
Termokémia 5-1 Terminológia 5-2 Hő 5-3 Reakcióhő, Kalorimetria 5-4 Munka 5-5 A termodinamika első főtétele 5-6 Reakcióhő: U és H 5-7 H indirekt meghatározása: Hess-tétele Termokémia 5-8 Standard képződési
Energia. Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia
Kémiai változások Energia Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia Potenciális (helyzeti) energia: a részecskék kölcsönhatásából származó energia. Energiamegmaradás
5/12/2010. Elegyek. 4-1 Az elegyek fajtái. 10% etanol oldat (v/v) 4-2 Koncentrációk. Mol koncentrációk. 4-3 intermolekuláris kölcsönhatások
Elegyek 4-1 Az elegyek fajtái 4-1 Elegyek fajtái 4-2 Koncentrációk 4-3 Intermolekuláris erők, az elegyedés folyamata 4-4 Elegyek keletkezése, egyensúly 4-5 Gázok oldhatósága 4-6 Elegyek gőznyomása 4-7
Allotróp módosulatok
Allotróp módosulatok Egy elem azonos halmazállapotú, de eltérő molekula- vagy kristályszerkezetű változatai. Created by Michael Ströck (mstroeck) CC BY-SA 3.0 A szén allotróp módosulatai: a) Gyémánt b)
Spontaneitás, entrópia
Spontaneitás, entrópia 6-1 Spontán folyamat 6-2 Entrópia 6-3 Az entrópia kiszámítása 6-4 Spontán folyamat: a termodinamika második főtétele 6-5 Standard szabadentalpia változás, ΔG 6-6 Szabadentalpia változás
Elegyek. Csonka Gábor 2008 Általános Kémia: oldatok 1 dia
Elegyek 7-1 Elegyek fajtái 7-2 Koncentrációk 7-3 Intermolekuláris erők, az elegyedés folyamata 7-4 Elegyek keletkezése, egyensúly 7-5 Gázok oldhatósága 7-6 Elegyek gőznyomása 7-7 Ozmózis nyomás 7-8 Fagyáspont
PETER PAZMANY CATHOLIC UNIVERSITY Consortium members SEMMELWEIS UNIVERSITY, DIALOG CAMPUS PUBLISHER
SEMMELWEIS UNIVERSITY PETER PAMANY CATLIC UNIVERSITY Development of Complex Curricula for Molecular Bionics and Infobionics Programs within a consortial* framework** Consortium leader PETER PAMANY CATLIC
Termokémia, termodinamika
Termokémia, termodinamika Szalai István ELTE Kémiai Intézet 1/46 Termodinamika A termodinamika a természetben végbemenő folyamatok energetikai leírásával foglalkozik.,,van egy tény ha úgy tetszik törvény,
Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27
Az egyensúly 6'-1 6'-2 6'-3 6'-4 6'-5 Dinamikus egyensúly Az egyensúlyi állandó Az egyensúlyi állandókkal kapcsolatos összefüggések Az egyensúlyi állandó számértékének jelentősége A reakció hányados, Q:
5. előadás 12-09-16 1
5. előadás 12-09-16 1 H = U + PV; U=Q-PV H = U + (PV); P= áll H = U + P V; U=Q-P V; U=Q-P V H = Q U= Q V= áll P= áll H = G + T S Munkává nem alakítható Hátalakulás = G + T S 2 3 4 5 6 7 Szilárd halmazállapot
Spontaneitás, entrópia
Spontaneitás, entrópia 11-1 Spontán és nem spontán folyamat 11-2 Entrópia 11-3 Az entrópia kiszámítása 11-4 Spontán folyamat: a termodinamika második főtétele 11-5 Standard szabadentalpia változás, ΔG
A kolloidika tárgya, a kolloidok osztályozása rendszerezése. Bányai István www.kolloid.unideb.hu
A kolloidika tárgya, a kolloidok osztályozása rendszerezése Bányai István www.kolloid.unideb.hu A mindennapi élet: anyagok, eljárások Ipar élelmiszerek: levesek, zselék, élelmiszer színezés, habok építőipar:
29. Sztöchiometriai feladatok
29. Sztöchiometriai feladatok 1 mól gáz térfogata normál állapotban (0 0 C, légköri nyomáson) 22,41 dm 3 1 mól gáz térfogata szobahőmérsékleten (20 0 C, légköri nyomáson) 24,0 dm 3 1 mól gáz térfogata
SZERVETLEN KÉMIAI REAKCIÓEGYENLETEK
SZERVETLEN KÉMIAI REAKCIÓEGYENLETEK Budapesti Reáltanoda Fontos! Sok reakcióegyenlet több témakörhöz is hozzátartozik. Zárójel jelzi a reakciót, ami más témakörnél található meg. REAKCIÓK FÉMEKKEL fém
1. feladat Összesen: 8 pont. 2. feladat Összesen: 11 pont. 3. feladat Összesen: 7 pont. 4. feladat Összesen: 14 pont
1. feladat Összesen: 8 pont 150 gramm vízmentes nátrium-karbonátból 30 dm 3 standard nyomású, és 25 C hőmérsékletű szén-dioxid gáz fejlődött 1800 cm 3 sósav hatására. A) Írja fel a lejátszódó folyamat
Termokémia. Hess, Germain Henri (1802-1850) A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011
Termokémia Hess, Germain Henri (1802-1850) A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 A reakcióhő fogalma A reakcióhő tehát a kémiai változásokat kísérő energiaváltozást jelenti.
1. feladat Összesen: 10 pont
1. feladat Összesen: 10 pont Minden feladatnál a betűjel bekarikázásával jelölje meg az egyetlen helyes, vagy az egyetlen helytelen választ! I. Melyik sorban szerepelnek olyan vegyületek, amelyek mindegyike
m n 3. Elem, vegyület, keverék, koncentráció, hígítás m M = n Mértékegysége: g / mol elem: azonos rendszámú atomokból épül fel
3. Elem, vegyület, keverék, koncentráció, hígítás elem: azonos rendszámú atomokból épül fel vegyület: olyan anyag, amelyet két vagy több különbözı kémiai elem meghatározott arányban alkot, az alkotóelemek
Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája
Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet 5-4 A tökéletes gáz egyenlet alkalmazása 5-5 Gáz halmazállapotú reakciók
Általános és szervetlen kémia Laborelıkészítı elıadás I.
Általános és szervetlen kémia Laborelıkészítı elıadás I. Halmazállapotok, fázisok Fizikai állapotváltozások (fázisátmenetek), a Gibbs-féle fázisszabály Fizikai módszerek anyagok tisztítására - Szublimáció
1. feladat Összesen: 15 pont. 2. feladat Összesen: 10 pont
1. feladat Összesen: 15 pont Vizsgálja meg a hidrogén-klorid (vagy vizes oldata) reakciót különböző szervetlen és szerves anyagokkal! Ha nem játszódik le reakció, akkor ezt írja be! protonátmenettel járó
Kémiai kötések és kristályrácsok ISMÉTLÉS, GYAKORLÁS
Kémiai kötések és kristályrácsok ISMÉTLÉS, GYAKORLÁS Milyen képlet adódik a következő atomok kapcsolódásából? Fe - Fe H - O P - H O - O Na O Al - O Ca - S Cl - Cl C - O Ne N - N C - H Li - Br Pb - Pb N
Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája
Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gázegyenlet és általánosított gázegyenlet 5-4 A tökéletes gázegyenlet alkalmazása 5-5 Gáz reakciók 5-6 Gázkeverékek
Az anyagi rendszer fogalma, csoportosítása
Az anyagi rendszer fogalma, csoportosítása A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 1 1 A rendszer fogalma A körülöttünk levő anyagi világot atomok, ionok, molekulák építik
Energia. Energiamegmaradás törvénye: Energia: munkavégző, vagy hőközlő képesség. Az energia nem keletkezik, nem is szűnik meg, csak átalakul.
Kémiai változások Energia Energia: munkavégző, vagy hőközlő képesség. Energiamegmaradás törvénye: Az energia nem keletkezik, nem is szűnik meg, csak átalakul. A világegyetem energiája állandó. Energia
A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.
A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés azonosítószáma és megnevezése 54 524 03 Vegyész technikus Tájékoztató
KÉMIA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Kémia középszint 1512 ÉRETTSÉGI VIZSGA 2015. október 20. KÉMIA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Az írásbeli feladatok értékelésének alapelvei
Folyadékok. Molekulák: Gázok Folyadékok Szilárd anyagok. másodrendű kölcsönhatás növekszik. cseppfolyósíthatók hűtéssel és/vagy nyomással
Folyadékok Molekulák: másodrendű kölcsönhatás növekszik Gázok Folyadékok Szilárd anyagok cseppfolyósíthatók hűtéssel és/vagy nyomással Folyadékok Molekulák közti összetartó erők: Másodlagos kötőerők: apoláris
Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27
Az egyensúly 10-1 Dinamikus egyensúly 10-2 Az egyensúlyi állandó 10-3 Az egyensúlyi állandókkal kapcsolatos összefüggések 10-4 Az egyensúlyi állandó számértékének jelentősége 10-5 A reakció hányados, Q:
NE FELEJTSÉTEK EL BEÍRNI AZ EREDMÉNYEKET A KIJELÖLT HELYEKRE! A feladatok megoldásához szükséges kerekített értékek a következők:
A Szerb Köztársaság Oktatási Minisztériuma Szerbiai Kémikusok Egyesülete Köztársasági verseny kémiából Kragujevac, 2008. 05. 24.. Teszt a középiskolák I. osztálya számára Név és utónév Helység és iskola
Általános Kémia GY 4.tantermi gyakorlat
Általános Kémia GY 4.tantermi gyakorlat Csapadékképződési egyensúlyok, oldhatósági szorzat Termokémiai számítások Hess tétel Közömbösítési hő meghatározása kísérlet (példaszámítás: 4. labor leírásánál)
Általános Kémia Gyakorlat II. zárthelyi október 10. A1
2008. október 10. A1 Rendezze az alábbi egyenleteket! (5 2p) 3 H 3 PO 3 + 2 HNO 3 = 3 H 3 PO 4 + 2 NO + 1 H 2 O 2 MnO 4 + 5 H 2 O 2 + 6 H + = 2 Mn 2+ + 5 O 2 + 8 H 2 O 1 Hg + 4 HNO 3 = 1 Hg(NO 3 ) 2 +
Első alkalomra ajánlott gyakorlópéldák. Második alkalomra ajánlott gyakorlópéldák. Harmadik alkalomra ajánlott gyakorlópéldák
Első alkalomra ajánlott gyakorlópéldák 1. Rajzolja fel az alábbi elemek alapállapotú atomjainak elektronkonfigurációját, és szaggatott vonallal jelölje az atomtörzs és a vegyértékhéj határát! Készítsen
Kémiai egyensúlyok [CH 3 COOC 2 H 5 ].[H 2 O] [CH3 COOH].[C 2 H 5 OH] K = k1/ k2 = K: egyensúlyi állandó. Tömeghatás törvénye
Kémiai egyensúlyok CH 3 COOH + C 2 H 5 OH CH 3 COOC 2 H 5 + H 2 O v 1 = k 1 [CH 3 COOH].[C 2 H 5 OH] v 2 = k 2 [CH 3 COOC 2 H 5 ]. [H 2 O] Egyensúlyban: v 1 = v 2 azaz k 1 [CH 3 COOH].[C 2 H 5 OH] = k
Általános és szervetlen kémia Laborelıkészítı elıadás VI
Általános és szervetlen kémia Laborelıkészítı elıadás VI Redoxiegyenletek rendezésének általános lépései Példák fémoldódási egyenletek rendezésére Halogénvegyületek reakciói A gyakorlaton vizsgált redoxireakciók
KÉMIAI ALAPISMERETEK (Teszt) Összesen: 150 pont. HCl (1 pont) HCO 3 - (1 pont) Ca 2+ (1 pont) Al 3+ (1 pont) Fe 3+ (1 pont) H 2 O (1 pont)
KÉMIAI ALAPISMERETEK (Teszt) Összesen: 150 pont 1. Adja meg a következő ionok nevét, illetve képletét! (12 pont) Az ion neve Kloridion Az ion képlete Cl - (1 pont) Hidroxidion (1 pont) OH - Nitrátion NO
Kémia OKTV 2006/2007. II. forduló. A feladatok megoldása
Kémia OKTV 2006/2007. II. forduló A feladatok megoldása Az értékelés szempontjai Csak a hibátlan megoldásokért adható a teljes pontszám. Részlegesen jó megoldásokat a részpontok alapján kell pontozni.
Országos Középiskolai Tanulmányi Verseny 2009/2010. Kémia I. kategória II. forduló A feladatok megoldása
Oktatási Hivatal I. FELADATSOR Országos Középiskolai Tanulmányi Verseny 2009/2010. Kémia I. kategória II. forduló A feladatok megoldása 1. B 6. E 11. A 16. E 2. A 7. D 12. A 17. C 3. B 8. A 13. A 18. C
A termodinamikai rendszer energiája. E = E pot + E kin + U E pot =m g h E kin =½m v². U = U 0 + U trans + U rot + U vibr + U khat + U gerj
A termodinamikai rendszer energiája E = E pot + E kin + U E pot =m g h E kin =½m v² U = U 0 + U trans + U rot + U vibr + U khat + U gerj belső energia abszolút értéke nem ismert, csak a változása 0:kémiai
Folyadékok. Molekulák: Gázok Folyadékok Szilárd anyagok. másodrendű kölcsönhatás növekszik. cseppfolyósíthatók hűtéssel és/vagy nyomással
Folyadékok Molekulák: másodrendű kölcsönhatás növekszik Gázok Folyadékok Szilárd anyagok cseppfolyósíthatók hűtéssel és/vagy nyomással Folyadékok Molekulák közti összetartó erők: Másodlagos kötőerők: apoláris
3. A kémiai kötés. Kémiai kölcsönhatás
3. A kémiai kötés Kémiai kölcsönhatás ELSŐDLEGES MÁSODLAGOS OVALENS IONOS FÉMES HIDROGÉN- KÖTÉS DIPÓL- DIPÓL, ION- DIPÓL, VAN DER WAALS v. DISZPERZIÓS Kémiai kötések Na Ionos kötés Kovalens kötés Fémes
Gyakorló feladatok. Egyenletrendezés az oxidációs számok segítségével
Gyakorló feladatok Egyenletrendezés az oxidációs számok segítségével 1. Határozzuk meg az alábbi anyagokban a nitrogén oxidációs számát! a/ NH 3 b/ NO c/ N 2 d/ NO 2 e/ NH 4 f/ N 2O 3 g/ N 2O 4 h/ HNO
KÉMIA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Kémia középszint 1412 ÉRETTSÉGI VIZSGA 2015. május 14. KÉMIA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Az írásbeli feladatok értékelésének alapelvei
Kémiai alapismeretek 4. hét
Kémiai alapismeretek 4. hét Horváth Attila Pécsi Tudományegyetem, Természettudományi Kar, Kémia Intézet, Szervetlen Kémiai Tanszék 2013. szeptember 24.-27. 1/14 2013/2014 I. félév, Horváth Attila c kötőerő:
Általános kémia képletgyűjtemény. Atomszerkezet Tömegszám (A) A = Z + N Rendszám (Z) Neutronok száma (N) Mólok száma (n)
Általános kémia képletgyűjtemény (Vizsgára megkövetelt egyenletek a szimbólumok értelmezésével, illetve az egyenletek megfelelő alkalmazása is követelmény) Atomszerkezet Tömegszám (A) A = Z + N Rendszám
Construction of a cube given with its centre and a sideline
Transformation of a plane of projection Construction of a cube given with its centre and a sideline Exercise. Given the center O and a sideline e of a cube, where e is a vertical line. Construct the projections
Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
VII. A KÉMIAI REAKCIÓK JELLEMZŐI ÉS CSOPORTOSÍTÁSUK
VII. A KÉMIAI REAKCIÓK JELLEMZŐI ÉS CSOPORTOSÍTÁSUK VII. 1. FELELETVÁLASZTÁSOS TESZTEK 0 1 4 5 6 7 8 9 0 C C C E D C C B D 1 B A C D B E E C A D E B C E A B D D C C D D A D C D VII.. TÁBLÁZATKIEGÉSZÍTÉS
FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István
Ez egy gázos előadás lesz! ( hőtana) Dr. Seres István Kinetikus gázelmélet gáztörvények Termodinamikai főtételek fft.szie.hu 2 Seres.Istvan@gek.szie.hu Kinetikus gázelmélet Az ideális gáz állapotjelzői:
Az atom- olvasni. 1. ábra Az atom felépítése 1. Az atomot felépítő elemi részecskék. Proton, Jele: (p+) Neutron, Jele: (n o )
Az atom- olvasni 2.1. Az atom felépítése Az atom pozitív töltésű atommagból és negatív töltésű elektronokból áll. Az atom atommagból és elektronburokból álló semleges kémiai részecske. Az atommag pozitív
Kémiai reakciók. Közös elektronpár létrehozása. Általános és szervetlen kémia 10. hét. Elızı héten elsajátítottuk, hogy.
Általános és szervetlen kémia 10. hét Elızı héten elsajátítottuk, hogy a kémiai reakciókat hogyan lehet csoportosítani milyen kinetikai összefüggések érvényesek Mai témakörök a közös elektronpár létrehozásával
Kémiai reakciók Műszaki kémia, Anyagtan I. 11. előadás
Kémiai reakciók Műszaki kémia, Anyagtan I. 11. előadás Dolgosné dr. Kovács Anita egy.doc. PTE MIK Környezetmérnöki Tanszék Kémiai reakció Kémiai reakció: különböző anyagok kémiai összetételének, ill. szerkezetének
KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1997
1. oldal KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1997 JAVÍTÁSI ÚTMUTATÓ I. A HIDROGÉN, A HIDRIDEK 1s 1, EN=2,1; izotópok:,, deutérium,, trícium. Kétatomos molekula, H 2, apoláris. Szobahőmérsékleten
Correlation & Linear Regression in SPSS
Petra Petrovics Correlation & Linear Regression in SPSS 4 th seminar Types of dependence association between two nominal data mixed between a nominal and a ratio data correlation among ratio data Correlation
Általános kémia vizsgakérdések
Általános kémia vizsgakérdések 1. Mutassa be egy atom felépítését! 2. Mivel magyarázza egy atom semlegességét? 3. Adja meg a rendszám és a tömegszám fogalmát! 4. Mit nevezünk elemnek és vegyületnek? 5.
7 th Iron Smelting Symposium 2010, Holland
7 th Iron Smelting Symposium 2010, Holland Október 13-17 között került megrendezésre a Hollandiai Alphen aan den Rijn városában található Archeon Skanzenben a 7. Vasolvasztó Szimpózium. Az öt napos rendezvényen
Összesen: 20 pont. 1,120 mol gázelegy anyagmennyisége: 0,560 mol H 2 és 0,560 mol Cl 2 tömege: 1,120 g 39,76 g (2)
I. FELADATSOR (KÖZÖS) 1. B 6. C 11. D 16. A 2. B 7. E 12. C 17. E 3. A 8. A 13. D 18. C 4. E 9. A 14. B 19. B 5. B (E is) 10. C 15. C 20. D 20 pont II. FELADATSOR 1. feladat (közös) 1,120 mol gázelegy
Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei
Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdasá Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI
Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek
Atomok elsődleges kölcsönhatás kovalens ionos fémes véges számú atom térhálós szerkezet 3D ionos fémek vegyületek ötvözetek molekulák atomrácsos vegyületek szilárd gázok, folyadékok, szilárd anyagok Gázok
Termodinamika (Hőtan)
Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi
Smaller Pleasures. Apróbb örömök. Keleti lakk tárgyak Répás János Sándor mûhelyébõl Lacquerware from the workshop of Répás János Sándor
Smaller Pleasures Apróbb örömök Keleti lakk tárgyak Répás János Sándor mûhelyébõl Lacquerware from the workshop of Répás János Sándor Smaller Pleasures Oriental lacquer, or urushi by its frequently used
KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 2002
1. oldal KÉMIA ÍRÁSBELI ÉRETTSÉGI FELVÉTELI FELADATOK 2002 JAVÍTÁSI ÚTMUTATÓ Az írásbeli felvételi vizsgadolgozatra összesen 100 (dolgozat) pont adható, a javítási útmutató részletezése szerint. Minden
Csermák Mihály: Kémia 8. Panoráma sorozat
Csermák Mihály: Kémia 8. Panoráma sorozat Kedves Kollégák! A Panoráma sorozat kiadványainak megalkotása során két fő szempontot tartottunk szem előtt. Egyrészt olyan tankönyvet szerettünk volna létrehozni,
Using the CW-Net in a user defined IP network
Using the CW-Net in a user defined IP network Data transmission and device control through IP platform CW-Net Basically, CableWorld's CW-Net operates in the 10.123.13.xxx IP address range. User Defined
Oldódás, mint egyensúly
Oldódás, mint egyensúly Szilárd (A) anyag oldódása: K = [A] oldott [A] szilárd állandó K [A] szilárd = [A] oldott S = telített oldat conc. Folyadék oldódása: analóg módon Gázok oldódása: [gáz] oldott K
(3) (3) (3) (3) (2) (2) (2) (2) (4) (2) (2) (3) (4) (3) (4) (2) (3) (2) (2) (2)
TAKÁCS CSABA KÉMIA EMLÉKVERSENY, IX. osztály, II. forduló - megoldás 2009 / 2010 es tanév, XV. évfolyam 1. a) Albertus, Magnus; német polihisztor (1250-ben) (0,5 p) b) Brandt, Georg; svéd kémikus (1735-ben)
Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens.
Kémia, BMEVEAAAMM Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens Jegyzet dr. Horváth Viola, KÉMIA I. http://oktatas.ch.bme.hu/oktatas/konyvek/anal/
SZÁMOLÁSI FELADATOK. 2. Mekkora egy klíma teljesítménytényező maximális értéke, ha a szobában 20 C-ot akarunk elérni és kint 35 C van?
SZÁMOLÁSI FELADATOK 1. Egy fehérje kcsapásához tartozó standard reakcóentalpa 512 kj/mol és standard reakcóentrópa 1,60 kj/k/mol. Határozza meg, hogy mlyen hőmérséklettartományban játszódk le önként a
Curie Kémia Emlékverseny 2018/2019. Országos Döntő 9. évfolyam
A feladatokat írta: Kódszám: Pócsiné Erdei Irén, Debrecen... Lektorálta: Kálnay Istvánné, Nyíregyháza 2019. május 11. Curie Kémia Emlékverseny 2018/2019. Országos Döntő 9. évfolyam A feladatok megoldásához
Az energia. Energia : munkavégző képesség (vagy hőközlő képesség)
Az energia Energia : munkavégző képesség (vagy hőközlő képesség) Megjelenési formái: Munka: irányított energiaközlés (W=Fs) Sugárzás (fényrészecskék energiája) Termikus energia: atomok, molekulák véletlenszerű
1. Mi a folytonos anyagelmélet négy eleme? 2. Mi a Dalton-féle atomelmélet négy alaptétele (posztulátuma)? 3. Mi az SI mértékegység rendszer 7
1. Mi a folytonos anyagelmélet négy eleme? 2. Mi a Dalton-féle atomelmélet négy alaptétele (posztulátuma)? 3. Mi az SI mértékegység rendszer 7 alapmennyisége, mi ezek jele? 4. Mi az SI mértékegység rendszer
Javítókulcs (Kémia emelt szintű feladatsor)
Javítókulcs (Kémia emelt szintű feladatsor) I. feladat 1. C 2. B. fenolos hidroxilcsoport, éter, tercier amin db. ; 2 db. 4. észter 5. E 6. A tercier amino-nitrogén. 7. Pl. a trimetil-amin reakciója HCl-dal.
Biológiai makromolekulák szerkezete
Biológiai makromolekulák szerkezete Biomolekuláris nemkovalens kölcsönhatások Elektrosztatikus kölcsönhatások (sóhidak: 4-6 kcal/m, dipól-dipól: ~10-1 kcal/m Diszperziós erők (~10-2 kcal/m) Hidrogén hidak
Kolloidkémia 1. előadás Első- és másodrendű kémiai kötések és szerepük a kolloid rendszerek kialakulásában. Szőri Milán: Kolloidkémia
Kolloidkémia 1. előadás Első- és másodrendű kémiai kötések és szerepük a kolloid rendszerek kialakulásában 1 Órarend 2 Kurzussal kapcsolatos emlékeztető Kurzus: Az előadás látogatása ajánlott Gyakorlat
O k t a t á si Hivatal
O k t a t á si Hivatal I. FELADATSOR 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny második forduló KÉMIA II. KATEGÓRIA Javítási-értékelési útmutató A következő kérdésekre az egyetlen helyes
KÉMIA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Kémia középszint 1112 ÉRETTSÉGI VIZSGA 2011. október 25. KÉMIA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Az írásbeli feladatok értékelésének alapelvei
Oldódás, mint egyensúly
Oldódás, mint egyensúly Szilárd (A) anyag oldódása: K = [A] oldott [A] szilárd állandó K [A] szilárd = [A] oldott S = telített oldat conc. Folyadék oldódása: analóg módon Gázok oldódása: [gáz] oldott =
2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny második forduló KÉMIA. II. KATEGÓRIA Javítási-értékelési útmutató
Oktatási Hivatal I. FELADATSOR 01/015. tanévi Országos Középiskolai Tanulmányi Verseny második forduló KÉMIA II. KATEGÓRIA Javítási-értékelési útmutató 1. B. 70Yb. C. A fenti reakióban a HDS képződése
Kémiai reakciók sebessége
Kémiai reakciók sebessége reakciósebesség (v) = koncentrációváltozás változáshoz szükséges idő A változás nem egyenletes!!!!!!!!!!!!!!!!!! v= ± dc dt a A + b B cc + dd. Melyik reagens koncentrációváltozását
STUDENT LOGBOOK. 1 week general practice course for the 6 th year medical students SEMMELWEIS EGYETEM. Name of the student:
STUDENT LOGBOOK 1 week general practice course for the 6 th year medical students Name of the student: Dates of the practice course: Name of the tutor: Address of the family practice: Tel: Please read
már mindenben úgy kell eljárnunk, mint bármilyen viaszveszejtéses öntés esetén. A kapott öntvény kidolgozásánál még mindig van lehetőségünk
Budapest Régiségei XLII-XLIII. 2009-2010. Vecsey Ádám Fémeszterga versus viaszesztergálás Bev e z e t é s A méhviaszt, mint alapanyagot nehéz besorolni a műtárgyalkotó anyagok különböző csoportjaiba, mert
KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 2000 (pótfeladatsor)
1. oldal KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 2000 (pótfeladatsor) JAVÍTÁSI ÚTMUTATÓ I. A FOSZFOR ÉS VEGYÜLETEI - 3. periódus, V. oszlop, 3s 2 3p 3 ; Fehér vagy sárga foszfor és vörös foszfor.
KÉMIA TEMATIKUS ÉRTÉKELİ FELADATLAPOK. 9. osztály A változat
KÉMIA TEMATIKUS ÉRTÉKELİ FELADATLAPOK 9. osztály A változat Beregszász 2005 A munkafüzet megjelenését a Magyar Köztársaság Oktatási Minisztériuma támogatta A kiadásért felel: Orosz Ildikó Felelıs szerkesztı:
KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 2001
1. oldal KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 2001 JAVÍTÁSI ÚTMUTATÓ Az írásbeli felvételi vizsgadolgozatra összesen 100 (dolgozat) pont adható, a javítási útmutató részletezése szerint. Minden
Kinetika. Általános Kémia, kinetika Dia: 1 /53
Kinetika 15-1 A reakciók sebessége 15-2 Reakciósebesség mérése 15-3 A koncentráció hatása: a sebességtörvény 15-4 Nulladrendű reakció 15-5 Elsőrendű reakció 15-6 Másodrendű reakció 15-7 A reakció kinetika
2012/2013 tavaszi félév 8. óra
2012/2013 tavasz félév 8. óra Híg oldatok törvénye Fagyáspontcsökkenés és forráspont-emelkedés, Ozmózsnyomás Molárs tömeg meghatározása kollgatív tulajdonságok segítségével Erős elektroltok kollgatív tulajdonsága
FÖLDRAJZ ANGOL NYELVEN
Földrajz angol nyelven középszint 0821 ÉRETTSÉGI VIZSGA 2009. május 14. FÖLDRAJZ ANGOL NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Paper
HOMOGÉN EGYENSÚLYI ELEKTROKÉMIA: ELEKTROLITOK TERMODINAMIKÁJA
HOMOGÉN EGYENSÚLYI ELEKTROKÉMIA: ELEKTROLITOK TERMODINAMIKÁJA I. Az elektrokémia áttekintése. II. Elektrolitok termodinamikája. A. Elektrolitok jellemzése B. Ionok termodinamikai képződési függvényei C.
Biofizika szeminárium. Diffúzió, ozmózis
Biofizika szeminárium Diffúzió, ozmózis I. DIFFÚZIÓ ORVOSI BIOFIZIKA tankönyv: III./2 fejezet Részecskék mozgása Brown-mozgás Robert Brown o kísérlet: pollenszuszpenzió mikroszkópos vizsgálata o megfigyelés:
6. A TALAJ KÉMIAI TULAJDONSÁGAI. Dr. Varga Csaba
6. A TALAJ KÉMIAI TULAJDONSÁGAI Dr. Varga Csaba Oldódási és kicsapódási reakciók a talajban Fizikai oldódás (bepárlás után a teljes mennyiség visszanyerhető) NaCl Na + + Cl Kémiai oldódás Al(OH) 3 + 3H
ó Ú ő ó ó ó ö ó ó ő ö ó ö ö ő ö ó ö ö ö ö ó ó ó ó ó ö ó ó ó ó Ú ö ö ó ó Ú ú ó ó ö ó Ű ő ó ó ó ő ó ó ó ó ö ó ó ó ö ő ö ó ó ó Ú ó ó ö ó ö ó ö ő ó ó ó ó Ú ö ö ő ő ó ó ö ö ó ö ó ó ó ö ö ő ö Ú ó ó ó ü ú ú ű
2019. április II.a, II.b
A program részben az Emberi Erőforrások Minisztériuma a megbízásából a Nemzeti Tehetség g Program éss az Emberi Támogatáskezelő által meghirdetett NTP TMV 18 0139 azonosítószámú pályázati támogatásból
Kémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai
Kémiai átalakulások 9. hét A kémiai reakció: kötések felbomlása, új kötések kialakulása - az atomok vegyértékelektronszerkezetében történik változás egyirányú (irreverzibilis) vagy megfordítható (reverzibilis)