A feladatsorok összeállításánál felhasználtuk a Nemzeti Tankönyvkiadó Gyakorló és érettségire felkészítő feladatgyűjtemény I III. példatárát. I.
|
|
- Katalin Vincze
- 9 évvel ezelőtt
- Látták:
Átírás
1 Orosz Gyula, 005. november Középszintű érettségi feladatsorok és megoldásaik Összeállította: Orosz Gyula; dátum: 005. november A feladatsorok összeállításánál felhasználtuk a Nemzeti Tankönyvkiadó Gyakorló és érettségire felkészítő feladatgyűjtemény I III. példatárát. I. rész 1. feladat Pista kíváncsi volt, hogy szabályos-e házilag gyártott dobókockája, ezért 100-szor feldobta a kockát, s a dobási eredményeket lejegyezte. Összesítés után az alábbi táblázatot kapta: A dobott szám: Előfordulások száma: Mennyi a 100 dobás eredményéből álló adathalmaz a) módusza; b) mediánja; c) átlaga? (). feladat Hány centiméterrel kell megnövelni egy kör sugarát, ha azt szeretnénk, hogy a keletkezett új kör kerülete 0 cm-rel legyen nagyobb a réginél? () 3. feladat Egy könyvkereskedő az egyik könyv árát 5%-kal leszállította, s így a vevők 8%-kal több könyvet vásároltak. Hány százalékkal nőtt a könyv eladásából származó tervezett bevétel, ha az összes könyvet sikerült eladni? () 4. feladat Melyik igaz, melyik hamis az alábbi állítások közül? (Válaszait indokolja!) a) Van olyan deltoid, amely valamelyik átlójának behúzásával felbontható két egybevágó háromszögre. b) Minden deltoid felbontható valamelyik átlójának behúzásával két egyenlő szárú háromszögre. c) Ha egy deltoid húrnégyszög, akkor van két szemköztes derékszöge. d) Ha egy húrnégyszögben két szemköztes szög derékszög, akkor a négyszög deltoid. () 5. feladat Melyik az a legkisebb pozitív egész szám, amellyel 666-ot megszorozva négyzetszámot kapunk eredményül? () 1
2 Orosz Gyula, 005. november 6. feladat Mely pontokban metszi a derékszögű koordinátarendszer x és y tengelyét az f: x log (x + 8) függvény grafikonja? 7. feladat x Oldja meg a valós számok halmazán: 0. 3 x () () 8. feladat Egyenlő szárú háromszög szárainak hossza 10 cm, területe 5 cm. Mekkora lehet a háromszög alapja? () 9. feladat Egy számsorozat bármely tagja az előző tag háromszorosa. Határozza meg a sorozat 0. tagját, ha a 1. tag értéke! 81 () 10. feladat Az e egyenes áthalad a derékszögű koordinátarendszer A( ; 3) és B(1; 9) pontjain. Határozza meg az egyenes egyenletét! () 11. feladat Öt cédulára felírtuk az 1,, 3, 4, 5 számokat, majd az összekevert cédulákat véletlenszerűen egymás mögé téve egy ötjegyű számot kaptunk. Mennyi annak a valószínűsége, hogy az így kapott szám osztható 6-tal? ()
3 Orosz Gyula, 005. november II./A rész 1. feladat A föld felszínéről kilőtt lövedék levegőben megtett röppályáját az f(x) = x 0,1x függvény grafikonja írja le. (A függvény a felszíntől mért magasságot adja meg a vízszintes elmozdulás függvényében.) A lövedék épp a tervezett célban csapódik a földbe. a) Mi az f függvény - fizikai tartalomnak megfelelő - értelmezési tartománya? b) Mekkora a lőtávolság? c) Mekkora a lövedék által elért legnagyobb magasság? d) Ábrázolja a függvényt! (1) 13. feladat Hány olyan négyjegyű természetes szám van, amely -vel osztva 1, 3-mal osztva és 5-tel osztva 3 maradékot ad? (1) 14. feladat Az alábbi táblázatban az 1990 és 00 közötti néhány évben a személyi sérüléssel járó közúti közlekedési balesetekről soroltunk fel néhány adatot Balesetek száma Ebből: járművezető hibája gyalogos hibája műszaki hiba Ittasan okozott balesetek száma Ebből: járművezető hibája gyalogos hibája Meghalt személyek száma Sérült személyek száma a) Egy-egy átlagos napra hány baleset, ittasan okozott baleset, személyi sérülés, halállal végződő sérülés jutott 1990-ben és 00-ben? (365 nappal számoljunk.) () b) Mekkora 1990-ben és 00-ben a gyalogosok hibájából, illetve a műszaki hibából történt balesetek százalékos aránya? () c) Határozzuk meg, hogy 1990-ben és 00-ben az ittasan okozott balesetek hány százalékát okozták az ittas gyalogosok! Állapítsuk meg azt is, hogy 001-ben és 00-ben az előző évihez képest hány százalékkal változott az ittas járművezetők, illetve az ittas gyalogosok által okozott balesetek száma! (6 pont) 3
4 Orosz Gyula, 005. november II./B rész A feladatok közül tetszés szerint választott kettőt kell megoldania. 15. feladat Oldja meg a 3 4 x x egyenlőtlenséget, ha x <! (17 pont) 16. feladat Egy épület a lábától egyenletesen lejtő úton mért 4 méter távolságból 35 50, és a lejtőn 8 méterrel még lejjebbről es szög alatt látszik. a) Mekkora távolságra van légvonalban az épület teteje a második mérési ponttól? b) Milyen magas az épület? (17 pont) 17. feladat D P C Az ABCD négyzet oldala 10 egység hosszúságú. Egy P pont az ábra szerinti AC egyenesen A-tól és C-től távolodva mozog v sebességgel úgy, hogy kezdetben a C pontban van. Határozzuk meg az ABP háromszög kerületét és területét A B a) az eltelt idő függvényében; b) a P pontnak az AD egyenestől való távolsága függvényében! (17 pont) 4
5 Orosz Gyula, 005. november Orosz Gyula 005. novemberi feladatsorának megoldásai és pontozási útmutatója I. rész 1. feladat a) A módusz 6; b) a medián 4; c) az átlag = 3,86. Összesen:. feladat Ha a kör eredeti sugara r cm, és x cm-es a növelés, akkor (r + x) = r + 0. Innen x = 10 3,18 (cm). Összesen: 3. feladat Ha B jelöli a tervezett bevételt, akkor az új bevétel B 0,95 1,08 = 1,06B. A növekedés,6%-os volt. Összesen: 4. feladat a) Igaz. A tükörtengely átló behúzásával minden deltoid két egybevágó háromszögre bontható. b) Hamis. Ellenpélda a konkáv deltoid. c) Igaz. Húrnégyszögben két-két szemközti szög összege 180, s a deltoidnak mindig van két tükrös helyzetű szemköztes szögpárja. d) Hamis. Ellenpélda pl. a nem egyenlő oldalú téglalap, vagy az ábrán látható, nem tengelyesen szimmetrikus négyszög. Összesen: 5. feladat 666 = 3 37, a keresett szám 37 = 74. (Pontosan azok a számok négyzetszámok, amelyek prímtényezős felbontásában minden prím páros kitevőn szerepel.) Összesen: 5
6 Orosz Gyula, 005. november 6. feladat Az f függvénygörbe y = log (x + 8) egyenletéből: ha x = 0, akkor y = 3; ha pedig y = 0, akkor x = 7. Az f függvény görbéje az y tengelyt a (0; 3), az x tengelyt pedig a ( 7; 0) pontban metszi. Összesen: 7. feladat Egy tört akkor negatív, ha a számlálója és a nevezője ellentétes előjelű. A számláló pozitív és a nevező negatív, ha x > 3; a számláló negatív (ill. zérus) és a nevező pozitív, ha x. Eredmény: x ] ; ] ]3; ]. Összesen: 8. feladat A szárakat b-vel, az általuk bezárt szöget -val jelölve a trigonometrikus területképlet b b sin alapján t =. Innen 5 = 50sin, vagyis sin = 0,5. Két megoldás van: 1 = 30 vagy = 150. Összesen: 9. feladat A mértani sorozat hányadosa 3, így a 0. tag = 3 4 = feladat 9 3 Az egyenes meredeksége m = =, 1 ( ) az egyenlete e: y = x feladat A számjegyek összege 15, a szám mindig osztható 3-mal. Az utolsó helyiértéken vagy 4 állhat. Összesen: Összesen: Az öt egyformán valószínű lehetőségből kettő felel meg, a keresett valószínűség 5. Összesen: 6
7 Orosz Gyula, 005. november II./A rész 1. feladat x 0,1x = x(1 0,1x), így a fv. képe olyan parabola, melynek t.metszete x=0 és x=10. a) A szöveg alapján a függvény értelmezési tartománya a kilövés időpontjától a földre érkezés időpontjáig, a föld felszínével párhuzamosan megtett útszakasz: D f = [0; 10]. b) A lőtávolság 10 (egység). c) A parabola maximumpontja a zérushelyek átlagánál van. f(5) =,5 (egység). Összesen: 1 Megjegyzések: a) A függvény grafikonjának ábrázolásáért - annak tartalmától és pontosságától függően - arányos részpontszám adható. b) Pl. indoklás nélkül is elfogadható az ax + bx + c másodfokú kifejezés szélsőérték b helyére a tanult x összefüggés alkalmazása. a 13. feladat I. megoldása Ha a keresett számok -vel osztva 1 maradékot adnak, akkor páratlanok; továbbá ha 5-tel osztva 3 maradékot adnak, akkor 3-ra végződnek. (A 8 végződés nem lehetséges.) Az 1003, 1013, 103, 1033, számok közül a legkisebb megfelelő az Mivel [; 3; 5] = 30, a keresett számok egy 30 különbségű számtani sorozat elemei: 1013, 1043, 1073, 1103, = 99, tehát a tagok száma 300. Összesen: feladat II. megoldása A keresett négyjegyű számok egyesek helyén álló (utolsó) számjegye 3-as. A tízesek és a százasok helyiértékén álló két számjegy = 100-féle értéket vehet fel. Végül az ezres helyiértéken lévő számjegy lehet 1, 4 vagy 7, ha az utolsó három számjegy maradéka 3-mal osztva 1;, 5 vagy 8, ha az utolsó három számjegy maradéka 3-mal osztva 0; 3, 6 vagy 9, ha az utolsó három számjegy maradéka 3-mal osztva. Vagyis az első számjegy az utolsó három számjegytől függetlenül mindig 3-féle lehet; így a megfelelő négyjegyű számok száma = 300. Összesen: 1 7
8 Orosz Gyula, 005. november 13. feladat III. megoldása (befejezés) 30 szomszédos egész szám között mindig pontosan egy olyan szám van, amely eleget tesz a feltételeknek. Az 1000-től 9999-ig terjedő számok felbonthatók 300 darab 30 szomszédos számból álló blokkra, így tehát összesen 300 megfelelő szám található. 14. feladat Az adatokat az alábbi táblázatokban tüntettük fel. (A feladat szövege az 1990-es és 00- es értékekre kérdez rá; a teljesség kedvéért feltüntettük a közbülső számadatokat is.) a) Balesetek száma ebből egy nap átlagosan 76, 47,9 50,7 53,9 Ittasan okozott balesetek száma ebből egy nap átlagosan 11,7 5,6 5,9 6,7 Meghalt személyek száma ebből egy nap átlagosan 6,7 3,3 3,4 3,9 Sérült személyek száma ebből egy nap átlagosan 101,4 6, 66, 71, b) Balesetek száma Ebből: gyalogos hibája százalékos arány 1,3 10,8 11,0 10, műszaki hiba százalékos arány 0,87 0,74 0,44 0,53 c) Ittasan okozott balesetek száma Ebből: járművezető hibája gyalogos hibája egyik sem 10 5 Gyalogosok aránya (%) 11,9 11,3 9,7 9,3 Tehát az ittasan okozott balesetek 11,9, illetve 9,3%-át okozták az említett két évben az ittas gyalogosok. Ittas járművezetők esetében 000 és 001 között 187-ről 198-ra, 001 és 00 között ról 09-re nőtt a balesetek száma. A növekedés 1, 055 és , 1457 miatt rendre 5,5%, illetve 14,6%. Ittas gyalogosok esetében 000 és 001 között 33-ról 08-ra csökkent, 001 és között pedig 08-ról 6-ra nőtt a balesetek száma. 0, 897 és , 0865, így a változás 10,7%-os csökkenés, illetve 8,7%-os növekedés. Összesen: 1 8
9 Orosz Gyula, 005. november 15. feladat Feltétel: ha x <, akkor < x <. II./B rész Az y = x helyettesítéssel az egyenlőtlenség 3y 8y + 5 3y 8y + 5 = 0, ha y = 1 vagy y = 3 5, így 0 alakba írható. B E h A 3y 8y + 5 = 3 y 1 y 5 3 0, ha y 5 1 vagy 3 y. Visszahelyettesítve és az exp.. fv. szigorúan monotonitását felhasználva x 1, ha x 0; 5 vagy x 5, ha log 3 3 0,737 x. A feltétellel összevetve kapjuk az eredményt: < x 0 vagy 0,737 x <. Összesen: 17 pont Megjegyzés: A másodfokú egyenlőtlenség megoldásakor a grafikus módszer is alkalmazható. x C z y A szinusztétel alapján D z y 16. feladat Az ábra szerinti AB épület h magasságát keressük, ha az AD lejtő C és D pontjából az ACB = = és ADB = = látószögeket mértünk. Az ábra jelöléseivel x = 4 méter és y = 8 méter. a) A keresett z távolságot a BCD háromszögből határozhatjuk meg, melyben három adatot ismerünk: CD=8, CDB = =19 30 és BCD =180 ACB = Ekkor persze CBD =180 ( ) = sin sin BCD CBD sin BCD sin144 10' innen z y 8 58,879 58,3m. sin CBD sin16 0', b) A BCD háromszögből először meghatározzuk a BC oldalt: sin sin19 30' innen BC y 8 33,353 33,m. sin CBD sin16 0' BC y sin sin CBD, 9
10 Orosz Gyula, 005. november Ekkor az ABC háromszögben ismert két oldal és a közbezárt szög, a keresett h szakaszt a koszinusz-tétellel határozhatjuk meg. h = x + BC x BC cos, innen h = , ,353 cos35 50, h 19,678. Az épület magassága h 19,7 méter. Összesen: 17 pont Második megoldás a b) feladatra: Észrevehetjük, hogy z kiszámításával az ADB háromszögben három adat ismert: BD = z = 58,879; AD = x + y = 5; és ADB = = A keresett AB = h szakaszt közvetlenül (BC kiszámolása nélkül) meghatározhatjuk a koszinusz-tétel segítségével. h = z + (x + y) z (x + y) cos, innen h = 58, ,879 5 cos19 30, h 19,678 19,7. Az épület magassága h 19,7 méter. D Megjegyzések: Ha a megoldó helytelenül alkalmazta a mértékegység átváltást (pl helyett 19,30 kal számolt), de egyébként megoldása tartalmilag hibátlan, akkor 15 pontot kaphat. 17. feladat = A 50 a) Ha az eltelt idő t, akkor PC = vt, PP = BC + 5vt területegység (ábra). C B P P PC vt AB PP' = 10, s a terület T = A koszinusz-tételből BP = BC + CP BC CP cos135, innen BP = v t 10 vt, a háromszög kerülete K = AB + AP + PB = vt 100 v t 10 vt egység. b) A P pont és az AD egyenes távolsága megegyezik PP -vel. Ha PP = z, akkor AP = z, CP = ( z 10), 1 BP 100 ( z 10) 10 ( z 10) z 0z z A terület T 5z, a kerület K 10 z z 0z 100 egység. Összesen: 17 pont 10
Próbaérettségi feladatsor_b NÉV: osztály Elért pont:
Próbaérettségi feladatsor_b NÉV: osztály Elért pont: I. rész A feladatsor 12 példából áll, a megoldásokkal maimum 30 pont szerezhető. A kidolgozásra 45 perc fordítható. 1. feladat Egy derékszögű háromszög
Próbaérettségi feladatsor_a NÉV: osztály Elért pont:
Próbaérettségi feladatsor_a NÉV: osztály Elért pont: I. rész A feladatsor 1 példából áll, a megoldásokkal maximum 30 pont szerezhető. A kidolgozásra 45 perc fordítható. 1. feladat Egy osztály tanulói a
Az egyenes egyenlete: 2 pont. Az összevont alak: 1 pont. Melyik ábrán látható e függvény grafikonjának egy részlete?
1. Írja fel annak az egyenesnek az egyenletét, amely áthalad az (1; 3) ponton, és egyik normálvektora a (8; 1) vektor! Az egyenes egyenlete: 2. Végezze el a következő műveleteket, és vonja össze az egynemű
Függvények Megoldások
Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
HASONLÓSÁGGAL KAPCSOLATOS FELADATOK. 5 cm 3 cm. 2,4 cm
HASONLÓSÁGGAL KAPCSOLATOS FELADATOK Egyszerű, hasonlósággal kapcsolatos feladatok 1. Határozd meg az x, y és z szakaszok hosszát! y cm cm z x 2, cm 2. Határozd meg az x, y, z és u szakaszok hosszát! x
Koordináta-geometria feladatok (emelt szint)
Koordináta-geometria feladatok (emelt szint) 1. (ESZÉV Minta (2) 2004.05/7) Egy ABC háromszögben CAB = 30, az ACB = 45. A háromszög két csúcsának koordinátái: A(2; 2) és C(4; 2). Határozza meg a harmadik
NULLADIK MATEMATIKA ZÁRTHELYI
A NULLADIK MATEMATIKA ZÁRTHELYI 20-09-2 Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! Csak és kizárólag tollal tölthető ki a feladatlap, a ceruzával
Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam
Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Halmazok:. Adott két halmaz: A = kétjegyű pozitív, 4-gyel osztható számok B = 0-nél nagyobb, de 0-nál nem nagyobb pozitív egész
Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november. I. rész
Pataki János, november Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november I rész feladat Oldja meg az alábbi egyenleteket: a) log 7 log log log 7 ; b) ( )
8. feladatsor. Kisérettségi feladatsorok matematikából. 8. feladatsor. I. rész
Kisérettségi feladatsorok matematikából I. rész. Egy deltoid két szomszédos szöge 7 és 0. Mekkora lehet a hiányzó két szög? pont. Hozza egyszerűbb alakra a kifejezést, majd számolja ki az értékét, ha a=
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
Gyakorló feladatok. 2. Matematikai indukcióval bizonyítsuk be, hogy n N : 5 2 4n n (n + 1) 2 n (n + 1) (2n + 1) 6
Gyakorló feladatok 1. Ismertesd a matematikai indukció logikai sémáját, magyarázzuk meg a bizonyítás lényegét. Bizonyítsuk be, hogy minden n természetes számra 1 + 3 + + (n 1) = n.. Matematikai indukcióval
Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint
TÁMOP-3.1.4-08/-009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint Vasvár, 010.
b) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2
1) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) b) c) ( ) ) Határozza meg az 1. feladatban megadott, ; intervallumon
Érettségi feladatok: Síkgeometria 1/6
Érettségi feladatok: Síkgeometria 1/6 2005. május 10. 4. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! A: A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra
Gyökvonás. Másodfokú egyenlet. 3. Az egyenlet megoldása nélkül határozd meg, hogy a következő egyenleteknek mennyi gyöke van!
1. Melyik a nagyobb? a) 6 5 vagy 5 7 b) vagy 11 10 vagy Gyökvonás 5 11 vagy 6 8 55 e) 7 vagy 60 16 1. Hozd egyszerűbb alakra a következő kifejezéseket! a) 7 18 b) 1 5 75 8 160 810 650 8a 5 a 7a e) 15a
3 függvény. Számítsd ki az f 4 f 3 f 3 f 4. egyenlet valós megoldásait! 3 1, 3 és 5 3 1
Érettségi, M, I-es feladatsor, természettudomány.. Számítsd ki a C! összeget! log 4. Határozd meg a. Számítsd ki az egyenlet valós megoldásait! összeg értékét, ha és az 4. Adott az f : 0,, f. Adottak az
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
4. A kézfogások száma pont Összesen: 2 pont
I. 1. A páros számokat tartalmazó részhalmazok: 6 ; 8 ; 6 ; 8. { } { } { }. 5 ( a ) 17 Összesen: t = = a a Összesen: ot kaphat a vizsgázó, ha csak két helyes részhalmazt ír fel. Szintén jár, ha a helyes
I. A gyökvonás. cd c) 6 d) 2 xx. 2 c) Szakaszvizsgára gyakorló feladatok 10. évfolyam. Kedves 10. osztályos diákok!
Kedves 10. osztályos diákok! Szakaszvizsgára gyakorló feladatok 10. évfolyam Közeleg a szakaszvizsga időpontja, amelyre 019. április 1-én kerül sor. A könnyebb felkészülés érdekében adjuk közre ezt a feladatsort,
1. Feladatsor. I. rész
. feladatsor. Feladatsor I. rész. Mely x valós számokra lesz ebben a sorrendben a cos x, a sinx és a tg x egy mértani sorozat három egymást követő tagja?... (). Egy rombusz egyik átlója 0 cm, beírható
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4
1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)
1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
MATEMATIKA ÉRETTSÉGI október 20. KÖZÉPSZINT I.
MATEMATIKA ÉRETTSÉGI 009. október 0. KÖZÉPSZINT I. 1) Számítsa ki 5 és 11 számtani és mértani közepét! A számtani közép értéke: 7. A mértani közép értéke: 55. Összesen: pont ) Legyen az A halmaz a 10-nél
Koordináta-geometria feladatok (középszint)
Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria 1) Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra
Számelmélet Megoldások
Számelmélet Megoldások 1) Egy számtani sorozat második tagja 17, harmadik tagja 1. a) Mekkora az első 150 tag összege? (5 pont) Kiszámoltuk ebben a sorozatban az első 111 tag összegét: 5 863. b) Igaz-e,
Hatvány, gyök, normálalak
Hatvány, gyök, normálalak 1. Számítsd ki a következő hatványok pontos értékét! 3 5 3 3 1 4 3 3 4 1 7 3 3 75 100 3 0,8 ( ) 6 3 1 3 5 3 1 3 0 999. 3. Számológép használata nélkül számítsd ki a következő
3. A megoldóképletből a gyökök: x 1 = 7 és x 2 = Egy óra 30, így a mutatók szöge: 150º. 3 pont. Az éves kamat: 6,5%-os. Összesen: 2 pont.
. 3650 =,065 0000 Az éves kamat: 6,5%-os I.. D C b A a B AC = a + b BD = b a 3. A megoldóképletből a gyökök: x = 7 és x = 5. Ellenőrzés 4. Egy óra 30, így a mutatók szöge: 50º. írásbeli vizsga 05 3 / 007.
MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5.
MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5. I. rész Fontos tudnivalók A megoldások sorrendje tetszőleges. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x
3. MINTAFELADATSOR KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-01-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz MATEMATIKA 3. MINTAFELADATSOR KÖZÉPSZINT 015 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Oktatáskutató
Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2
Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Két iskola tanulói műveltségi vetélkedőn vettek részt. A 100
Síkgeometria 12. évfolyam. Szögek, szögpárok és fajtáik
Szögek, szögpárok és fajtáik Szögfajták: Jelölés: Mindkét esetben: α + β = 180 Pótszögek: Olyan szögek, amelyeknek összege 90. Oldalak szerint csoportosítva A háromszögek Általános háromszög: Minden oldala
XVIII. Nemzetközi Magyar Matematika Verseny
9. osztály 1. feladat: Oldjuk meg a természetes számok halmazán az 1 1 1 egyenletet? x y 009 Kántor Sándor (Debrecen). feladat: B Az ABCD deltoidban az A és C csúcsnál derékszög van, és a BD átló 1 cm.
1. Tekintsük a következő két halmazt: G = {1; 2; 3; 4; 6; 12} és H = {1; 2; 4; 8; 16}. Elemeik felsorolásával adja meg a G H és a H \ G halmazokat!
1. Tekintsük a következő két halmazt: G = {1; 2; 3; 4; 6; 12} és H = {1; 2; 4; 8; 16}. Elemeik felsorolásával adja meg a G H és a H \ G halmazokat! G H = H \ G = 2. Ha 1 kg szalámi ára 2800 Ft, akkor hány
Trigonometria. Szögfüggvények alkalmazása derékszög háromszögekben. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1
Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Trigonometria Szögfüggvények alkalmazása derékszög háromszögekben 1. Az ABC hegyesszög háromszögben BC = 14 cm, AC = 1 cm, a BCA szög nagysága
Racionális számok: Azok a számok, amelyek felírhatók két egész szám hányadosaként ( p q
Szóbeli tételek matematikából 1. tétel 1/a Számhalmazok definíciója, jele (természetes számok, egész számok, racionális számok, valós számok) Természetes számok: A pozitív egész számok és a 0. Jele: N
1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét!
Függvények 1 1. Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon!. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! 3. Ábrázolja + 1 - függvényt a [ ;] -on! 4. Az f függvényt a valós
10. Koordinátageometria
I. Nulladik ZH-ban láttuk: 0. Koordinátageometria. Melyek azok a P x; y pontok, amelyek koordinátái kielégítik az Ábrázolja a megoldáshalmazt a koordináta-síkon! x y x 0 egyenlőtlenséget? ELTE 00. szeptember
I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b?
1. Feladatsor I. rész 1. Adott két halmaz. A a 9-nél kisebb páros pozitív egészek; B a 30-nál kisebb, 6-tal osztható pozitív egészek halmaza. Adja meg az A B és a B \ A halmazokat!. Andi keresett két olyan
MATEMATIKA ÉRETTSÉGI május 10. KÖZÉP SZINT I.
1) Adott két pont: A ; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. MATEMATIKA ÉRETTSÉGI 005. május 10. KÖZÉP SZINT I. és B 1; Írja fel az AB szakasz 1 1 F ; F ;1 ) Az ábrán egy ; intervallumon
7. 17 éves 2 pont Összesen: 2 pont
1. { 3;4;5} { 3; 4;5;6;7;8;9;10} A B = B C = A \ B = {1; }. 14 Nem bontható. I. 3. A) igaz B) hamis C) igaz jó válasz esetén, 1 jó válasz esetén 0 pont jár. 4. [ ; ] Más helyes jelölés is elfogadható.
I. rész. 4. Határozza meg a valós számok halmazán értelmezett x x 2 4x függvény szélsőértékét és annak helyét! Válaszát indokolja!
Feladatsor I. rész Adott két halmaz. A a 9-nél kisebb páros pozitív egészek; B a 30-nál kisebb, 6-tal osztható pozitív egészek halmaza. Adja meg az A B és a B \ A halmazokat!. Adja meg az alábbi állítások
Megyei matematikaverseny évfolyam 2. forduló
Megyei matematikaverseny 0. 9. évfolyam. forduló. Mennyi a tizenkilencedik prím és a tizenkilencedik összetett szám szorzata? (A) 00 (B) 0 (C) 0 (D) 04 (E) Az előző válaszok egyike sem helyes.. Az 000
Lehet hogy igaz, de nem biztos. Biztosan igaz. Lehetetlen. A paralelogrammának van szimmetria-középpontja. b) A trapéznak két szimmetriatengelye van.
Geometria, sokszögek, szögek, -, 2004_01/5 Lili rajzolt néhány síkidomot: egy háromszöget, egy deltoidot, egy paralelogrammát és egy trapézt. A következő állítások ezekre vonatkoznak. Tegyél * jelet a
MATEMATIKA ÉRETTSÉGI 2008. május 06. KÖZÉPSZINT I.
1) Adja meg a Például: 1 ; 8 8 M 1 ; 10 5 MATEMATIKA ÉRETTSÉGI 008. május 06. KÖZÉPSZINT I. nyílt intervallum két különböző elemét! ( pont) ( pont) ) Egy 7-tagú társaságban mindenki mindenkivel egyszer
Országos Középiskolai Tanulmányi Verseny 2011/2012 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló - megoldások. 1 pont Ekkor
Okta tási Hivatal Országos Középiskolai Tanulmányi Verseny 0/0 Matematika I. kategória (SZAKKÖZÉPISKOLA). forduló - megoldások. Az valós számra teljesül a 3 sin sin cos sin egyenlőség. Milyen értékeket
2. Egy mértani sorozat második tagja 6, harmadik tagja 18. Adja meg a sorozat ötödik tagját!
1. Egy 27 fős osztályban mindenki tesz érettségi vizsgát angolból vagy németből. 23 diák vizsgázik angolból, 12 diák pedig németből. Hány olyan diák van az osztályban, aki angolból és németből is tesz
MATEMATIKA ÉRETTSÉGI május 8. EMELT SZINT
MATEMATIKA ÉRETTSÉGI 007. május 8. EMELT SZINT 1) Oldja meg a valós számok halmazán az alábbi egyenletet! x x 4 log 9 10 sin x x 6 I. (11 pont) sin 1 lg1 0 log 9 9 x x 4 Így az 10 10 egyenletet kell megoldani,
} számtani sorozat első tagja és differenciája is 4. Adja meg a sorozat 26. tagját! A = { } 1 pont. B = { } 1 pont. x =
. Az { a n } számtani sorozat első tagja és differenciája is 4. Adja meg a sorozat 26. tagját! a = 26 2. Az A és B halmazokról tudjuk, hogy A B = {;2;3;4;5;6}, A \ B = {;4} és A B = {2;5}. Sorolja fel
Feladatok a májusi emelt szintű matematika érettségi példáihoz Hraskó András
Feladatok a 2010. májusi emelt szintű matematika érettségi példáihoz Hraskó András 1. Halmazok, halmazműveletek, halmazok számossága, halmazműveletek és logikai műveletek kapcsolata. HA.1.1. Adott a síkon
Érettségi feladatok: Koordináta-geometria 1/5
Érettségi feladatok: Koordináta-geometria 1/5 2003. Próba/ 13. Adott egy háromszög három csúcspontja a koordinátáival: A( 4; 4), B(4; 4) és C( 4; 8). Számítsa ki a C csúcsból induló súlyvonal és az A csúcsból
JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 1. FELADATSORHOZ
JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 1. FELADATSORHOZ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a tanári gyakorlatnak
Feladatok MATEMATIKÁBÓL II.
Feladatok MATEMATIKÁBÓL a 12. évfolyam számára II. 1. Alakítsuk át a következő kifejezéseket úgy, hogy teljes négyzetek jelenjenek meg: a) x 2 2x + b) x 2 6x + 10 c) x 2 + x + 1 d) x 2 12x + 11 e) 2x 2
Abszolútértékes egyenlôtlenségek
Abszolútértékes egyenlôtlenségek 575. a) $, $ ; b) < - vagy $, # - vagy > 4. 5 576. a) =, =- 6, 5 =, =-, 7 =, 4 = 5; b) nincs megoldás;! c), = - ; d) =-. Abszolútértékes egyenlôtlenségek 577. a) - # #,
Kisérettségi feladatsorok matematikából
Kisérettségi feladatsorok matematikából. feladatsor I. rész. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) Ha két egész szám összege páratlan, akkor a szorzatuk páros. b)
2. Adott a valós számok halmazán értelmezett f ( x) 3. Oldja meg a [ π; π] zárt intervallumon a. A \ B = { } 2 pont. függvény.
1. Az A halmaz elemei a ( 5)-nél nagyobb, de 2-nél kisebb egész számok. B a pozitív egész számok halmaza. Elemeinek felsorolásával adja meg az A \ B halmazt! A \ B = { } 2. Adott a valós számok halmazán
Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)
Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.
2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont)
(11/1) Függvények 1 1) Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon! (pont) ) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) 3) Ábrázolja + 1 - függvényt a [ ;] -on! (3pont)
Feladatok MATEMATIKÁBÓL II.
Feladatok MATEMATIKÁBÓL a 12. évfolyam számára II. 1. Alakítsuk át a következő kifejezéseket úgy, hogy teljes négyzetek jelenjenek meg: a) x 2 2x + b) x 2 6x + 10 c) x 2 + x + 1 d) x 2 12x + 11 e) 2x 2
Geometriai feladatok, 9. évfolyam
Geometriai feladatok, 9. évfolyam Szögek 1. Nevezzük meg az ábrán látható szögpárokat. Mekkora a nagyságuk, ha α =52 o fok? 2. Mekkora az a szög, amelyik a, az egyenesszög 1/3-ad része b, pótszögénél 32
Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 1. forduló haladók III. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 0/03-as tanév. forduló haladók III. kategória Megoldások és javítási útmutató. Egy kör kerületére felírjuk -től 3-ig az egészeket
törtet, ha a 1. Az egyszerűsített alak: 2 pont
1. Egyszerűsítse az 3 2 a + a a + 1 törtet, ha a 1. Az egyszerűsített alak: 2. Milyen számjegy állhat az X helyén, ha a négyjegyű 361 X szám 6-tal osztható? X = 3. Minden szekrény barna. Válassza ki az
Kisérettségi feladatgyűjtemény
Kisérettségi feladatgyűjtemény Halmazok 1. Egy fordítóiroda angol és német fordítást vállal. Az irodában 50 fordító dolgozik, akiknek 70%-a angol nyelven, 50%-a német nyelven fordít. Hány fordító dolgozik
A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató
Oktatási Hivatal 04/0 tanévi Országos Középiskolai Tanulmányi Verseny első forduló MTEMTIK I KTEGÓRI (SZKKÖZÉPISKOL) Javítási-értékelési útmutató Határozza meg a tízes számrendszerbeli x = abba és y =
Érettségi feladatok: Trigonometria 1 /6
Érettségi feladatok: Trigonometria 1 /6 2003. Próba 14. Egy hajó a Csendes-óceán egy szigetéről elindulva 40 perc alatt 24 km-t haladt észak felé, majd az eredeti haladási irányhoz képest 65 -ot nyugat
Érettségi feladatok Koordinátageometria_rendszerezve / 5
Érettségi feladatok Koordinátageometria_rendszerezve 2005-2013 1/ 5 Vektorok 2005. május 28./12. Adottak az a (4; 3) és b ( 2; 1) vektorok. a) Adja meg az a hosszát! b) Számítsa ki az a + b koordinátáit!
Az egyszerűsítés utáni alak:
1. gyszerűsítse a következő törtet, ahol b 6. 2 b 36 b 6 Az egyszerűsítés utáni alak: 2. A 2, 4 és 5 számjegyek mindegyikének felhasználásával elkészítjük az összes, különböző számjegyekből álló háromjegyű
Németh László Matematikaverseny április 16. A osztályosok feladatainak javítókulcsa
Németh László Matematikaverseny 007. április 16. A 9-10. osztályosok feladatainak javítókulcsa Feladatok csak 9. osztályosoknak 1. feladat a) Vegyük észre, hogy 7 + 5 felírható 1 + 3 + 6 + alakban, így
1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500
1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 2. Mit nevezünk ellentett számok-nak? Ábrázold számegyenesen a következő számokat
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Határozd meg a szakasz hosszát, ha a végpontok koordinátái: A ( 1; ) és B (5; )! A szakasz hosszához számítsuk ki a két pont távolságát: d AB = AB = (5 ( 1)) + ( ) = 6 + 1 = 7 6,08.. Határozd
VI. Felkészítő feladatsor
VI. Felkészítő feladatsor I. 1. Egyszerűsítse az y 3 y 2 y 1 törtet, ha y 1. 2. Milyen számjegy állhat az X helyén, ha a négyjegyű 450X szám 6-tal osztható? 3. Minden utca zajos. Válassza ki az alábbiak
Koordinátageometria. , azaz ( ) a B halmazt pontosan azok a pontok alkotják, amelynek koordinátáira:
005-0XX Emelt szint Koordinátageometria 1) a) Egy derékszögű háromszög egyik oldalegyenese valamelyik koordinátatengely, egy másik oldalegyenesének egyenlete x + y = 10, egyik csúcsa az origó. Hány ilyen
Matematika kisérettségi I. rész 45 perc NÉV:...
Matematika kisérettségi I. rész 45 perc NÉV:... 1. Az A halmaz elemei a háromnál nagyobb egyjegyű számok, a B halmaz elemei pedig a húsznál kisebb pozitív páratlan számok. Sorolja fel az halmaz elemeit!
Szabolcs-Szatmár-Bereg megyei Ambrózy Géza Matematikaverseny 2012/2013 II. forduló 5. osztály
5. osztály 1. Hány olyan téglalap van, amelynek minden oldala centiméterben kifejezve egész szám, és a területe 60 cm 2? 2. Adott a síkon egy ABC szabályos háromszög. Keresd meg a síkon az összes olyan
Feladatok a logaritmus témaköréhez 11. osztály, középszint
TÁMOP-4-08/-009-00 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a logaritmus témaköréhez osztály, középszint Vasvár, 00 május összeállította: Nagy
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika középszint 080 ÉRETTSÉGI VIZSGA 009. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:
7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel?
7. Számelmélet I. Nulladik ZH-ban láttuk: 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? ELTE 2006. október 27. (matematika
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 0801 ÉRETTSÉGI VIZSGA 009. május 5. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók
PRÓBAÉRETTSÉGI FELADATSOR:MATEMATIKA, KÖZÉP SZINT. 1.1.) Jelölje a négyzetekbe írt i vagy h betűvel, hogy az állítás igaz vagy hamis k > 0,
FELADATSOR I. rész Felhasználható idő: 45 perc 1.1.) Jelölje a négyzetekbe írt i vagy h betűvel, hogy az állítás igaz vagy hamis k > 0, 1 a) b) k = k 4 16 5 10 4 k = k 5 1..) Az alábbi állítások közül
Az Országos Középiskolai Tanulmányi Verseny tanévi első fordulójának feladatmegoldásai
Az Országos Középiskolai Tanulmányi Verseny 008-009. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára. Határozzuk meg az alábbi egyenletrendszer valós megoldásait. ( x
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria
1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
11. osztály. 1. Oldja meg az egyenletrendszert a valós számok halmazán! (10 pont) Megoldás: A három egyenlet összege: 2 ( + yz + zx) = 22.
osztály Oldja meg az egyenletrendszert a valós számok halmazán! y + yz = 8 yz + z = 9 z + y = 5 (0 pont) Megoldás: A három egyenlet összege: ( + yz + z) = Ebből kivonva az egyenleteket: y =, yz = 6, z
BÖLCS BAGOLY LEVELEZŐS MATEMATIKAVERSENY III. forduló MEGOLDÁSOK
1. Gondoltam egy négyjegyű számot. Az első két számjegy 3, az utolsó kettőé pedig 7, és a középső két számjegyből alkotott szám osztható 4-gyel. Melyik számra gondolhattam? Határozd meg az összes lehetőséget!
Minta 2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR. I. rész
2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR I. rész A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok megoldásához
2004_02/10 Egy derékszögű trapéz alapjainak hossza a, illetve 2a. A rövidebb szára szintén a, a hosszabb b hosszúságú.
Geometria háromszögek, négyszögek 2004_01/10 Az ABC háromszög C csúcsánál derékszög van. A derékszöget a CT és CD szakaszok három egyenlő részre osztják. A CT szakasz a háromszög egyik magassága is egyben.
Nagy András. Feladatok a logaritmus témaköréhez 11. osztály 2010.
Nagy András Feladatok a logaritmus témaköréhez. osztály 00. Feladatok a logaritmus témaköréhez. osztály ) Írd fel a következő egyenlőségeket hatványalakban! a) log 9 = b) log 4 = - c) log 7 = d) lg 0 =
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
1. Az idei tanév a 2018/2019-es. Mindkét évszámnak pontosan négy-négy osztója van. Mennyi a két legnagyobb prímosztó különbsége?
1. Az idei tanév a 2018/2019-es. Mindkét évszámnak pontosan négy-négy osztója van. Mennyi a két legnagyobb prímosztó különbsége? A) 1 B) 336 C) 673 D) 1009 E) 1010 2. BUdapesten a BIciklik kölcsönzésére
A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató
Oktatási Hivatal A 0/04 tanévi Országos Középiskolai Tanulmányi erseny második forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató A 57 olyan háromjegyű szám, amelynek számjegyei
I. A négyzetgyökvonás
Definíció: Négyzetgyök a ( a : a a 0 I. A négyzetgyökvonás a ) jelenti azt a nem negatív számot, amelynek a négyzete a. a 0 b : b b R A négyzetgyök-függvény értéke is csak nem negatív lehet. Ha a b-t abszolút
2. MINTAFELADATSOR KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Oktatáskutató és Fejlesztő Intézet TÁMOP-.1.1-11/1-01-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz MATEMATIKA. MINTAFELADATSOR KÖZÉPSZINT 015 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Oktatáskutató
MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I.
MATEMATIKA ÉRETTSÉGI 006. február 1. KÖZÉPSZINT I. 1) Mennyi annak a mértani sorozatnak a hányadosa, amelynek harmadik tagja 5, hatodik tagja pedig 40? ( pont) 3 1 5 a a q 5 6 1 40 a a q Innen q Összesen:
Másodfokú egyenletek. 2. Ábrázoljuk és jellemezzük a következő,a valós számok halmazán értelmezett függvényeket!
Másodfokú egyenletek 1. Alakítsuk teljes négyzetté a következő kifejezéseket! a.) - 4 + 4 b.) - 6 + 8 c.) + 8 - d.) - 4 + 9 e.) - + 8 - f.) - - 4 + 3 g.) + 8-5 h.) - 4 + 3 i.) -3 + 6 + 1. Ábrázoljuk és