SZEGEDI TUDOMÁNYEGYETEM SZEGEDI ÉLELMISZERIPARI FŐISKOLAI KAR. Tudományos Közlemények
|
|
- Elek Gulyás
- 6 évvel ezelőtt
- Látták:
Átírás
1 SZEGEDI TUDOMÁNYEGYETEM SZEGEDI ÉLELMISZERIPARI FŐISKOLAI KAR Tudományos Közlemények
2 A V Á LTA K O ZÓ R EN D SZER Ű K O M B IN Á LT SZÁ R ÍTÁ S ELM ÉLETE ÉS G YAK O R LA TA Szabó Gábor, Rajkó Róbert, Hodúr Cecília és Papp Gézáné SZTE Szegedi Élelmiszeripari Főiskolai Kar Élelmiszeripari Műveletek és Környezettechnika Tanszék Szeged, Mars tér 7. Tel./Fax: 62/ szabog@szef.u-szeged.hu Ö S S Z E F O G LA L Ó Kísérleteink célja volt a csiperkegomba (Agaricus Bisporus) váltakozó rendszerű kombinált szárításának elméleti és gyakorlati vonatkozásainak tanulmányozása. Vizsgálataink eredményei azt mutatják, hogy a kombinált mikrohullámú és konvektiv szárítás javítja a szárított termék fogyaszhatósági tulajdonságait. A kísérletek többek között azt igazolták, hogy a csak mikrohullámú, ill. a csak konvekciós szárítás alkalmazásával elfogadható termék nem állítható elő. Ugyanakkor megfelelően végrehajtott, váltakozó rendszerű kombinált szárítással könnyű fogyaszthatóságú snack-termék előállítható, kifogástalanul visszanedvesíthető instant-termék azonban nem. Az eredmények azt demonstrálják, hogy a leghatékonyabb szárítási stratégia az konvektiv előszárítás az állandó száradási sebességű periódusban, majd azt követő mikrohullámú szárítás a csökkenő száradási sebesség első periódusában és végül ismét konvektiv szárítás csökkenő száradási sebesség második periódusában a termék nedvességtartalmának egyenletes eloszlása érdekében. Az alkalmazott váltakozó rendszerű kombinált szárítási eljárás legfontosabb előnyei a szárítási idő csökkentése, az egyenletes hőmérséklet eloszlás és a termék puffadásának lehetősége. Bevezetés A szárítástechnológia egyik alapvető feladata a szárítandó anyag tulajdonságának és nedvességátvitelének irányítása, ami lehetővé teszi az előre meghatározott jellemzőkkel rendelkező és megfelelő minőségű termék előállítását (Baker, 1997; Toledo, 1994). A nyersanyag eredeti biológiai, íz- és tápértékének megtartása érdekében a kíméletes szárítási technológiáknak különös jelentősége van és ebből a szempontból egyre fontosabbá válik, a váltakozó rendszerű szárítási módszerek alkalmazása (Szabó és Rigó, 1998; Tulasidas et al., 1995). 122
3 A váltakozó rendszerű kombinált szárítás lehetőséget ad a nedvességátvitel mechanizmusának megváltoztatására, amellyel biztosítható az anyag belsejében lejátszódó folyamatok szabályozása, irányítása és így végeredményben a kívánt tulajdonságú termék előállítása (Szabó et al., 1998; Hodúr et al., 1998). A kívánt minőségű termék előállítását biztosító szárítás, mint technológiai folyamat egyrészt függ az anyag előkészítésétől, másrészt jelentős mértékben függ a folyadék formájában történő nedvességátvitel mechanizmusától, melynek során az oldott anyagok a felület felé vándorolnak. A folyadék formájában történő nedvességátvitel jelentősége erőteljesebb, ha a nedvességvezető képesség és a hönedvesség-vezető képesség által létrehozott nedvességáramok mozgásiránya megegyezik. Ezt a mikrohullámú szárítással biztosíthatjuk. A mikrohullámú vízelvonás egyik jellegzetessége, hogy az általa generált hőmérséklet gradienes a konvektiv szárítástól eltérő nedvességeloszlást idéz elő a száradó anyagban. A diffúziós nedvesség áram sokkal nagyobb az anyag belsejében, mint a felület-közeli rétegekben. A nedvességrétegződési folyamat eredményeként a mélység növekedésével a nedvesség gradiens csökkeni fog, kompenzálandó a gyorsan növekvő diffúzivitást, következésképpen a nedvességcsökkenés a halmaz teljes keresztmetszetére vonatkoztatva sokkal egyenletesebb lesz, mint a konvektiv száradási folyamatban. A váltakozó rendszerű, kombinált mikrohullámú, konvektiv szárítás jelentős mértékben csökkenti a műveleti időt. Vizsgálatainkhoz alkalmazott modell anyag (csiperke gomba - Agaricus Bisporus) szárítási kísérleteivel kívántuk igazolni, hogy a száradó anyag tulajdonságait is fegyelembe vevő szárítási stratégiák megtervezésével, a kolloid-kapilláris pórusos anyagok esetén a klasszikus kombinált szárítástól eltérő eljárással biztosítható a kívánt termékminőség. Anyagok és módszerek A klasszikus kombinálás azt jelenti, hogy bizonyos nedvességkötésig (a szabadon kötött víz, illetve a polimolekuláris, valamint részben a monomolekuláris nedvesség eltávolítására) célszerű a konvektiv hőközlés, a száradás utolsó periódusában, a nedvesség kötési energia növekedése miatt célszerű a mikrohullámú szárítás. Kísérleteink során ettől eltérő eredményre jutottunk. 123
4 A szárítandó objektum jellemzése és piaci jelenősége A gomba magas biológiai értékkel rendelkezik, választékosán elkészíthető, instant levesporok, hús és rizs ételek, raguk adalékanyagai és snack formában is kedvelt a fogyasztók körében. A magyar gombatermés %-a, a gombaexport 90-95%-a csiperke, amelyből ~1% szárítmányként kerül forgalomba. A kis mennyiségű szárítmány többek között azzal magyarázható, hogy kevéssé kidolgozott a jó minőségű gombaszárítás technológiája. Számos eljárással előállíthatunk gombaszárítmányt. Az 1. ábra jó! szemlélteti, hogy a legkiválóbb szárítmány a fagyasztva szárítással előállított termék. A kombinált mikrohullámú-konvekciós szárítással előállított termék ugyanakkor nem elégíti ki az előírt termékminőség követelményeit. Ennek oka minden bizonnyal az alkalmazott szárítási technológia hiányosságaiban keresendő. 1. ábra Különböző szárítási eljárásokkal előállított csiperke gomba* (Agarícus Bisporus) *(Torrínga., Esveld.E., Scheewe.l., Berg.R., Bartels P. (2001). Osmotic dehydration as a pre-treatment before combined microwave-hot-air drying of mushrooms. Journal of Food Engineering Vol. 49. No. 3-4 pp ) I. konvekciós szárítás II. kombinált mikrohullámú-konvekciós szárítás III. mikrohullámú szárítás vákuumban IV. fagyasztva szárítás A gomba természeténél fogva kolloid diszperz anyag, szerkezete alapján pedig kapilláris-pórusos, sejtszövetekből álló test. A folyadék részben, mint sejtlé tölti ki a testeket. Másrészt a kolloid sejtfalak és a sejtekben lévő más kolloid gélek tartalmazzák a folyadékot. Az ilyen típusú anyagok váltakozó rendszerű, mikrohullámmal kombinált szárítása eredményesen megvalósítható. A mikrohullámú szárítás eredményessége nagymértékben termékfüggő és számos tényező befolyásolja, így az anyag geometriája, termikus, fizikai és dielektromos tulajdonságai stb. A hőmérséklet eloszlást mikrohullámú szárításkor a 2. ábra szemlélteti. 2. ábra A gomba két-dimenziós hőmérséklet profilja mikrohullámú szárításkor* *(Ponne, C. T. (1966). Interaction of electromagnetic energy with vegetable food constituents. Ph.D. Thesis, Technical University Eindhoven, NL.) sötét rétegek: alacsony hőmérséklet; világos rétegekek: magas hőmérséklet 124
5 Szabó et ai.: A váltakozó rendszerű kombinált szárítás elmélete és gyakorlata Ezen a jellegzetesen egyenetlen hőmérséklet eloszláson a termék előkezelésével és a váltakozó rendszerű eljárás műveleti paramétereinek helyes megválasztásával javíthatunk. A termékkezelés hatását mutatja a 3. ábra. 3. ábra A mikrohullámú energia téreloszlása 4 cm átmérőjű henger esetére* *(Ponne, C. T. (1966). Interaction of electromagnetic energy with vegetable food constituents. Ph.D. Thesis, Technical University Eindhoven, NL.) baloldal: viz 0% N a d (g/g), alacsony veszteségi tényező jobb oldal: víz 4% N ad (g/g), magas veszteségi tényező A kísérleti ütemterv a gomba száradási tulajdonságainak vizsgálata (nedvességtartalom meghatározása, szárítás-kinetikai görbe, száradási sebességgörbe felvétele), konvektiv szárítás modellezése (meghatározott időközönként vett minták nedvességtartalmának meghatározásával), a blansírozás, ill. antioxidáns-adagolás hatásának vizsgálata, váltakozó rendszerű kombinált szárítás vizsgálata (konvektiv előszárítás után vákuumban pihentetés, majd azt követő impulzus -váltakozó - üzemű mikrohullámú szárítás, végül konvektiv utószárítás-nedvesség egalizálás). A kísérletekhez felhasznált gombát a KORONA GOMBAIPARI EGYESÜLÉS (.Hódmezővásárhely) gombatermesztő telephelyéről szállíttattuk, ügyelve arra, hogy mindig frissen szedett és egyenletes méretű nyersanyagot kapjunk. A konvektiv szárítást gőzzel fűtött termoventilátorral, a mikrohullámú kezelést Bücher gyártmányú LABOTRON 500 típusú vákuumozható, forgótálcás készülékkel végeztük. Eredmények és értékelés Vizsgáltuk a csiperke gomba szárítás kinetikáját és meghatároztuk az egyes száradási periódusokban a váltakozó rendszerű szárítás műveleti idejét. 125
6 Szárítás-kinetikai vizsgálatok OHAUS inframérleg segítségével meghatároztuk a csiperke gomba szárításkinetikai (4. ábra) és száradási sebesség (5. ábra) görbéit. A szárítási sebesség-görbe alapján megállapítható, hogy a szárítandó objektum a kolloidkapilláris pórusos anyagokra jellemző száradási szakaszokkal rendelkezik. A gyors felmelegedést követi az állandó sebességű száradási szakasz az első kritikus nedvességtartalomig (Wkri), majd a csökkenő száradási sebességű szakasz Wkr2 inflexiós pontja, a nedvességvezetés mechanizmusának módosulásával magyarázható (5. ábra). 4. ábra. Csiperke OHAUS inframérleggel kapott szárítás-kinetikai görbéje 5. ábra. Csiperke OHAUS inframérleggel kapott száradási sebességgörbéje Az első száradási sebességű szakaszban konvektiv, a csökkenő száradási sebességű szakasz első periódusában mikrohullámú, míg a második periódusban újból konvektiv szárítást alkalmaztunk. Az így végrehajtott váltakozó rendszerű szárítás esetén, a száradási idő meghatározására külön kell összefüggést keresnünk a Wo-Wkri, a Wkri-Wkr2 és a Wkr2-We periódusokra. 126
7 A váltakozó rendszerű kombinált szárítás elméleti modellje A váltakozó rendszerű kombinált szárítási modellalkotás folyamatát a 6. ábrán követhetjük, amely általában alkalmazható hasonló feladatok megoldására. Kutatásunk célkitűzése volt olyan kíméletes eljárás kidolgozása, amelynek eredménye új típusú élvezeti (gyorsanoldódó - instant és/vagy könnyű - snackszerű) tulajdonságokkal rendelkező termék előállítása, ún. váltakozó rendszerű, konvektiv és mikrohullámú szárítás kombinálását magába foglaló technológiával. Kritériumként tekintettük, hogy a termék a visszanedvesítés után az eredeti friss gombához - annak fogyaszthatósági tulajdonságait tekintve - a lehető legteljesebb mértékben hasonlítson. A verbális modellalkotást követte az előzetes matematikai modell alkotás. megszerkesztettük a szárítás-kinetikai és száradási sebesség görbéket a száraz anyagra vonatkoztatott nedvességtartalom függvényében (7. ábra) és egyenesekkel közelítettük a csökkenő száradási sebességű periódusokat. Ezt követte a matematikai modell egyszerűsítése (8. ábra) és az egyenletek megoldása. Különböző szárítási stratégiák végrehajtásával értékeltük a műveleti paraméterek érzékenységét és a kísérleteket végrehajtottuk. A műveleti paraméterek optimálásával értékeltük a termékminőséget és korrekciókat hajtottunk végre. További vizsgálatokra van azonban szükség, hogy a modellt tesztelt modellként fogadjuk el. Tesztelt modell Verbális modell alkotás A modell vizsgálata Előzetes matematikai modell alkotás Paraméter optimalizálás A matematikai modell egyszerűsítése A kísérletek kivitelezése Az egyenletek megoldása Paraméter érzékenység analízis 6. ábra. A modell alkotás folyamata 127
8 A modell vizsgálata A matematikai modell megalkotásához megszerkesztettük a 7. ábra szerinti d\y szárítás-kinetikai görbét es száradási sebességgörbét. Nevezzük el a = 0 dx száradási sebességhez tartozó, az abcisszát kimetsző nedvességtartalmakat rendre maradék nedvességtartalomnak (Wmi, Wm2) és határozzuk meg az egyes száradási periódusokhoz tartozó műveleti időket. Az állandó sebességű száradási szakaszra az alábbi egyenletet írhatjuk fel: dx ( 1) Az állandó sebességű szakaszban a száradási idő: W -W _ Y T 0 ll n V Y krl (2) kg HzO/kg sz.a. (min) ^ dw dt 0 We 7. ábra. Szárítás-kinetikai görbe és száradási sebességgörbe A matematikai modell egyszerűsítését a 8. ábrán szemléltetjük. A vastagított vonali jelzett háromszög a csökkenő száradási sebességű szakasz első periódusának, míg a vastagított szaggatott háromszög a csökkenő száradási sebességű szakasz második periódusának egyszerűsített modellje. 128
9 8. ábra. Segédábra a műveleti idők meghatározásához Az ábrán alkalmazott jelölések rendre: R- Wkri értékhez tartozó maximális száradási sebesség; Rí a csökkenő száradási sebességű szakasz első periódusa W aktuális értékéhez tartozó száradási sebesség; Rz- a csökkenő száradási sebességű szakasz első periódusa Wkr2 értékéhez tartozó száradási sebesség; R3 -a csökkenő száradási sebességű szakasz második periódusa W aktuális értékéhez tartozó száradási sebesség; Wkri, Wkf2 - kritikus nedvességtartalmak; W - aktuális nedvességtartalom a csökkenő száradási sebességű szakasz első periódusában; W - aktuális nedvességtartalom a csökkenő száradási sebességű szakasz második periódusában; Wmi, Wm2 - maradék nedvesség tartalmak; We- egyensúlyi nedvességtartalom. A csökkenő száradási sebességű szakasz első periódusára (Wm -Wm tartományra) a folytonos vonallal rajzolt háromszög esetén felírhatjuk az alábbi hasonlóságot; W -W., R R, => R, R w ^ - w ml (W - W j (3) 129
10 Szabó et a!.: A váltakozó rendszerű kombinált szárítás elmélete és gyakorlata A száradási sebességre felírhatjuk: d (W -W tol) d t R \, - w nl ( W - w ml) (4) Rendezzük és integráljuk a fenti egyenletet t i-t2. és Wkri-W kr2 határértékek között és megkapjuk a csökkenő száradási sebességű szakasz első periódusának (a mikrohullámú kezelés) műveleti idejét: Wr d f W ' - W ^ ) 1 f SS II í s ^ W rtkrl - W J1 w kri - wttib1 jn R (5) A csökkenő száradási sebességű szakasz második periódusára (W ^-W tartományra) a szaggatott vonallal rajzolt háromszög esetén felírhatjuk az alábbi hasonlóságokat: ^k rl Wni _ Wm, _ R (vtl «/ j (R\ R R W - W [ w Ä v v krl v v ml WM -W,2_ W"-Wrt (W"-Wra2) (7) r 2 r 3 5 V W vvkr2 - w~ m2 V Helyettesítsük be R2 értékét az R3-ra kapott összefüggésbe és kapjuk az alábbi rendezett egyenletet: ( w la2 - W "ml v V w VTkr2 - wttm2 W - w (W "-W m2) ml J (8) Rendezzük és integráljuk a fenti egyenletet t2-t3. és Wkr2-We határértékek között és megkapjuk a csökkenő száradási sebességű szakasz második periódusának (a nedvesség egalizálás konvektiv hőközléssel) műveleti idejét: 130
11 *3 d(w "-W m2) Jdt í R ] f w kr2 - w níl ^ ( w - w j V W Ur2 - w m2 / ívű VYkr2 _ YV N f r In l R > V W VVkr2 - W w-w.m2 J 1 I (9) A teljes műveleti idő váltakozó rendszerű kombinált szárításra: t = t1 + ( t2 - T i ) + ( t3 - tj ) = 1 R R Ww -W B1 In R,Ww -W rt ( w kr2 - w ml 'l In JV W VVkr2 - w vvml > l w e - w m2 J ( 10) A váltakozó rendszerű kombinált szárítás tesztelt modellje A szárítás időtartamát számos, a gyakorlati megvalósításból eredő egyéb tényező is befolyásolja, ezért pontos meghatározása csak kísérleti úton történhet (Beke, 1997). Kifinomult kísérlettervezési módszereket (Rajkó et al., 1997) előzetes kísérletek nélkül nem tudunk alkalmazni, így az alábbi vizsgálatokat hajtottuk végre. Szárítás termoventillátorral Előkészítés: mosás hideg vízzel, szár eltávolítása a gomba kalapjával egy vonalban. Aprítás: 5 mm vastag szeletek. Levegő áramlási sebessége: 2 m/s. Szárító levegő hőmérséklete: 80 C. Rétegvastagság: 60 mm. Mintavétel 20 percenként. A nedvességtartalmat HR 73 METTLER TOLEDO halogén gyorsnedvesség mérővel, ill. 105 C-on szárítószekrényben határoztuk meg. A mérési eredmények azt mutatták, hogy a gyors nedvességtartalom-mérő a kisebb nedvességtartalom tartományban (50% alatt) nagy torzításé eredményt szolgáltat, így rutinszerű használata különös gondosságot igényel. Szárítás mikrohullámmal A mikrohullámú kezelések során különböző tömegű mintákat szárítottunk tömegállandóságig úgy, hogy 1 perces kezelés után 30 másodpercig pihentettük a mintát és közben végeztük el a tömegmérést. A mikrohullámú kezelés tömegállandóságig szárított mintájának maradék nedvességtartalmát a gyors 131
12 nedvességtartalom-meghatározó készülékkel határoztuk meg. Ezek a kísérletek egyrészt azt igazolták, hogy légköri nyomáson mikrohullámú kezeléssel kb. 5 6% vég-nedvességtartalom érhető el, másrészt pedig az üregrezonátor tér terhelése nagymértékben befolyásolja az elérhető nedvességtartalmat. Termoventilátorral történő előszárítás-pihentetés után szárítás mikrohullámmal A mérések során a mintát 1 perces kezelés után 1 percig pihentettük és ezalatt mértük meg a tömegét, az eredményeket a I. táblázatban mutatjuk be. A mérési eredmények igazolják, hogy a 60, II. 80 perces előszárítás után (a felületi réteg képződés következményeként) nedvességcsökkenés nem érhető el mikrohullámú kezeléssel, így az előszárítás ideje maximum 40 perc lehet. I. táblázat. Különböző idejű termoventilátoros előszárítás után következő mikrohullámú kezelés során tapasztalt tömegcsökkenés Mikrohullámú kezelési idő [min] Tömegcsökkenés [g] a termoventilátorral történő előszárítás idejének függvényében Nyers minta 20 min 40 min 60 min 80 min Kezd. tömeg 8,27 9,05 5,61 4,64 6,51 -» 0 8,27 4,99 1,35 0,57 0,63 1 6,92 4,72 1,22 0,57 0,63 2 4,50 4,06 1,08 0,57 0,63 3 3,29 3,43 0,98 0,57 0,63 4 2,78 2,97 0,92 5 2,50 2,60 0,88 Maradék W=73,15[%] W=71,71 [%] W=48,15[%] W=33,77[%] W=15,97[%] Nedv. tart. A kísérleteink további folytatásához, az üzemi paraméterek optimalizálása érdekében különböző szárítási stratégiákat állítottunk fel. Az alábbiakban két példával összegezzük eddigi eredményeinket. 132
13 Szárítási stratégiák S7:(Wkezd=90%, t=70 C. v=2m/s, 2min előfőzés, 0,1% citromsavas+0,1 %borkén+0,1 %NaCI) * konvektiv előszárítás 50% nedvességtartalomig 1 min pihentetés vákuumban (20mbar) 7 min 500W-on MW kezelés 1,5 min pihentetés vákuumban konvektiv utószárítás-nedvesség egalizálás (Termékminőség: szürkésbarna szivacsos szerkezet, barnás héj, vissznedvesítéskor erős kéregképződés) S2:(Wkezd=90%, t=60 C. v=2m/s, 2min előfőzés, 0,3% citromsavas+0,1 %borkén+0,1 %NaCI) Konvektiv előszárítás 40 % nedvességtartalomig 1 min pihentetés vákuumban (20 mbar) 5 min 500 W-on MW kezelés 1,5 min pihentetés vákuumban konvektiv utószárítás-nedvesség egalizálás (Termékminőség: szivacsos szerkezet, barnás héj, száraz, ropogós SNACK vissznedvesítéskor erős kéregképződés) Következtetések Kísérleteink többek között azt igazolták, hogy a csak mikrohullámú, ili. a csak konvekciós szárítás alkalmazásával elfogadható termék nem állítható elő. Ugyanakkor megfelelően végrehajtott és kézben tartott, váltakozó rendszerű, kombinált szárítással könnyű fogyaszthatóságú snack-termék előállítható, kifogástalanul visszanedvesíthetö instant-termék azonban nem. Bizonyítottuk, hogy a klasszikus kombinált mikrohullámú-konvektív szárítástól eltérően a csökkenő száradási sebességű szakasz első periódusában alkalmazott mikrohullámú kezelés eredményesen javítja a végtermék minőségét. Megállapítottuk, hogy a blansírozás és az antioxidánsok alkalmazása előnyösen befolyásolta a terméken belüli egyenletesebb hőmérséklet eloszlás kialakulását. A kísérletek alapján megállapíthatjuk, hogy a csiperkegomba felületén, még váltakozó rendszerű kombinált szárítás alkalmazása esetén is olyan erős kéreg alakul ki, mely gátolja az instant jelleg kialakulását. Az általunk alkalmazott valamennyi kísérleti terv eredményeként előállított termék, forró vízben visszanedvesítve, szívós jelleget mutatott. A javasolt szárítási stratégiával - konvekciós előszárítást {40% nedvességtartalomig) követő pihentetés, majd azt követő impulzus -váltakozó üzemű- mikrohullámú kezelés (500 W névleges teljesítmény, 20 mbar nyomáson pihentetés, 5-6 perces MW kezelés), végezetül 1-2 perces nedvesség egalizálás konvektiv szárítás - SNACK tulajdonságokkal rendelkező csiperke gomba előállítható. 133
14 Irodalom: Baker C.G.J. (1997) Industrial Drying o f Foods. Chapman & Hall, New York. Beke J. (1997) Terményszárítás. Agroinform, Budapest. Hodúr C., Szabó G., Rajkó R. (1998) Agglomeration-drying by microwave. Bulletins for Applied Computer Mathematics. BAM LXXXVI - A, pp Neményi M., Czaba I., Jani T. (2000) Investigation of simultaneous heat and mass transfer within the maize kernels during drying. Computers and Electronics in Agriculture. Vol. 26. pp Ponne, C. T. (1966). Interaction of electromagnetic energy with vegetable food constituents. Ph.D. Thesis, Technical University Eindhoven, NL. Rajkó R., Szabó G., Vidal-Valverde C., Kovács E. (1997) Designed experiments for reducing antinutritive agents in soybean by microwave energy. Journal o f Agricultural and Food Chemistry. Vol. 45. pp Szabó G., Rajkó R., Hodúr C. (1998) Combined energy transfer (microwaveconvective) by drying agriculture materials. Hungarian Agricultural Engineering. Vol. 11. pp Szabó G., Rigó K. (2000) Agglomeration-drying of food powders by combined microwave/convectional energy transfer in vibro-fluid layer, 3rd Israeli Conference for Conveying and Handling of Pahculate Solids. The Dead Sea, Israel. May 29-June 1, Proceeding Volume 1. pp Toledo R.T. (1994) Fundamentals of Food Process Engineering. Chapman & Hall, New York. Torringa. E., Esveld.E., Scheewe.l., Berg.R., Bartels P. (2001). Osmotic dehydration as a pre-treatment before combined microwave-hot-air drying of mushrooms. Journal of Food Engineering Vol. 49. No. 3-4 pp Tulasidas T.N., Raghavan G.S.V., Mujumdar A.S. (1995) Microwave drying of grapes in a single mode cavity at 2450 MHz. Drying technology Vol. 3. No pp A kutatásokat az FKFP-0261/2000 sz. és az OTKA T sz. pályázatok támogatták. 134
15 T heoretical and experim ental studies of alternate SYSTEM OF C O M B IN E D DRYING M ETHOD G. Szabó, R. Rajkó, C. Hodúr and T. Papp SZTE University College of Food Engineering Department of Unit Operations and Environmental Engineering 6724 Szeged, Mars tér 7. Phone/Fax.: / szabog@szef.u-szeged.hu A bstract The purpose of our investigation was to study of theoretical and experimental aspects of alternate system of combined drying method of mushroom (Agaricus Bisporus). The results of our investigation show that the combined microwave and convective hot air drying can improve the eatable properties of dried product. The experiments have justified that there is no possibility to produce satisfactory products by using only microwave or only convective drying. At the same time easy eatable, i.e., suitable alternate system of combined drying method could produce snack-like products, but instant products, which can be rehydrated perfectly, could not. The results demonstrate that the more efficient drying strategy is convective pre-drying in constant rate, following microwave drying in first falling rate and again convective drying in the second falling rate for the equalisation of the moisture distribution of product. General advantages for the application of alternate system of combined drying method are reduction of drying time, uniform heating and possibility for puffing the material. This research was supported by the Hungarian Science Foundation (No. OTKA T035125) and by the Research and Development in Higher Education Foundation of Ministry of Education (No. FKFP-0261/2000). 135
KAPILLÁR-PÓRUSOS KOLLOID ANYAGOK VÁLTAKOZÓ RENDSZERŰ KONVEKTÍV-MIKROHULLÁMÚ SZÁRÍTÁSA SZABÓ GÁBOR, RAJKÓ RÓBERT, HODUR CECÍLIA
11 KAPILLÁR-PÓRUSOS KOLLOID ANYAGOK VÁLTAKOZÓ RENDSZERŰ KONVEKTÍV-MIKROHULLÁMÚ SZÁRÍTÁSA SZABÓ GÁBOR, RAJKÓ RÓBERT, HODUR CECÍLIA Szegedi Tudományegyetem Szegedi Élelmiszeripari Főiskolai Kar Élelmiszeripari
CSIPERKEGOMBA KONVEKCIÓS ÉS MIKROHULLÁMÚ SZÁRÍTÁSÁNAK ÖSSZEHASONLÍTÓ VIZSGÁLATA SZABÓ G., RAJKÓ R., HODUR C.
CSIPERKEGOMBA KONVEKCIÓS ÉS MIKROHULLÁMÚ SZÁRÍTÁSÁNAK ÖSSZEHASONLÍTÓ VIZSGÁLATA SZABÓ G., RAJKÓ R., HODUR C. Szegedi Tudományegyetem Szegedi Élelmiszeripari Főiskolai Kar Élelmiszeripari Műveletek és Környezettechnika
A mikrohullámú energiaabszorpció tanulmányozása mezőgazdasági magvak mikrohullámú és kombinált szárítása kapcsán
A mikrohullámú energiaabszorpció tanulmányozása mezőgazdasági magvak mikrohullámú és kombinált szárítása kapcsán Ludányi Lajos - Göllei Attila 2 - Pallainé Varsányi Erzsébet 3 - Vass András 3 - Szijjártó
Részletes összefoglaló jelentés
Részletes összefoglaló jelentés 1. Hőátadási tényező vizsgálata egyidejű hő- és anyagátadási folyamatok esetén Az egyidejű hő- és anyagátadással járó szárítási folyamatoknál számos szerző utalt a hőátadási
NYOMÁSOS ÖNTÉS KÖZBEN ÉBREDŐ NYOMÁSVISZONYOK MÉRÉTECHNOLÓGIAI TERVEZÉSE DEVELOPMENT OF CAVITY PRESSURE MEASUREMENT FOR HIGH PRESURE DIE CASTING
Anyagmérnöki Tudományok, 39/1 (2016) pp. 82 86. NYOMÁSOS ÖNTÉS KÖZBEN ÉBREDŐ NYOMÁSVISZONYOK MÉRÉTECHNOLÓGIAI TERVEZÉSE DEVELOPMENT OF CAVITY PRESSURE MEASUREMENT FOR HIGH PRESURE DIE CASTING LEDNICZKY
FAANYAG VÁKUUMSZÁRÍTÁSA TAKÁTS P., NÉMETH R.
FAANYAG VÁKUUMSZÁRÍTÁSA TAKÁTS P., NÉMETH R. Nyugat Magyarországi Egyetem Fa és Papírtechnológiai Intézet, Lemezipari Tanszék; Faanyagtudományi Intézet 9400 Sopron, Bajcsy Zsilinszky út 4. Tel: 99 311
PROF. DR. SZABÓ GÁBOR MSc. CSc. DSc. Intézetvezető egyetemi tanár
PROF. DR. SZABÓ GÁBOR MSc. CSc. DSc. Intézetvezető egyetemi tanár Munkahely: Szegedi Tudományegyetem, Mérnöki Kar, Gépészeti és Folyamatmérnöki Intézet (1976-), Szegedi Tudományegyetem (2000-). szabog@mk.u-szeged.hu
Kertészeti és Élelmiszeripari Egyetem Élelmiszeripari Főiskolai Kar ^ os Kö^ 19* szám Szeged, 1996.
Kertészeti és Élelmiszeripari Egyetem Élelmiszeripari Főiskolai Kar H ^ os Kö^ 19* szám \ & * Szeged, 1996. Kertészeti és Élelmiszeripari Egyetem Élelmiszeripari Főiskolai Kar Kiadványa 19. szám Szerkesztő:
Egyes eltérő fizikai tulajdonságú zöldségfélék száradási jellemzőinek vizsgálata
Egyes eltérő fizikai tulajdonságú zöldségfélék száradási jellemzőinek vizsgálata Bihercz Gábor 1 Kurják Zoltán 1 1 SZIE, Gépészmérnöki Kar 2103 Gödöllő, Páter Károly u. 1 E-mail: gbihercz@jht.gau.hu BEVEZETÉS
KUKORICA NEDVESSÉGTARTALMÁNAK GYORS MEGHATÁROZÁSA MIKROHULLÁMÚ KEZELÉSSEL RAJKÓ R., HARMATI ZS.
KUKORICA NEDVESSÉGTARTALMÁNAK GYORS MEGHATÁROZÁSA MIKROHULLÁMÚ KEZELÉSSEL RAJKÓ R., HARMATI ZS. Szegedi Tudományegyetem Szegedi Élelmiszeripari Főiskolai Kar Élelmiszeripari Műveletek és Környezettechnika
DOKTORI (PHD) ÉRTEKEZÉS TÉZISEI SZAFNER GÁBOR
DOKTORI (PHD) ÉRTEKEZÉS TÉZISEI SZAFNER GÁBOR MOSONMAGYARÓVÁR 2014 NYUGAT-MAGYARORSZÁGI EGYETEM Mezőgazdaság- és Élelmiszertudományi Kar Mosonmagyaróvár Matematika, Fizika és Informatika Intézet Ujhelyi
Anyagjellemzők változásának hatása a fúróiszap hőmérsékletére
Anyagjellemzők változásának hatása a fúróiszap hőmérsékletére Kis László, PhD. hallgató, okleveles olaj- és gázmérnök Miskolci Egyetem, Műszaki Földtudományi Kar Kőolaj és Földgáz Intézet Kulcsszavak:
ÚJ ELJÁRÁS KATONAI IMPREGNÁLT SZENEK ELŐÁLLÍTÁSÁRA
III. Évfolyam 2. szám - 2008. június Halász László Zrínyi Miklós Nemzetvédelmi Egyetem, egyetemi tanár halasz.laszlo@zmne.hu Vincze Árpád Zrínyi Miklós Nemzetvédelmi Egyetem, egyetemi docens vincze.arpad@zmne.hu
Fajhő mérése. (Mérési jegyzőkönyv) Hagymási Imre február 26. (hétfő délelőtti csoport)
Fajhő mérése (Mérési jegyzőkönyv) Hagymási Imre 2006. február 26. (hétfő délelőtti csoport) 1. A mérés elméleti háttere Az anyag fajhőjének mérése legegyszerűbben a jólismert Q = cm T m (1) összefüggés
Gyümölcsök konvekciós szárításának modellezése Modeling of the Convective Drying of Fruits Modelarea cineticii uscării convective a fructelor
Gyümölcsök konvekciós szárításának modellezése Modeling of the Convective Drying of Fruits Modelarea cineticii uscării convective a fructelor ANDRÁS Csaba Dezső, SZÉP Al. Sándor, BARTÓK Simon Sapientia
SZÁRÍTÁS NAPENERGIÁVAL. Dr. IMRE L.
SZÁRÍTÁS NAPENERGIÁVAL Dr. IMRE L. Budapesti Műszaki és Gazdaságtudományi Egyetem Energetika Tanszék, MNT 1111. Budapest, Műegyetem rkp. 3. Tel.: (06-1) 4633274, Fax: (06-1) 4633272 E-mail: imre@eta.enrg.bme.hu
ALACSONY TELJESÍTMÉNYŰ MIKROHULLÁM HATÁSA A MUST ERJEDÉSÉRE
ALACSONY TELJESÍTMÉNYŰ MIKROHULLÁM HATÁSA A MUST ERJEDÉSÉRE Viktória Kapcsándia*, Miklós Neményi, Erika Lakatos University of West Hungary, Faculty of Agricultural and Food Sciences, Institute of Biosystems
MIKROHULLÁMÚ TERMIKUS KEZELÉS HATÁSA A SZÓJABAB MINŐSÉGÉRE ÖSSZEFOGLALÓ
MIKROHULLÁMÚ TERMIKUS KEZELÉS HATÁSA A SZÓJABAB MINŐSÉGÉRE SZABÓ GÁBOR 1 RAJKÓ RÓBERT 1 KOVÁCS ERZSÉBET 2 PAPP GÉZÁNÉ 1 HOTYA LÍVIUSZNÉ 1 1Élelmiszeripari Műveletek és Berendezések Tanszék 2Élelmiszerkémia
KS - 303.150.10 HORDOZHATÓ KIVITEL
KS - 303.150.10 24 ÓRÁS, FOLYAMATOS ÜZEMŰ NAGYTÉRFOGATÁRAMÚ AEROSZOL, SZÁLLÓPOR MINTAVEVŐ KÉSZÜLÉK IMMISSZIÓS, MUNKAHELYI ÉS HÁTTÉRSZENNYEZETTSÉGI VIZSGÁLATOKRA HORDOZHATÓ KIVITEL 1. Rendeltetés A KS-303.150.10
Közbenső hőcserélővel ellátott hőszivattyú teljesítménytényezőjének kivizsgálása
Közbenső hőcserélővel ellátott hőszivattyú teljesítménytényezőjének kivizsgálása Boros Dorottya Szabadkai Műszaki Szakfőiskola Szabadka, Szerbia dorottya93@gmail.com Összefoglaló: A dolgozatunkban bemutatunk
Amit a kapacitív gabona nedvességmérésről tudni kell
Szemestermények korszerű szárítási, tárolási, feldolgozási és mérési technológiái Gödöllő, 2018 Amit a kapacitív gabona nedvességmérésről tudni kell Dr. Gillay Zoltán, adjunktus Szent István Egyetem, Élelmiszertudományi
2. mérés Áramlási veszteségek mérése
. mérés Áramlási veszteségek mérése A mérésről készült rövid videó az itt látható QR-kód segítségével: vagy az alábbi linken érhető el: http://www.uni-miskolc.hu/gepelemek/tantargyaink/00b_gepeszmernoki_alapismeretek/.meres.mp4
Projektfeladatok 2014, tavaszi félév
Projektfeladatok 2014, tavaszi félév Gyakorlatok Félév menete: 1. gyakorlat: feladat kiválasztása 2-12. gyakorlat: konzultációs rendszeres beszámoló a munka aktuális állásáról (kötelező) 13-14. gyakorlat:
Energiahasznosítás lehetőségei koncentráló kollektorokkal Délkelet-Magyarországon
Energiahasznosítás lehetőségei koncentráló kollektorokkal Délkelet-Magyarországon Dr Fodor Dezső PhD főiskolai docens Szegedi Tudományegyetem Mezőgazdasági Kar- Mérnöki Kar 2010 szept. 23-24 A napenergia
Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása
l--si háromalkotós egyensúlyi fázisdiagram közelítő számítása evezetés Farkas János 1, Dr. Roósz ndrás 1 doktorandusz, tanszékvezető egyetemi tanár Miskolci Egyetem nyag- és Kohómérnöki Kar Fémtani Tanszék
SZENT ISTVÁN EGYETEM MULTIMÓDUSÚ MIKROHULLÁMÚ TEREK ALKALMAZÁSA A SZÁRÍTÁSBAN
SZENT ISTVÁN EGYETEM MULTIMÓDUSÚ MIKROHULLÁMÚ TEREK ALKALMAZÁSA A SZÁRÍTÁSBAN Doktori értekezés tézisei Dr. Ludányi Lajos Gödöllő 2004. A doktori iskola megnevezése: Műszaki Tudományi Doktori Iskola tudományága:
Mikrohullámú abszorbensek vizsgálata
Óbudai Egyetem Anyagtudományok és Technológiák Doktori Iskola Mikrohullámú abszorbensek vizsgálata Balla Andrea Témavezetők: Dr. Klébert Szilvia, Dr. Károly Zoltán MTA Természettudományi Kutatóközpont
Az állományon belüli és kívüli hőmérséklet különbség alakulása a nappali órákban a koronatér fölötti térben május és október közötti időszak során
Eredmények Részletes jelentésünkben a 2005-ös év adatait dolgoztuk fel. Természetesen a korábbi évek adatait is feldolgoztuk, de a terjedelmi korlátok miatt csak egy évet részletezünk. A tárgyévben az
Szakmai önéletrajz Sikló Bernadett
Szakmai önéletrajz Sikló Bernadett Tanulmányok: 2008- Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki kar, Polimertechnika Tanszék PhD hallgató 2002-2008 Budapesti Műszaki és Gazdaságtudományi
Szárítás során kialakuló hővezetés számítása Excel VBA makróval
Szárítás során kalakuló hővezetés számítása Excel VBA makróval Rajkó Róbert 1 Eszes Ferenc 2 Szabó Gábor 1 1 Szeged Tudományegyetem, Szeged Élelmszerpar Főskola Kar Élelmszerpar Műveletek és Környezettechnka
Jegyzőkönyv Arundo biogáz termelő képességének vizsgálata Biobyte Kft.
Jegyzőkönyv Arundo biogáz termelő képességének vizsgálata Biobyte Kft. 2013.10.25. 2013.11.26. 1 Megrendelő 1. A vizsgálat célja Előzetes egyeztetés alapján az Arundo Cellulóz Farming Kft. megbízásából
FORGÓ DOB ELŐFŐZŐ/FŐZŐBERENDEZÉS
Food Processing Equipment NEAEN RotaBlanch FORGÓ DOB ELŐFŐZŐ/FŐZŐBERENDEZÉS A NEAEN RotaBlanch forgó dob előfőző-berendezést zöldségek, gyümölcsök, saláták, tészták és tengeri ételek konzerválás és fagyasztás
HIDEGEN HENGERELT ALUMÍNIUM SZALAG LENCSÉSSÉGÉNEK VIZSGÁLATA INVESTIGATION OF CROWN OF COLD ROLLED ALUMINIUM STRIP
Anagmérnöki Tudományok, 37. kötet, 1. szám (2012), pp. 309 319. HIDEGEN HENGERELT ALUMÍNIUM SZALAG LENCSÉSSÉGÉNEK VIZSGÁLATA INVESTIGATION OF CROWN OF COLD ROLLED ALUMINIUM STRIP PÁLINKÁS SÁNDOR Miskolci
Folyadékok és gázok áramlása
Folyadékok és gázok áramlása Hőkerék készítése házilag Gázok és folyadékok áramlása A meleg fűtőtest vagy rezsó felett a levegő felmelegszik és kitágul, sűrűsége kisebb lesz, mint a környezetéé, ezért
DETERMINATION OF SHEAR STRENGTH OF SOLID WASTES BASED ON CPT TEST RESULTS
Műszaki Földtudományi Közlemények, 83. kötet, 1. szám (2012), pp. 271 276. HULLADÉKOK TEHERBÍRÁSÁNAK MEGHATÁROZÁSA CPT-EREDMÉNYEK ALAPJÁN DETERMINATION OF SHEAR STRENGTH OF SOLID WASTES BASED ON CPT TEST
Amorf/nanoszerkezetű felületi réteg létrehozása lézersugaras felületkezeléssel
Amorf/nanoszerkezetű felületi réteg létrehozása lézersugaras felületkezeléssel Svéda Mária és Roósz András MTA-ME Anyagtudományi Kutatócsoport 3515-Miskolc-Egyetemváros femmaria@uni-miskolc.hu Absztrakt
Vízkötési potenciálra alapozott hő- és anyagtranszport modellek biológiai anyagoknál
DR. BÁNÓ MARGIT EMLÉKÉRE (1942-2003) Vízkötési potenciálra alapozott hő- és anyagtranszport modellek biológiai anyagoknál Neményi Miklós Kovács Attila József* MTA-NYME Mezőgazdasági Termények Feldolgozása
X. FIATAL MŰSZAKIAK TUDOMÁNYOS ÜLÉSSZAKA
X. FIATAL ŰSZAKIAK TUDOÁNYOS ÜLÉSSZAKA Kolozsvár, 2005. március 18-19. GYIDJŰ HŐ- ÉS ANYAGTARANSZPORT VIZSGÁLATA KONVKTÍV SZÁRÍTÁS SORÁN Simon rika, Dr. Örvös ária Abstract The decrease of the heat transfer
Városi légszennyezettség vizsgálata térinformatikai és matematikai statisztikai módszerek alkalmazásával
Pannon Egyetem Vegyészmérnöki Tudományok és Anyagtudományok Doktori Iskola Városi légszennyezettség vizsgálata térinformatikai és matematikai statisztikai módszerek alkalmazásával DOKTORI (Ph.D.) ÉRTEKEZÉS
Számítástudományi Tanszék Eszterházy Károly Főiskola.
Networkshop 2005 k Geda,, GáborG Számítástudományi Tanszék Eszterházy Károly Főiskola gedag@aries.ektf.hu 1 k A mérés szempontjából a számítógép aktív: mintavételezés, kiértékelés passzív: szerepe megjelenítés
Mikrohullámú abszorbensek vizsgálata 4. félév
Óbudai Egyetem Anyagtudományok és Technológiák Doktori Iskola Mikrohullámú abszorbensek vizsgálata 4. félév Balla Andrea Témavezetők: Dr. Klébert Szilvia, Dr. Károly Zoltán MTA Természettudományi Kutatóközpont
PLATTÍROZOTT ALUMÍNIUM LEMEZEK KÖTÉSI VISZONYAINAK TECHNOLÓGIAI VIZSGÁLATA TECHNOLOGICAL INVESTIGATION OF PLATED ALUMINIUM SHEETS BONDING PROPERTIES
Anyagmérnöki Tudományok, 37. kötet, 1. szám (2012), pp. 371 379. PLATTÍROZOTT ALUMÍNIUM LEMEZEK KÖTÉSI VISZONYAINAK TECHNOLÓGIAI VIZSGÁLATA TECHNOLOGICAL INVESTIGATION OF PLATED ALUMINIUM SHEETS BONDING
biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás
Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani
MEMBRÁNKONTAKTOR ALKALMAZÁSA AMMÓNIA IPARI SZENNYVÍZBŐL VALÓ KINYERÉSÉRE
MEMBRÁNKONTAKTOR ALKALMAZÁSA AMMÓNIA IPARI SZENNYVÍZBŐL VALÓ MASZESZ Ipari Szennyvíztisztítás Szakmai Nap 2017. November 30 Lakner Gábor Okleveles Környezetmérnök Témavezető: Bélafiné Dr. Bakó Katalin
Ü ű Í Ü ű Ő Ó Í Í Í Ö Í Ü Ó Í Í ű ű Í ű ű Í Í Í Í Í ű ű ű Á ű
ű ű Ú Í ű ű Í Í Í Í Í Á Í ű Í Í Ó Ü ű Í Ü ű Ő Ó Í Í Í Ö Í Ü Ó Í Í ű ű Í ű ű Í Í Í Í Í ű ű ű Á ű Í Í ÍÍ Í Á ű Á Ó ű Ó Ü Ó Ó Ú Á Á Á Á Á Ó ű ű Ó Á ű ű Ö Ö Í Á Í Ú Ü Í Í Í Ú Á Á Ö Í Í Í Í ű Í Í ű Í Ö ű Í
ö ó Á ü ű ö ó ö ö ű ö ű ö ő ő ó ö ű ö ő í ő ó ő ó ö ó í í ó ő í í ő ö ő ő ó ő ö ű í ű í ö í ö í ű ö ö ú ö ú ö ő ó ő ö ő ő í ű ö ó ö í ó í í ő ó ü ő ő
ö ö í ú ö ö Á Á ö ö ű ö ö ö ö ö ó í ö ö ö ő ö ó ó ö ö ö í ú ö ó ó ö ó í Ű ö ő ó ö ő ö í ő ö ö ö ö ö ö ö ű í í ö ó Á ü ű ö ó ö ö ű ö ű ö ő ő ó ö ű ö ő í ő ó ő ó ö ó í í ó ő í í ő ö ő ő ó ő ö ű í ű í ö í
í ü Ó ö í í í ó ó í í ü í ó ü ö ó ó ö ó ó ö í ö ö ó ó í ó í í ö ö ö í ú ö ó í ó ö ó ö ó í í ú ű ú
Á ö Ó ú ö ű í Ö Ő ö ű í Ó í ö Ó ü Ó ú í ö Ó ú ö ó ö í ö Ó í ö ó ó í Ó ö Ó ü Ó ö ó í í í í ü Ó ö í í í ó ó í í ü í ó ü ö ó ó ö ó ó ö í ö ö ó ó í ó í í ö ö ö í ú ö ó í ó ö ó ö ó í í ú ű ú ú ó ö Ó ú ö ó ú
ú ú ő ő ő ú ü ő ő ü ú ő ő
Ö Í ú ú ú ő ő ő ú ü ő ő ü ú ő ő ő ű Í Á ü ő ü ő ő ő ü ő ő ü ű ü ü ő ő ú ő Ü ú ő ő ő ű ő ő ű ő ő ő ő ő ő ő ő ú ű ő ő ü ű ü ő ő ü ú ú ő ő ü ő Í Ö ő ő ő Í ő ő ü ő ő ű Ü Á Á Á Á Á Á ű ő ő ő ü Í Ó ú Ó Á Á Á
Ö ó ó ó í ó Ö ü ó ü ü Ö ó í í ú ü ó ó ó ó ó í í ú í Ö ú í ó ó ó í ó
Ö ü ü Ö ü ó ü ü í ó í ó í ü í ú ü ó ű ü ó ü ü ó ü ü Á í ó í ü í ú í Ö ó ó ó í ó Ö ü ó ü ü Ö ó í í ú ü ó ó ó ó ó í í ú í Ö ú í ó ó ó í ó ó ü ú ó í ü í ó ú ó ó í ü ü ű í ó ó ó ű ó í ó Ö ú Ö ü ó ü ó í Ö ú
Ü ü ü ú Ö ü ü Ö Ö Ö Ö Ő Ó ü Á Á Ö Ö Ö Ő ü Í ú ű Í ú ú
Ö ü Ő Ö Ü Ö ü Ó ü ü ü ü ü ü Á ü ü ü ü Á ü ü ü Ü ü ü ú Ö ü ü Ö Ö Ö Ö Ő Ó ü Á Á Ö Ö Ö Ő ü Í ú ű Í ú ú ü ú Ö Ö Ö Ő Ó ü ü Í ü ü ü ü Ö Ö ü ű Ö Ó Ö Ő ü ü Ö ü ú Ö ü ú ü ú ü Í Ü ű ű ü ű Í ú Ö Ö ü Ö ü ú ü ü Ü Á
á é é á ó á é ö Ű í É Á ó í á ü á ó
ö Ű Á ü ö ö ú Á ü ö ű ű ö ö ö ö ú ő Ó Á ö ü ö ö ő ő ú ü ő ö Ú Ó ő Ö Á Ö Ö Ö Ö ü Ö Ö Ó Ö Ö Í Ö Ö Í Ó Á Á Ö Ö Á Ö ü ő ö Ú Ó Á Ó Ó Ő Ö Ö Ö Ó Ó Ö Á Ö Ú Á Ú Ö Ö Á Ú Ö Á Á Á Í Á Ö ő ü ő ö ü ú ö ü ö ú ü ü ú ú
Á ó ű ú ó ö ü ű ű ó ó ö ü ó ö ó Ö ü ó ü ű ó ö ó ó ú ó ú ó ó ó ó ó ó ó Ö ö ó ó ó ó ö ó Ű ö ó ó ü Ó ű Í ó ó ó ó ó ó Ó ü ó ó ó ó ó ó ú ó ö
ö ü ó Ö ü ó ü Ü ó ó ó ó ö ó ü ö ö ü ü ó Ó ü ó ü ó ó ó ó ö ó ü ó ó ó ó ó ó ö Á ó ű ú ó ö ü ű ű ó ó ö ü ó ö ó Ö ü ó ü ű ó ö ó ó ú ó ú ó ó ó ó ó ó ó Ö ö ó ó ó ó ö ó Ű ö ó ó ü Ó ű Í ó ó ó ó ó ó Ó ü ó ó ó ó
í ú Í í ö ö Á ü ö í í ö ö ö ü í ü í ű í ö ü í ü
ö ú í ü í Á í Ó Ü í ú Í í ö ö Á ü ö í í ö ö ö ü í ü í ű í ö ü í ü ö ö ö ö ö í í í í í ü í í í ö ú í ö í ü ú í í í í í ö ö í í í í í ű ü ű ö Á ű í ü ű ű ű í ű ö ú ö ú ú ü ö ö ű ü ö ú ö ű í í ű í ü ü ö ü
Ó Ó Ó Ü Í Ü Ü Ü Ü Ü Ü Á Ő Ü Ü Ü Ü Ó Ó Á Ü Ö
Ő Ó Ö Ó Ő Ü Í Ó Ö Ü Ő Á Ü Ó Ó Á Ü Ö Ó Ó Ó Ü Í Ü Ü Ü Ü Ü Ü Á Ő Ü Ü Ü Ü Ó Ó Á Ü Ö Ó Ó Á Ö Á Ó Ó Ü Í Ó Í Ü Ü Ó Ó Í Á Ö Á Ü Ö Í Ü Í Ó Ó Ó Ó Á Ó Ó Ü Ó Ö Ó Ó Ó Ó Ö Ö Ü Ó Ü Ü Ö Ó Ó Ü Ü Ó Ó Ó Í Ó Ü Ú Ö Ó Ó Ó Ü
ő ő Ó
ú ő ű ű ő ű ú ő ő ű ű ű ű ú ő ő Ó ú ú ú Ó ő ő ő ú ő ú ú ú ú ú ő ő ő ú ő ú ű ő ő ő ő ú ő ő ő ő ú ú ő ő ő ú Ö ő ú ű ő ű ő ű ő ú ő ő ű Á ő ő ő ő Á Ö Á Ö Ö Ü Ö Ö Ü Ö Ö Í Ö Ö ő Ö Ö Á Ö ő Ó Ó Á Á Ö Ö Á Ő Á Á
ü ó ó ó ó ó ó ü ó í ü ü ó ó ü ó ó ü ó ü ü í í ü ü í í ó ü ü Ö ü Ö ü ü ó
ü Ö ü ü ó ó ó í ü ü ó ó ó ü ó ó ü ü Ö ü ü ó ó ó ü ó ó ó ó ó ó ü ó í ü ü ó ó ü ó ó ü ó ü ü í í ü ü í í ó ü ü Ö ü Ö ü ü ó ú ú ü ü Í ú ó í í ú ü Á Í ü Ö ü ü ó Ö ó ó Í ű í ü í ó í í í Ö ó í í í Ö ü ü í í Ö
ő ü ő ü ü Ö ő ő ü Ö ü Ö ü Ö ő ő
Ö ü Ö Ö ő ü ű Ö Ó ő ü Ö ü Ö ü Ó ü ú ú ő ü ő ü ü Ö ő ő ü Ö ü Ö ü Ö ő ő ú Ö Ó Á ű Á ü Ö ú Ö ű ő ű Á ú Ó Í ű ű ő Ó ű ő ű ű ű ű ú ú ú ü Ö Ö ő ú ú ú ú ő ü ü Ó ő ú ú ú ü ú Ö Ö Ú ű ű ú Ö ű Ö ű ü ű ú ő ő ű ú
Í ö Ű ö Á Í Ü ü Í ö
Ú Í Í Í ö Í ö Ű ö Á Í Ü ü Í ö Í ü ü ö Ü ö ö ö ö Ü Ü ö Ü Ü ö Ü Ü ö ú ü ö ü ö ű ö ű Ü Ü ö ö ö ü ü ö Ü ö ö ö ö ö ö ö ö ö Ü Ü Ü Ü ü ö ö ö ö ö ö ö ú Ü ö ű ü ö ú ű ü ö ö ö ü ü ü Ü ú ö ö ü ű ö ű ö ű ü Ü ü ü ö
ö ö ö ö Í ö ö ö ö ö ú ö ü ö ö ö ü ű ú ö ú ü ö ű ö ü
Ő Ö ü ö Ö ü ü ü ü ü ü Í ö Í ö ű ö ú ö ö ü ö ü ö ű Í ü ö ö ö ü ö ü ú ü ö ö ö ö Í ö ö ö ö ö ú ö ü ö ö ö ü ű ú ö ú ü ö ű ö ü ö ű ö ú ö ö ú ö ü ö ü ö ü ü ö ü ö Ö ü ü ö ü ú ö ö ú Ó ö ü Ó ü ü ü ö Ö ü ö ö ú ű
ö ö ö ü ö ö ö ö ö ö Ö ü ö ü ü ü ö ü í ü ö ü Ö ö í ű ö ö í í ö ö ü í ö ö ü í ö í ü ö ü í ö ű ö ü
ü í ö ű ö ö í í í í ö ü Ö í ö ö í í ö í ö ö ú ö ö ü Ö ö ö ú ü ü ö ö ú ű ö ü ü ü ö ö ö ü Ö ö ö ö ü ö ö ö ö ö ö Ö ü ö ü ü ü ö ü í ü ö ü Ö ö í ű ö ö í í ö ö ü í ö ö ü í ö í ü ö ü í ö ű ö ü ö ö í ö ö ö ö ö
F. F, <I> F,, F, <I> F,, F, <J> F F, <I> F,,
F,=A4>, ahol A arányossági tényező: A= 0.06 ~, oszt as cl> a műszer kitérése. A F, = f(f,,) függvénykapcsolatot felrajzolva (a mérőpontok közé egyenes huzható) az egyenes iránytaogense a mozgó surlódási
1. ANYAG ÉS MÓDSZER Fogyasztói-, UHT-, illetve nyers tej minták zsírtartalmának meghatározása
1.1. Homogén mikrohullámú tér kialakítása 1. ANYAG ÉS MÓDSZER A kezelőtérbe önmagában behelyezett minták egyenlőtlen felmelegedése miatt (mivel nem tudtunk homogén hőmérsékleteloszlást kialakítani az anyagban)
1. feladat Összesen: 7 pont. 2. feladat Összesen: 16 pont
1. feladat Összesen: 7 pont Gyógyszergyártás során képződött oldatból 7 mintát vettünk. Egy analitikai mérés kiértékelésének eredményeként a következő tömegkoncentrációkat határoztuk meg: A minta sorszáma:
Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája
Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet 5-4 A tökéletes gáz egyenlet alkalmazása 5-5 Gáz halmazállapotú reakciók
MŰSZAKI TUDOMÁNY AZ ÉSZAK-KELET MAGYARORSZÁGI RÉGIÓBAN 2012
MŰSZAKI TUDOMÁNY AZ ÉSZAK-KELET MAGYARORSZÁGI RÉGIÓBAN 0 KONFERENCIA ELŐADÁSAI Szolnok 0. május 0. Szerkesztette: Edited by Pokorádi László Kiadja: Debreceni Akadémiai Bizottság Műszaki Szakbizottsága
TÁMOP A-11/1/KONV WORKSHOP Június 27.
Fenntartható energetika megújuló energiaforrások optimalizált integrálásával TÁMOP-4.2.2.A-11/1/KONV-2012-0041 WORKSHOP 2014. Június 27. A munkacsoport tagjai: az éves hőveszteségek-hőterhelések elemzése
Bor Pál Fizikaverseny, középdöntő 2016/2017. tanév, 8. osztály
Bor Pál Fizikaverseny, középdöntő 2016/2017. tanév, 8. osztály 1. Igaz-hamis Döntsd el az állításokról, hogy igazak, vagy hamisak! Válaszodat az állítás melletti cellába írhatod! (10 pont) Két különböző
SZÉN NANOCSŐ KOMPOZITOK ELŐÁLLÍTÁSA ÉS VIZSGÁLATA
Pannon Egyetem Vegyészmérnöki Tudományok és Anyagtudományok Doktori Iskola SZÉN NANOCSŐ KOMPOZITOK ELŐÁLLÍTÁSA ÉS VIZSGÁLATA DOKTORI (Ph.D.) ÉRTEKEZÉS TÉZISEI Készítette: Szentes Adrienn okleveles vegyészmérnök
Betontervezés Tervezés a Palotás-Bolomey módszer használatával
Építőanyagok II - Laborgyakorlat Betontervezés Tervezés a Palotás-Bolomey módszer használatával A tervezés elvei Cél: előírt nyomószilárdságú beton összetételének és keverési arányának megtervezése úgy,
Diffúzió 2003 március 28
Diffúzió 3 március 8 Diffúzió: különféle anyagi részecskék (szilárd, folyékony, gáznemű) anyagon belüli helyváltozása. Szilárd anyagban való mozgás Öndiffúzió: a rácsot felépítő saját atomok energiaszint-különbség
A vizsgálatok eredményei
A vizsgálatok eredményei A vizsgált vetőmagvak és műtrágyák nagy száma az eredmények táblázatos bemutatását teszi szükségessé, a legfontosabb magyarázatokkal kiegészítve. A közölt adatok a felsorolt publikációkban
Tesztcella tervezés magasfrekvenciájú gabonanedvesség méréshez
Tesztcella tervezés magasfrekvenciájú gabonanedvesség méréshez Gillay Zoltán David Funk Budapesti Közgazdaságtudományi és Államigazgatási Egyetem, Élelmiszertudományi Kar, Fizika-Automatika Tanszék Bevezető
HULLADÉKCSÖKKENTÉS. EEA Grants Norway Grants. Élelmiszeripari zöld innovációs program megvalósítása. Dr. Nagy Attila, Debreceni Egyetem 2014.10.28.
Élelmiszeripari zöld innovációs program megvalósítása EEA Grants Norway Grants HULLADÉKCSÖKKENTÉS Dr. Nagy Attila, Debreceni Egyetem HU09-0015-A1-2013 1 Beruházás oka A vágóhidakról kikerülő baromfi nyesedék
Szárítás kemence Futura
Szárítás kemence Futura Futura, a nemzetközi innovációs díjat Futura egy univerzális szárító gép, fa és egyéb biomassza-alapanyag. Egyesíti az innovatív technikai megoldások alapján, 19-26 szabadalmazott
ÉPÜLETEK KOMFORTJA Hőkomfort 1 Dr. Magyar Zoltán
ÉPÜLETEK KOMFORTJA Hőkomfort 1 Dr. Magyar Zoltán BME Épületenergetikai és Épületgépészeti Tanszék 1 2 Általános bevezetés A Komfortelmélet mindössze néhány évtizedes múltra visszatekintő szaktárgy. Létrejöttének
Tárgyszavak: kapilláris, telítéses porometria; pórustérfogat-mérés; szűrés; átáramlásmérés.
A TERMELÉSI FOLYAMAT MINÕSÉGKÉRDÉSEI, VIZSGÁLATOK 2.4 2.5 Porózus anyagok új, környezetkímélő mérése Tárgyszavak: kapilláris, telítéses porometria; pórustérfogat-mérés; szűrés; átáramlásmérés. A biotechnológiában,
A CAN mint ipari kommunikációs protokoll CAN as industrial communication protocol
A CAN mint ipari kommunikációs protokoll CAN as industrial communication protocol Attila FODOR 1), Dénes FODOR Dr. 1), Károly Bíró Dr. 2), Loránd Szabó Dr. 2) 1) Pannon Egyetem, H-8200 Veszprém Egyetem
Modern Fizika Labor. 2. Elemi töltés meghatározása
Modern Fizika Labor Fizika BSC A mérés dátuma: 2011.09.27. A mérés száma és címe: 2. Elemi töltés meghatározása Értékelés: A beadás dátuma: 2011.10.11. A mérést végezte: Kalas György Benjámin Németh Gergely
Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA
SZDT-03 p. 1/24 Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás
Folyadékok és gázok mechanikája
Folyadékok és gázok mechanikája A folyadékok nyomása A folyadék súlyából származó nyomást hidrosztatikai nyomásnak nevezzük. Függ: egyenesen arányos a folyadék sűrűségével (ρ) egyenesen arányos a folyadékoszlop
Rugalmas állandók mérése
KLASSZIKUS FIZIKA LABORATÓRIUM 2. MÉRÉS Rugalmas állandók mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 16. Szerda délelőtti csoport 1. A mérés rövid leírása Mérésem
Kutatási beszámoló. 2015. február. Tangens delta mérésére alkalmas mérési összeállítás elkészítése
Kutatási beszámoló 2015. február Gyüre Balázs BME Fizika tanszék Dr. Simon Ferenc csoportja Tangens delta mérésére alkalmas mérési összeállítás elkészítése A TKI-Ferrit Fejlsztő és Gyártó Kft.-nek munkája
Az igényeknek megfelelő választás...
Clear 1500 Felhasználóbarát, a lehető legjobb ár-érték arányt biztosító lakk Az igényeknek megfelelő választás... Érjen el megfelelő eredményt gyorsan és megfizethetően a Clear 1500 termékkel. Az univerzális
TARTÁLY LÉGRITKÍTÁSÁNAK TERMODINAMIKAI MODELLEZÉSE
TARTÁLY LÉGRITKÍTÁSÁNAK TERMODINAMIKAI MODELLEZÉSE FÁBRY Gergely Szent István Egyetem Gödöllő Géészmérnöi Kar, Környezetiari Rendszere Intézet Műszai Tudományi Dotori Isola 213 Gödöllő, Páter Károly u.
XXXVI. KÉMIAI ELŐADÓI NAPOK
Magyar Kémikusok Egyesülete Csongrád Megyei Csoportja és a Magyar Kémikusok Egyesülete rendezvénye XXXVI. KÉMIAI ELŐADÓI NAPOK Program és előadás-összefoglalók Szegedi Akadémiai Bizottság Székháza Szeged,
Rendszerek tanszék, Veszprém
Szemes termények szárítási folyamatainak energetikai vizsgálata Energetical investigation of seed products drying Göllei Attila 1 - Vass András 2 - Pallainé Varsányi Erzsébet 2 1 Pannon Egyetem, Műszaki
Extraktív heteroazeotróp desztilláció: ökologikus elválasztási eljárás nemideális
Ipari Ökológia pp. 17 22. (2015) 3. évfolyam, 1. szám Magyar Ipari Ökológiai Társaság MIPOET 2015 Extraktív heteroazeotróp desztilláció: ökologikus elválasztási eljárás nemideális elegyekre* Tóth András
Feladatlap X. osztály
Feladatlap X. osztály 1. feladat Válaszd ki a helyes választ. Két test fajhője közt a következő összefüggés áll fenn: c 1 > c 2, ha: 1. ugyanabból az anyagból vannak és a tömegük közti összefüggés m 1
Nitrogén- és szénvegyületek átalakulásának követése egy többlépcsős biológiai szennyvízkezelő rendszerben
Jurecska Judit Laura V. éves, környezettudomány szakos hallgató Nitrogén- és szénvegyületek átalakulásának követése egy többlépcsős biológiai szennyvízkezelő rendszerben Témavezető: Dr. Barkács Katalin,
I. BESZÁLLÍTÓI TELJESÍTMÉNYEK ÉRTÉKELÉSE
I. BESZÁLLÍTÓI TELJESÍTMÉNYEK ÉRTÉKELÉSE Komplex termékek gyártására jellemző, hogy egy-egy termékbe akár több ezer alkatrész is beépül. Ilyenkor az alkatrészek általában sok különböző beszállítótól érkeznek,
Irányítási struktúrák összehasonlító vizsgálata. Tóth László Richárd. Pannon Egyetem Vegyészmérnöki és Anyagtudományok Doktori Iskola
Doktori (PhD) értekezés tézisei Irányítási struktúrák összehasonlító vizsgálata Tóth László Richárd Pannon Egyetem Vegyészmérnöki és Anyagtudományok Doktori Iskola Témavezetők: Dr. Szeifert Ferenc Dr.
ÁRAMLÁSTAN MFKGT600443
ÁRAMLÁSTAN MFKGT600443 Környezetmérnöki alapszak nappali munkarend TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI FÖLDTUDOMÁNYI KAR KŐOLAJ ÉS FÖLDGÁZ INTÉZET Miskolc, 2018/2019. II. félév TARTALOMJEGYZÉK
Termékenységi mutatók alakulása kötött és kötetlen tartástechnológia alkalmazása esetén 1 (5)
Termékenységi mutatók alakulása kötött és kötetlen tartástechnológia alkalmazása esetén 1 (5) Termékenységi mutatók alakulása kötött és kötetlen tartástechnológia alkalmazása esetén Kertész Tamás Báder
Űj eljárások az esőintezitás eloszlásának vizsgálatára { )
Űj eljárások az esőintezitás eloszlásának vizsgálatára { ) DR. OLÁH FERENC Széchenyi István Közlekedési Közte ós Távközlési Műszaki Főiskola, Győr ÖSSZEFOGLALÁS 1 GHz feletti tartományban történő hullámterjedési
Hangfrekvenciás mechanikai rezgések vizsgálata
KLASSZIKUS FIZIKA LABORATÓRIUM 3. MÉRÉS Hangfrekvenciás mechanikai rezgések vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 23. Szerda délelőtti csoport 1. A