Magyarország-Románia Határon Átnyúló Együttműködési Programból támogatott projekt (Projekt regisztrációs szám: HURO/0801/047)

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Magyarország-Románia Határon Átnyúló Együttműködési Programból 2007 2013 támogatott projekt (Projekt regisztrációs szám: HURO/0801/047)"

Átírás

1 Magyarország-Románia Határon Átnyúló Együttműködési Programból támogatott projekt (Projekt regisztrációs szám: HURO/0801/047) Kutatási program a Körös medence Bihar-Bihor területén, a határon átnyúló felszín alatti víztest hidrogeológiai viszonyainak, állapotának megismerésére (HURO) A magyarországi mintaterület hidrodinamikai modellje (Alföldi modell) Regionális modell a román-magyar határral osztott felszínalatti víztestek területén december

2 Jelentés Szerződés száma: 8608/ Projekt címe: Kutatási program a Körös medence Bihar-Bihor területén, a határon átnyúló felszín alatti víztest hidrogeológiai viszonyainak, állapotának megismerésére (HURO) Magyarország-Románia Határon Átnyúló Együttműködési Programból támogatott projekt Munkafázis A magyarországi mintaterület hidrodinamikai modellje Regionális modell a román-magyar határral osztott felszínalatti víztestek területén Teljesítés: Megbízó: Megbízott: Törvényes képviselő: Projektvezető: Készítette: december Tiszántúli Környezetvédelmi és Vízügyi Igazgatóság KSZI-Geogold Carpatin Kissné Jáger Erika Ambrus Magdolna Geogold Kárpátia Kft. Serfőző Antal, Jákfalvi Sándor, Balázs Ilma

3 TARTALOMJEGYZÉK 1. BEVEZETÉS NUMERIKUS MODELLEZÉS LÉNYEGE ÉS A FELHASZNÁLT SZOFTVEREK ISMERTETÉSE A modellezés szerepe az EU Vízkeret Irányelv végrehajtásában és a vízgazdálkodási tervekben a határmenti területeken A modellezésre felhasznált szoftverek általános ismertetése FeFlow (Finite Element Subsurface Flow System) Processing Modflow A permanens felszín alatti vízmozgás fizikai folyamata...12 Input Output rendszer...13 Alkalmazási lehetőségek Az alapértékelésekhez felhasznált szoftverek A felszín alatti vízáramlás numerikus modellezésének lépései és kapcsolatai A KÉT MODELLTERÜLET BEMUTATÁSA A határon átnyúló víztestek bemutatása Az alföldi modellterület Regionális modell terület A MODELLBEN FELHASZNÁLT ADATFORRÁSOK ISMERTETÉSE AZ ALFÖLDI HIDRODINAMIKAI MODELL A terület földrajzi, földtani, vízföldtani jellemzői A modellezett terület lehatárolása A terület geomorfológiai viszonyai Hidrográfiai hálózat Földtani adottságok Vízföldtani adottságok Klíma és lefolyás A hidrodinamikai modell felépítése Alkalmazott szoftver Koncepcionális modell A modell belső szerkezete Horizontális felosztás Számítási háló Vertikális tagolás Bemenő paraméterek

4 5.4.1 Szivárgási tényező Folyóhálózat Induló vízszintek Beszivárgás Víztermelési adatok Modell futtatása modellezési eredmények Eredmények értelmezése A REGIONÁLIS HIDRODINAMIKAI MODELL A terület földrajzi, földtani, vízföldtani jellemzői A regionális modellterület bemutatása A terület geomorfológiai viszonyai Klimatikus viszonyok A modellezett terület földtani viszonyai A terület vízföldtani viszonyai A modellezett terület vízkivételi pontjai A modell belső felépítése Horizontális felosztás Vertikális tagolás Bemenő paraméterek Szivárgási tényező Folyóhálózat Vízkivételek kutak, források Beszivárgás Modell futtatása modellezési eredmények Eredmények értelmezése FELHASZNÁLT IRODALOM

5 1. BEVEZETÉS A szerződés részét képező műszaki ajánlatnak megfelelően a projekt II. Kutatási fázisának A víztározó struktúrák hidrodinamikai modellezése értelmében a közös projektterületen (Hajdú-Bihar Bihar megye) elkészült a határral metszett víztestek területén a tervezett két hidrodinamikai modell. Az egyik magyarországi oldalon, a határzónába eső hidraulikai rendszereket elemző Alföld-részmodell, a másik a határ mindkét oldalát felölelő, regionális modell. Az alföldön Berettyóújfalu környezetében került kijelölésre a modellterület, a regionális modell lehatárolása természetes felszíni határok figyelembe vételével történt, területe teljes egészében a Körösök vízgyűjtőterületére esik. A hidrodinamikai modellezés elsősorban a kutatás tárgyát képező határon átnyúló pleisztocén, illetve pannon víztestek komplex vízáramlási feltételeinek, illetve az ezekkel szomszédos karsztvíztesttel (beáramlási területtel) való kapcsolatuknak alaposabb megismerését célozza. A modell segítségével bemutathatóak az érintett területen kialakult természetes felszín alatti vízáramlási pályák, illetve előre prognosztizálható a vízkészletre és dinamikára ható külső tényezők (emberi és természeti) hatása: vízkivétel, szennyezőanyagok terjedése, csapadékmennyiség ezek módosulása stb. A modellezés lehetőséget ad a felszíni és felszín alatti vízrendszer kapcsolatának vizsgálatára is. Segítségével meghatározható a rendszerbe történő utánpótlódás mértéke és módja. Eredményeinek segítségével elkülöníthetőek a víztesten a sérülékeny és kevésbé sérülékeny részek, és hatásosabban meghatározhatóak azok az intézkedések, amelyek alkalmazásával közép és hosszú távon is fenntartható a víztest jelenlegi jó állapota Nem direkt módon elősegíti a tervezés során felmerülő különböző lehetőségek szemléltetését és a hatékony megfigyelőrendszer kiépítését. A modellezés első ütemében a modellek szerkezeti felépítését készítettük el (területi, földtani modell), a második ütemben történt a modell futtatása és kalibrálása. A hidrodinamikai modell felépítéséhez felhasználtuk a projekt során végzett geofizikai vizsgálatok, forrás- és kútfelülvizsgálatok, valamint a dinamikus faktoranalízis eredményeit. Ezen felül figyelembe vettük a térségben korábban végzett geológiai, hidrológiai kutatások szakmai anyagát, a meglévő geológiai és hidrogeológiai térképeket és a létező irodalmi adatokat is. A vizsgált terület komplex geológiai felépítése miatt a mintaterületeken nem permanens rezsimű, háromdimenziós hidrogeológiai modell elkészítését terveztük, aminek input adatai hosszú távú megfigyeléseken alapuló idősorok. Sajnos a projekt rövid időtartama, illetve a romániai vízügyi hatóságok adatzárolása miatt, ilyen jellegű megfigyeléseket sem mi nem tudtunk végezni, sem hozzáférni nem tudtunk, ezért a modelleket permanens rezsimben kellett elkészítenünk, azaz a bemenő adatoknak megfelelően, egy adott állapotot tükröznek, nem pedig egy folyamatot. 3

6 A hidrodinamikai modell-vizsgálatokat, az áramvonal és elérési-idő számításokat a FeFlow v 6.0 és Processing Modflow 5.3 modellező programokkal, az input és output adatok elő és utófeldolgozását ArcView 9.1 szoftverrel történtek. 4

7 2. NUMERIKUS MODELLEZÉS LÉNYEGE ÉS A FELHASZNÁLT SZOFTVEREK ISMERTETÉSE 2.1 A modellezés szerepe az EU Vízkeret Irányelv végrehajtásában és a vízgazdálkodási tervekben a határmenti területeken A határ mindkét oldalán olyan vízgyűjtő-gazdálkodást kell folytatni az EU Vízkeret Irányelv és az annak alapján született nemzeti jogszabályok alapján, mely elősegíti, hogy a vizek 2015-ig jó mennyiségi és minőségi állapotba kerüljenek. A felszín alatti vizek esetében a jogszabály szerint a környezeti célkitűzés az, hogy a vízgyűjtő gazdálkodási tervnek tartalmaznia kell a jó mennyiségi és minőségi állapot eléréséhez, illetve fenntartásához szükséges terveket, így azoknak az intézkedéseknek a körét, amelyek megelőzik, megakadályozzák, illetve korlátozzák a felszín alatti vizek állapotának romlását, a szennyezőanyagoknak a felszín alatti vizekbe történő bejutását. A jogszabályok előírják, hogy a vízgyűjtő gazdálkodási terveknek a víztestek leírásán, állapotfelmérésén, az emberi tevékenységek hatásainak számbavételén és értékelésen kell alapulniuk. A hidrodinamikai modell egy eszköz arra, hogy a víztesteket jellemző hidrogeológiai jellemzőket egységes, mindenki számára, és különösen a nem szakemberek számára érthető formába öntsük. A hidrogeológiai értékelésekkel a leírás mellett a következő hatásokat lehet vizsgálni: a víztestek együttes jelenlegi mennyiségi és minőségi állapotát, a víztestek beavatkozások előtti lehetséges állapotát, a víztestek jövőbeli állapotát a két ország által az EU VKI alapján közösen meghatározott vízgazdálkodási tervek esetében. A hidrogeológia jelenségek, folyamatok numerikus modellezése során a területről alkotott előzetes képünk (hidrogeológiai elképzelésünk) modellbe építése után azt tudjuk vizsgálni, hogy a vizsgálni kívánt folyamat egyes összetevőjének változtatása milyen hatással van a rendszer egészére. A modellalkotás előtt egy előzetes koncepcióra van szükség, amely a vizsgálandó terület viselkedését főbb vonalakban jellemzi. Ennek a modellbe történő építése után, a modell helyességét pontosan azzal tudjuk ellenőrizni, hogy az előzetes koncepciónknak a modellel alkotott eredmények megfelelnek-e vagy sem. Az elméleti modell helyes megalkotása kiemelt fontosságú, mert hibás elméleti modell esetén függetlenül attól, hogy a számított eredményeink illeszkednek a hibás koncepciónkhoz, minden további, a modellből levonható következtetés hibás, mert a kiindulási feltevés is rossz volt.. A modellalkotás során arra törekszünk, hogy a koncepcionális modell által elvárt folyamatokat az alkotott modell valamilyen szinten leírja. A valóságos, összetett folyamatok egzakt leírására nincs módunk, csupán a főbb tendenciák közelítésére, modellezésére vállalkozhatunk. A numerikus modell esetében következésképpen nem várhatunk el nagyobb pontosságot, mint a rendelkezésünkre álló koncepcionális modellalkotás során felhasznált bemenő adatok által megadott pontosság. A valóságot közelítő, az azt leíró egyenletrendszerben mivel parciális differenciál-egyenletredszert oldunk meg, iteratív 5

8 vagyis nem egzakt módon bizonyos diszkretizálást hajtunk végre, vagyis a tér adott méretű elemeire próbáljuk megadni az általunk vizsgálni kívánt paraméterértéket. A valóságban a hidraulikai modelleket a modellezett területen található vízszintfigyelő objektumokban mérhető vízszint valamilyen jellemző értéke és a modell által ugyanarra a pontra meghatározott számított vízszint értékek összevetésével ellenőrzik a modell helyességét (kalibráció). A numerikus modellekben a valós földtani helyzet egyszerűsített leírására törekszünk, hiszen a valós, bonyolult földtani felépítést a modellbe építeni csak közelítőleg lehetséges. A modellek technikai sajátossága, hogy sok esetben olyan térrészre is (pl. nagy mélységű réteg), amit direkt módon nem vizsgálhatunk, vagy nem rendelkezünk közvetlen mérési adattal, folytonos paramétermezőt kell előállítanunk, és ezen paraméter kombinációk mellett tudjuk elvégeztetni a számítást. Mivel a legtöbb esetben a földtani paraméterek közvetlenül nem mérhetőek, illetve, ha rendelkezünk is mért értékkel, az nem szükségszerűen reprezentatív a modellezett tér egészére, ezért valamilyen megfontolás alapján paramétereket kell megadnunk. A megfelelő koncepcionális modell felépítése a modellezési folyamat legfontosabb része. A modellezés alapját szolgáltató fontosabb szakmai koncepciókat az alábbiakban ismertetjük. Globálisan vizsgálva a föld víztömege konstansnak tekinthető, a földi vízciklus tehát zárt hidrológiai rendszert alkot, de egy tetszőleges területet tekintve azonban, a vízkörforgalom nyílt rendszerként értelmezhető, melynek alrendszerei a felszín alatti vizek szempontjából a növényzet, a medertárolás, a földfelszín, a talajnedvesség és a felszín alatti vizek, amelyek a dinamikus rendszerek elvén működnek. Egy komplex, felszíni-felszín alatti nyitott, mesterséges vízkivétellel nem terhelt, vízgyűjtőegységre a fentiek alapján, a következő vízmérleg írható föl: Betáplálás=Kimenet±Tárózás A rendszerbe való betáplálást a csapadék, a felszíni és a felszín alatti víz-hozzáfolyás jelenti. A víz az alrendszerekben tárózódik, amelyek folyamatos és összetett kölcsönhatása révén a rendszerben tárolt felszíni és felszín alatti víz mennyisége megváltozik. A rendszer kimeneteit a fizikai párolgás (evaporáció), a növényi párologtatás (transpiráció), a felszíni és a felszín alatti víz-elfolyás teszi ki. A vázolt hidrológiai készlet adott térfogatra és időtartamra vonatkoztatható. A fentiekből következik, hogy egy rendszerből hosszú távon nem vehető ki a betáplálást meghaladó vízmennyiség a tárolt vízkészlet mennyiségének káros mértékű csökkentése nélkül. A vízkészletek fenti módon történő számítása, ha ismerjük a bemenő és kimenő paramétereket viszonylag egyszerű matematikai feladat. A problémát általában az jelenti, hogy nem tudjuk pontosan a térrészt, a rendszert, a hidrogeológiai egységet, amire a számításokat el kell végezni, pedig ez az egész vízkészlet gazdálkodás alapja. Nehezíti a 6

9 megoldást, hogy a vízkészlet gazdálkodás nemcsak ökológiai kérdés, hanem gazdasági, ily módon a rendelkezésre álló vízkészletet sokszor nem regionálisan, hanem termelőkút szintjén kell meghatározni. A vízkészlet gazdálkodást semmi esetre sem lehet csak földtani alapon meghatározott kőzettestekhez kapcsolódó vízkészletekhez kötni, igen fontos szerepe van az utánpótlódás mértékének, azaz a vízgyűjtők nagyságának és jellegének. A felszín alatti vízgyűjtők meghatározása azonban már bonyolultabb feladat. A gravitáció által vezérelt felszín alatti vízmozgást a hidrogeológiai környezet elemei módosítják, ezért egy adott régió vízáramlási rendszere és vízháztartása egyedivé válik. A hidrogeológiai környezet a következő három fő elemből áll: - Az áramlási tér geometriája - Az áramlási tér földtani felépítése - Az éghajlati viszonyok A topográfia legfontosabb hatása az, hogy a domborzat vonásainak, a lineáris lejtéstől való eltérésének megfelelően, különböző áramlási rendszerek alakulhatnak ki. Általánosan a felszín alatti vízáramlási rendszerek háromfélék lehetnek: - regionális - köztes (intermedier) - helyi (lokális) A különböző áramlási rendszerek mindegyikéhez háromféle áramlási rezsim tartozik: beáramlás, átáramlás és kiáramlási. Egy rendszer: - regionális, ha az áramlás a medence fő vízválasztójától a fő megcsapolódási területéig tart ezek földrajzilag is távol vannak egymástól és alacsonyabb hierarchiájú köztes és helyi rendszereket ölel át. - intermedier, ha két végpontja nem esik egybe a fő vízválasztó és a fő kiáramlási területtel, és ezek egy vagy több lokális rendszert fognak közre - lokális, ha a be- és a kiáramlási területe szomszédos és ezek nem a fő vízválasztó, illetve a fő megcsapolódási területen vannak, valamint adott méretarányban szemlélve már nem tagolható tovább; Egy medencén belül a regionális léptéktől a helyi lépték felé haladva a rendszerek mélysége és kiterjedése egymáshoz viszonyítva csökken (1. ábra) 7

10 1. ábra: Egy medencén belüli áramlási rendszerek és rezsimek (TÓTH, 1984 ) Az áramképet alapvetően a felszíni topográfiai különbségek határozzák meg, mivel ezek generálják a hajtóerőt. Ezért főképpen a talajvíz-rendszerek esetén a felszíni és a felszín alatti vízgyűjtők megegyeznek. A földtani felépítés azonban, amely az áramlási teret felépítő összletek heterogenitásából és anizotrópiájából adódik, jelentősen befolyásolhatja a felszín alatti vízáramlási képet és az áramlás intenzitását. A permeabilitás térbeli változásának leggyakoribb geológiai okai: a rétegek dőlése, a rétegek összefogazódása, illetve kiékelődése, lencsék és vetők jelenléte. Az áramképet és az áramintenzitást a különböző klimatikus tényezők is befolyásolják: nagy mértékben a csapadék, továbbá a hőmérséklet, szélerősség. Nagyon csapadékos, alacsony evapotranszpirációjú területeken, a vízszint a felszín közelében van, így az áramlást erősen meghatározza a felszíni domborzat. Száraz területeken, ahol a vízszint több tíz vagy száz méterrel a felszín alatt lehet, az áramlási hálózat és a felszín topográfiája között nem ismerhető fel az összefüggés. A vízföldtani modellek segítségével választ kereshetünk a természetes megcsapolódási helyeken a felszín alatti vizektől függő ökoszisztémák vízigényeinek kérdésére is. A felszín alatti víztől függő felszíni vízi és szárazföldi ökoszisztémák fennmaradását, a felszín alatti víztestek mennyiségi és minőségi szempontú jó állapotban tartása biztosítja. Az elkészülő modellek lehetővé teszik, hogy vízmérleg-számítás segítségével az adott víztest terhelésének különböző eseteiben vizsgálni lehessen a felszín alatti vizektől függő ökoszisztémákhoz jutó vízmennyiséget, és ennek valószínűleg bekövetkező változásaikor értékelni lehessen az ökoszisztémákra gyakorolt hatását. 8

11 2.2 A modellezésre felhasznált szoftverek általános ismertetése A modelleket két féle modellező softver segítségével készítettük, amelyek között az alapvető különbség a vizsgálandó térrész felosztásában van, az egyik a véges elemes FeFlow 6.0 a másik pedig, a véges differenciás Processing ModFlow 5.1 megoldás. A két módszer között alapvető különbség a tér elemekre bontása után a megoldandó egyenletrendszer megoldási módjában van. A véges elemes módszernél jellemzően a vizsgálandó térrészt háromszög alapú hasábelemekre bontjuk, amely 6 csomópontja mentén érintkezik a szomszédos elemekkel. A megoldás során az érintkezési csomópontokra adjuk meg a számításhoz szükséges bemeneti paramétereket, majd az egyenletrendszer megoldása után ezekre a csomópontokra határozzuk meg a vizsgálni kívánt paramétert. Ezzel a módszerrel a változatos felépítésű vizsgálandó terület rugalmasan követhető. A véges differenciás módszernél a teret négyszög alapú hasábokra bontjuk, és a hasábelem közepére határozzuk meg a vizsgálni kívántparamétert, vagyis egyetlen modellelem egyetlen értékkel jellemzett. Ez komoly problémát jelent egy bonyolult szerkezetű terület esetén, mivel a kismértékű változások ezzel a módszerrel elsikkadnak, a vizsgálati terület nehézkesen követhető. A kutatási terület vízföldtani felépítése határozza meg a módszert, amellyel a víztesteket modellezni kell FeFlow (Finite Element Subsurface Flow System) 6.0 A regionális modell felépítésére, mivel bonyolult szerkezetű karsztos, kristályos, törmelékes és porózus halmazok modellezéséről van szó, a WASY Ltd. által fejlesztett véges elem módszert alkalmazó FeFlow (Finite Element Subsurface Flow System) 6.0 verzióját használtuk. A FeFlow számítógépes szoftver, olyan interaktív, grafikus alapú modellező rendszer, amellyel két- és három dimenzióban lehet megjeleníteni a felszínalatti víz áramlási rezsimjét. Az eredmények bemutathatók felületi vagy keresztmetszeti (horizontális, vertikális vagy tengelyszimmetrikus) képként is. A modellezés során figyelembe lehet venni a víztartó réteg (nyomás alatti vagy nyílt tükrű) és a szennyező anyag tulajdonságait, a különböző áramlási rezsimeket (beszivárgás, tranziens áramlás, t is. A véges elemes módszernél jellemzően (de nem szükségszerűen) a vizsgálandó térrészt háromszög alapú hasábelemekre bontjuk, egy hasábelemnek 6 csomópontja van, amely mentén érintkezik a mellette ill. alatta-felette levő elemekkel. A megoldás során az érintkezési csomópontokra adjuk meg a számításhoz szükséges bemeneti paramétereket, majd az egyenletrendszer megoldása után ezekre a csomópontokra határozzuk meg a vizsgálni kívánt paramétert. Előnye a módszernek, hogy a változatos felépítésű vizsgálandó terület rugalmasan követhető. A véges elem módszer alapgondolata a lokális közelítés elve, ami azt jelenti, hogy az egyes felvett elemek mentén a keresett mezőket (nyomásszint, szivárgási sebesség, 9

12 szennyezőanyag-koncentráció és csapadékeloszlás) előre felvett paramétereket tartalmazó függvényekkel közelítjük. A lokálisan felvett közelítő függvényeket azután a szomszédos elemek mentén valamilyen hibaelv alapján illesztjük, így végül a teljes vizsgált tartományra előállítunk egy megfelelő rendben folytonos közelítő mezőt. A FEFLOW szoftver több áramlás szimulációs probléma megoldására alkalmas modullal rendelkezik (folyadékáramlás, transzport folyamatok, kapcsolt hőáram szimuláció, folyadéksűrűség által indukált áramlások). A FEFLOW teljes két- és háromdimenziós, véges elemű módszert alkalmaz azon parciális differenciál egyenletek megoldására, amelyek leírják az alábbi egymással kölcsönösen összefüggő folyamatokat: - felszín alatti vízáramlás dinamikája, amely függhet a folyadék sűrűségétől is; - szennyezések konvektív és konduktív transzport folyamata, amelyre hatással lehet az adszorpció; - hidrodinamikai diszperzió és elsőrendű kémiai reakció; - felszín alatti transzport folyamatok, amelyek lehetnek mind a szennyező anyagok mind a hőmérséklet különbség hatására kialakuló sűrűségváltozással kapcsolatos jelenségek (termohalin / hőáramlás). (A hő- és sűrűségváltozással kialakuló áramlások modellezése külön modulban van.) A kiindulási és határfeltételek meghatározása viszonylag általános lehet, így különböző típusú, tetszés szerinti geometriájú modell is megadható. Ennek megfelelően, kevert feltételek kezelését (például a felszíni víz kölcsönhatásai vagy termelő és besajtoló kút működése), valamint sűrűségáram határfelületek kezelését is megengedi a program, a kiindulási egyenletek alternatív alkalmazásával (transzport egyenletek divergenciája). A FEFLOW választási lehetőségeket tartalmaz az áramlás, a szennyezőanyag és a hő transzportra, ami lehet: - kombinált és különálló; - nemlineáris (folyadéksűrűséggel kapcsolatos) és lineáris; - teljesen tranziens, félig állandó és állandó állapotú szimuláció. Az első és másodrendű véges elemek négyoldalú és háromszög térbeli eloszlási sémáit a kétféle, sokoldalú hálógenerátor hozhatja létre. A tranziens problémák megoldásához beépítettek első és másodrendű időléptetési sémákat is a szimulátorba. Két fő alternatíva létezik: az egyiknél rögzített (előre meghatározott) időlépcsőkkel teljesen implicit, vagy magasabb rendű Crank-Nicholson időintegráció séma kerül végrehajtásra; a másiknál pedig egy jósló-javító (predictorcorrector) időléptetési módszert alkalmaz a FEFLOW, amely lehetővé teszi a tranziens megoldási folyamat teljesen automatikus ellenőrzését és gyors lefuttatását. A FEFLOW többféle háromdimenziós grafikus eszközt is tartalmaz a négydimenziós tér-idő modell adatok vizuális vizsgálatára. Ezek a következők: viziometrikus háromdimenziós működés, térfogati és felszíni megjelenítés, tengely körüli forgatás (rotáció), áthelyezés (transzláció), árnyékolás, három-dimenziós kurzor, tetszőleges metszetek, határok megjelenítése, izofelületek megrajzolása, térkép beillesztés, terjedési útvonalak megjelenítése, áramlási vektor minták választása és izokrónok kijelölése. A szimulált folyamatok természetétől és a víztároló közeg heterogeneitásától függően a modellező szabadon választhatja meg az egyenletrendszerek megoldásmódszerét, tekintve, 10

13 hogy a program többféle iterációs vagy direkt megoldásmódszert javasol. A megoldási módszer kiválasztásánál természetesen a folyamatokat leíró egyenletek, a víztároló közeg geológiai szerkezetének és a megoldandó egyenletrendszerek numerikus tulajdonságainak ismerete nagy szerepet játszik. Az adatbevitelt, az eredmények értelmezését és reprezentációját nagyban megkönnyíti a szoftver közvetlen kapcsolata az Arcview/ArcInfo típusú térinformatikai adatbázis felé, de kommunikál egyéb szoftverekkel is különböző, széles körben elterjedt file típusokon keresztül (DXF, TIFF, ASCII). Lehetőség van raszter képek geo-referenciájára, rektifikációjára és feltöltésére egy önállóan is használható segédprogram alkalmazásával (FEMAP). Az eredmények grafikus ábrázolása, dokumentálása egy saját reprezentációs program (FEPLOT) segítségével is lehetséges Processing Modflow 5.3 A MODFLOW a legszélesebb körben használt 3D-s felszín alatti vízáramlási modell. A MODFLOW programcsomag a világon a legelterjedtebb (a forgalmazó szerint év végéig több mint példányban kelt el) felszín alatti vízmozgások vizsgálatára alkalmas szoftver. A matematikai megoldás Egy adott víztartó térben a következő folytonossági egyenlet írható fel: σ q σ x x + σ q σ y z + σ q σ z z = s σ σ h t + q s (3.1) ahol, q x, q y, q z - az x, y, z irányú fajlagos víztömeg áramlás, [m 2 /nap], x, y, z - a térbeli derékszögű koordináták, [m], s - a szabad vízfelszínű víztartó medence szabad hézagtérfogata, [m 3 /m 3], nyomás alatti víztartó medencénél a tárolási tényező, [m 3 /m 3], h - a víztartó medence vízszintje vagy nyomásszintje, [m választott szint felett], t - idő, [nap], q s - a víztartó medence vízkészletét terhelő vízkivételek és vízbetáplálások egységnyi felületre vetített összege, [m/d]. A folytonossági egyenletbe minden irányba külön-külön behelyettesítve a ( h) q = k m grad (3.2) (3.2) összefüggést, a következő differenciálegyenlet nyerhető: 11

14 jelölések: σ σh k m σx σx σ σh + k m σy σy σ σh + k m σz σz = σh s σt + q s (3.3) az új k - Darcy-féle szivárgási tényező, [m/nap], m - a víztartó tér vízvezető rétegvastagsága, [m]. A számítógép felszín alatti vízmozgást leíró differenciál egyenletet differencia egyenletrendszerré alakítja és azt az általánosan alkalmazott véges differencia sémával oldja meg. (Végül matematikailag mátrix műveletekkel történik az egyenletrendszer megoldása.) A véges differencia egyenletrendszer megoldásának eredménye a modell térbeli felosztására kialakított véges differencia hálózat minden aktív elemében egy potenciál érték. A további feldolgozások és számítások e potenciál értékek alapján történik. A permanens felszín alatti vízmozgás fizikai folyamata A felszín alatti víztartókban lejátszódó hidrológiai és hidraulikai folyamatok nem választhatók el a meteorológiai, a környezetben és a felszínen végbemenő folyamatoktól (MAJOR, 1976.). A hidrológiai ciklus a következő fontosabb részekből áll: eső, hó, mesterséges csapadék, növény és egyéb felületek (pl. háztetők) intercepciója, az előbbi kettő különbsége a hatékony csapadék, amelynek része a hóolvadék is, felszíni lefolyás, beszivárgás, folyó, tó csatorna vízállása, vízszállítása, telítetlen zónában lejátszódó vízmozgások, telített zónában lejátszódó vízmozgások, evapotranszpiráció. Természetes körülmények között a függőleges vízforgalom (amelynek része a csapadékból származó beszivárgás is) és a felszíni vizek dinamikus kapcsolata határozza meg egy felszín alatti víztartó egyensúlyi állapotát. Amikor az ember tevékenységével beavatkozik egy felszín alatti víztartó vízháztartásába, akár vízkitermeléssel, akár víz bejuttatásával, akkor a függőleges vízforgalommal és a felszíni vízzel fennálló dinamikus kapcsolat korábbi állapota is megváltozik. Pl. a vízkitermelés hatására az addig egyensúlyban lévő függőleges vízforgalom hosszú időszak átlagában döntően beszivárgási többlet állapotába kerül, vagy a korábban a folyóvizet tápláló talajvíztér, a folyó vízkészletét csökkenteni fogja. A környezettel meglévő dinamikus kapcsolat a mélyebb rétegek vízháztartására is jellemző, de itt csökken a függőleges vízforgalom, a felszíni vizek hatása és nő a szomszédos rétegek közötti átáramlás súlya. 12

15 Az előbbiek figyelembe vételével, a felszín alatti vízmozgás matematikai leírásnál biztosítani kell a dinamikusan ható tényezők esetében a piezometrikus nyomásszinttől függő nemlineáris kapcsolat-összefüggéseket is. Input Output rendszer A PROCESSING MODFLOW 5.3, háromdimenziós, moduláris felépítésű programcsomag felhasználásával készült el. Az alkalmazott szoftver a telített szivárgási térben végbemenő vízmozgás többrétegű és teljes háromdimenziós megközelítéssel történő leírására alkalmas. A numerikus megoldás véges differencia módszerrel történik. Alkalmazási lehetőségek A PROCESSING MODFLOW 5.3 az alábbi esetekben képes a nyomásszintek számítására: - heterogén, anizotróp szivárgási tér többrétegű és teljes háromdimenziós megközelítése (kiékelődés nem lehetséges); - permanens és nem-permanens (stressz-periódusok) áramlási viszonyok; - időben és térben változó szabadfelszínű és nyomás alatti állapot, illetve bármelyik réteg váltakozó leürülése és újranedvesítése; - háromféle peremfeltétel: vízzáró, adott nyomású és a számított nyomással lineárisan változó fluxus (ez utóbbi speciális esete az állandó fluxus); - különböző források és nyelők: időben változó, de egy stresszperiódus alatt konstans értékek (vízkivétel, injektálás, beszivárgás), vagy a számított nyomás lineáris (felszíni vizek, drének) és nem lineáris (talajvízpárolgás, felszíni víz medre alá süllyedő talajvízszint) függvénye; - a felszín alatti víz és a felszíni víz aktív kapcsolata (a felszíni vízszint függvénye a felszíni vízzel történő vízcserének) Az alapértékelésekhez felhasznált szoftverek A numerikus modellezésen kívül az adatbázis kialakításában, a digitális domborzati viszonyok és lefolyási modellek elemzésében az ArcView 9.1 szoftvert alkalmaztuk, amely a földrajzi információk létrehozására, importálására, szerkesztésére, lekérdezésére, elemzésére valamint térképezésére és publikálására használható szoftver. Az ArcView 9.1 összekapcsolt alkalmazások sora, amely magába foglalja többek között a következőket: ArcMap, ArcCatalog, ArcToolbox, 3D Analyst Megfelelő módon használva ezeket az alkalmazásokat, elvégezhetünk GIS feladatokat, mint térképezést, földrajzi elemzéseket, adatok szerkesztését és összeállítását, adatkezelést, megjelenítést és georeferálást. 13

16 Az ArcMap a központi alkalmazása az ArcView 9.1 szoftvernek, amivel az összes térképalapú feladat elvégezhető. Kétféle térképi nézetet kínál fel számunkra: a földrajzi adat nézetet és a nyomtatási kép nézetet. A földrajzi adat nézetben a földrajzi rétegeinket szimbolizálhatjuk, azokon elemzéseket végezhetünk és GIS adatszerkezetekbe szervezhetjük azokat. A nyomtatási kép nézetben, a térképlapokon a földrajzi adataink mellett megjelennek a térképi elemek, úgymint: léptékek, jelmagyarázatok, északnyilak. Az ArcCatalog alkalmazás segítségével rendezhetünk és kezelhetünk minden GIS adatot, például térképeket, globe-okat, adatcsoportokat, modelleket, metaadatokat és szolgáltatásokat. Az ArcToolbox tartalmazza a geoprocesszálási eszközök széles spektrumát, köztük: adatkezelést, adatkonverziót, fedvények kezelésének eszközeit, vektorelemzést, statisztikai elemzéseket. A geoprocesszálás magába foglalja a már létező GIS adatok elemzése eredményeképp létrejövő információkból új adatok előállítását. Felhasználható nagyon sok GIS feladat végrehajtásakor, úgymint szomszédsági, átlapolási elemzések, adatkonverziók, adatösszegzési műveletek, mennyiségi és minőségi elemzések, adatellenőrzések. Az ArcGIS 3D Analyst bővítmény hatékony háromdimenziós megjelenítést, valamint elemző és felületgeneráló eszközöket biztosít a felhasználó számára: felületmodell építése számos támogatott adatformátumból, háromdimenziós nézetek létrehozása közvetlenül a saját GIS adatainkkal, terület, térfogat, lejtés, kitettség és domborzatárnyékolás számítása, interpoláció stb. 2.3 A felszín alatti vízáramlás numerikus modellezésének lépései és kapcsolatai A numerikus szimulációnál az általános, elfogadott modellezési folyamatot követtük, melyek lépései az alábbiak (2. ábra): 1. A valódi rendszer megismerése a lehető legteljesebb mértékben: adatgyűjtés, információ rendszerezés, feldolgozás, hibaszűrés. 2. A valódi rendszer megismerésének összefoglalása, koncepcionális modell (hipotézis) felállítása: geológiai szerkezet, morfológia, kutatási terület lehatárolás, attribútum mezők (szivárgási tényező mező, beszivárgási térkép, hőáramlás, stb.) meghatározása. 3. A koncepcionális modell áttranszformálása numerikus modellé. Ez a fázis egyrészt a koncepcionális modell bizonyos fokú egyszerűsítését, másrészt a numerikus modellezés technikájából kifolyólag hipotetikus adatok bevitelét igényli. A modell szimulációjával mintegy ezen adatok realitását és következményeit teszteljük. 4. A numerikus szimuláció eredményeinek visszacsatolása a valódi rendszerbe, eredmények ellenőrzése, elfogadása vagy elvetése az adott probléma tükrében. Javaslatok a koncepcionális modell módosítására, új hipotézisek felállítása. A modellezésnél az alábbi alapvető feltételeket vettük figyelembe: 14

17 a modell a realitásoknak megfelelő mértékben írja le a valóságban bonyolult földtani felépítést. A szivárgáshidraulikai paraméterek (szivárgási tényező, hézagtényező, stb.) a földtani képpel ne kerüljenek ellentmondásba (a földtani leírás alapján a paraméterek általában csak nagyságrendi pontossággal adhatók meg, valamivel jobb volt a helyzet, az olyan területrészeken, ahol geofizikai eredményekkel rendelkezünk). a további számításoknál általában az átlagértékek vehetők figyelembe, de sorosan és párhuzamosan kapcsolt vízvezető rendszereknél a segédletnek megfelelő eredő értéket veszünk figyelembe (a horizontális, rétegirányú vízvezető képesség tekintetében nem hanyagolható el az ún. lencsehatás, ami a vízvezető réteg kisebb áteresztő képességű részeinek meghatározó szerepét jelenti, a vertikális, a rétegzettségre merőleges szivárgásoknál pedig az ún. hidrogeológiai ablakok százalékos arányát kell párhuzamosan kapcsolt vízvezető elemként figyelembe venni. a modell peremein lehetőség szerint ismertetni kell a tényleges vízszinteket, illetve nyomásokat, azok múltbeli alakulását, a modell területén figyelembe kell venni a talajvízszintre és a rétegvízszintre, ezek múltbeli alakulására vonatkozó információkat, a felszínközeli képződmények és a hidrometeorológiai viszonyok ismerete alapján figyelembe véve a növényzetet is meg kell becsülni a talajvízháztartást, az eredő leszivárgást a talajvízből, vagy a feláramlást és a többletpárolgást, a felszíni vizekkel vízfolyásokkal, állóvizekkel, esetleges időszakosan jelentkező belvizekkel összefüggő talaj-, illetve felszín alatti vizek kapcsolatát a mederviszonyok lehetőség szerinti ismeretében kell meghatározni, a modell által számított és a mért vízállások összehasonlításánál figyelemmel kell lenni a permanens vagy nem permanens szivárgási állapotra (a valóságban nem permanens állapotok és a permanens állapot feltételezésével végzett modellezés eredményeinek összehasonlítása téves következtetésekre vezethet) a mért- és számított nyomásállapot tér- és időbeli összevetésén túl a rendelkezésre álló információk függvényében figyelni kell arra, hogy a modellt az eddig lejátszódott transzportfolyamatok is verifikálják, az erre alkalmas vízminőségi és izotóp adatokat kell felhasználni. 15

18 2. ábra. Numerikus szimuláció modellezési folyamata 16

19 3. A KÉT MODELLTERÜLET BEMUTATÁSA 3.1 A határon átnyúló víztestek bemutatása A projekt tárgyát a romániai mintaterületen 4 határral metszett porózus víztest (ROCR01, ROCR06, ROCR07, ROCR08) valamint az ezekkel szomszédos karsztos víztest képezi (ROCR02 ). (3. ábra). Ez utóbbi, ha nincs is határon átnyúló víztestként lehatárolva, litológiai egységei fellelhetőek a porózus víztestek aljzatában. A magyar oldali területen a p.2.6.1, p.2.6.2, p , sp.2.6.1, sp.2.6.2, sp a projektben vizsgált határral metszett víztestek A mintaterületek kiválasztásánál szempont volt, hogy a nagy kiterjedésű porózus víztestek olyan területrészeit modellezzük, ahol pontosíthattuk a különböző áramlási rezsimeket, illetve ahol kimutathattuk a különböző mélységben elhelyezkedő víztestek egymás közötti és a szomszédos, beáramlási karsztos területrésszel való kapcsolatát. 3. ábra. A projekt által vizsgált víztestek és a modellezett mintaterületek 17

20 A vizsgált felszínalatti víztestek a Körösök vízgyűjtőterületén lettek lehatárolva. A fő vízadót negyedidőszaki folyóvízi alluviális üledékek képezik, amelyek vastagsága K felé csökken. A romániai oldalon csak a negyedidőszaki vízadó tartozik a határokkal osztott víztestek közé, míg a magyar oldalon a pannóniai vízadóknak a 30 o C-nál hidegebb részei (kb. 500 m vastag) is ide kapcsolódnak. A folyóvízi üledékek anyaga a régió keleti részein homokos kavics, nyugat felé egyre finomodó szemcsemérettel, több kőzetliszt és agyaglencsével. A RO CR01 sekély porózus, negyedidőszaki üledékekben kifejlődött talajvíztest határa az Ér, a Berettyó, a Sebes-, Fekete- és Fehér-Körös folyók árterének vonalát követi. Teljes kiterjedése 8787 km2, amiből 6700 km2 esik Románia területére. Ez képezi az alatta elhelyezkedő, középmélységű víztestek fedőjét. A középmélységű, porózus víztest a Romániába eső kutatási terület délnyugati részén húzódik, a Nyugati-alföld részeként. Déli határa a Berettyó, északon túlnyúlik a projektterület határán (majdnem a Szamosig terjed), nyugatról a mai magyar-román határ határolja, és kb m mélységközben található, alsó negyedkori (pleisztocén) ártérifolyóvízi, porózus-permeábilis üledékekben. A víztározó összletet finom- és középszemű homokrétegek és agyag, homokos agyag szemi permeábilis és impermeábilis rétegek váltakozása jellemzi. A víztest fedőjében a ROCR01, Oradea talajvíztest található. Az 5-20 m vastagságú összeletet a folyami hordalékkúpok keletről nyugatra finomodó üledékei alkotják (kavics, homok, agyagos homok, agyag), viszonylag védelmet biztosítva a rétegvizeknek az esetleges felszíni elszennyeződés ellen. A víztestre egységes hidraulika jellemző, a talajvízzel azonos, vagyis K-NY fő áramlási iránnyal, a hegylábtól a határ felé, kivétel az Ér környéke, ahol az áramlási irány Ny-K irányú. A hidraulikus gradiensek 0,0003-0,005 között változnak, északról dél fele csökkenő értékekkel. A piezometrikus vízszintek átlagos értékei nem térnek el lényegesen a talajvízszintektől: 1 m (az Ér-völgyében) és 7 m mélységközben változik. A víztest legfontosabb hidrogeológiai paraméterei: a hidraulikus vezetőképesség K=1-15 m/nap, transzmisszivitás T= m 2 /nap, fajlagos hozam q=0,2-1,5 l/s/m A ROCR07 középmélységű, porózus víztest a Romániába eső kutatási terület délnyugati részén húzódik, a Nyugati-alföld (Nagy-Alföld K-i pereme) részeként. Északi határa a Berettyó, délen túlnyúlik a projektterület határán (a Marosig terjed), nyugatról a mai magyar-román határ határolja, és kb m mélységközben található. A víztárózó összletet homokok, homokos-kavicsok, helyenként görgetegek alkotják. A durvább üledékek a keleti peremen, a hegylábi területeken válnak gyakoribbá. Az üledékösszletben viszonylag hangsúlyos, folytonos rétegződés észlelhető. A permeábilis rétegeket szemi- vagy impermeábilis rétegek váltják, helyenként ez utóbbiak kerülnek túlsúlyban A víztest fedőjében a ROCR01, Oradea talajvíztest található. Az 5-20 m vastagságú összletet a hordalékkúpok keletről nyugatra finomodó üledékei alkotják (kavics, homok, agyagos homok, agyag), viszonylag védelmet biztosítva a rétegvizeknek az esetleges felszíni elszennyeződés ellen. 18

21 A felszínalatti víz fő áramlási iránya, akárcsak a talajvíz esetében K-Ny irányú, a hidraulikus gradiensek értékei is megegyeznek 0,003-0,0006. A víztest hidrogeológiai paraméterei már nem egyeznek meg a talajvíztestével, ennél alacsonyabb középértékűek: a hidraulikus vezetőképesség K=3-30 m/nap, transzmisszivitás T= m 2 /nap. A pleisztocén ROCR06 vízadók átlagos mélysége a fratikus víztst alatt talűlható m között váltakazva.. A felső pliocén vízadó rétegeket megegyezés alapjapján, a hidrodinamikai folyamatokat figyelembe véve határolták le. A rétegvizek pórózus permeábilis üledékekben tározódinak, olyan folyóvizi aluviális összletekben amelyek aquvifer (homokkövek, homok, kavicsos homok) és aqvitard (agyag) rétegeg váltakozásából épülnek fel de hidrogeológiailag egy összefüggő rendszert alkotnak. Az üledék szemcséinek osztályozottságának és méretének csökkenésével csökken az öszlet porozítása és tározási képessége. Ez a modellezet terület egészére jellemző. Összehasonitva a rétegvíztest kutjaiban mért vízszintadatokat a freatikus víztest kutjaiban mért adatokkal megállapítható, hogy nagyon hasonlóak a mért értékek amely azt bizonyitja, hogy szoros hidrodinamikai összfüggés taláható a két viztest között. Kivételt képez a víztest területének észak keleti része, ahol a rétegvízek nyomásértékei magassabak a freatikus víztestek nyomásértékeinél amit a korábbi vizsgálatok azzal indokolnak, hogy egy erőtelyes keleti latárális áramlás következményei. Jelenlegi ismereteink alpján megállapítható, hogy egy klasszikus kiáramlási területről van szó. Az izohipsza görbék által szerkesztet vízáramlási irányok is aztmutatják, hogy a területen egy K-i irányú oldaláramlás valamint egy kiáramlási terület található A freatikus víztestek alatt található összletek hidrogeológiai paramétereiről elmondható, hogy a transzmisszibilitás 1 és 100 m 2 /nap a szivárgási tényező 1-10 m/nap közt változik. A ROCR08 Arad Nagyvárad Szatmárnémeti víztest a Romániába eső kutatási terület majdnem teljes egészét lefedi, a Nyugati-alföldtől a domb- és hegyvidéki részekig. Északon és délen is túlnyúlik a projektterület határán, nyugatról a mai magyar-román határ határolja. A felszínalatti víztest porózus, pannon korú folyami és tavi eredetű üledékekben tárózódik. Fedőszintje általában 150 m mélyen található az alföldi térségben, és egyre fennebb kerül a hegyláb irányában, ahol a képződmények a felszínen is megtalálhatóak. Litológiai szempontból a víztárózó összlet közép- és finomszemű homok, homokkő, aleurit, agyag és agyagmárga rétegek igen sűrű váltakozásából áll. A permeábilis szintek vastagsága tág intervallumban, m között változik. A víztest fedőjében a sekély, illetve a középmélységű víztestek találhatóak, amelyek igen jó védelmet nyújtanak a szennyeződésekkel szemben. A felszínalatti víz nyomás alatt áll, de aláhúzandó hogy a víztesten belül a hidraulikus kommunikáció, főleg függőleges irányban nagyon alacsony. A fő áramlási irány a K-Ny, kivéve az Ér völgyét, amelynek drénező hatása még ilyen nagy mélységben is érezhető, habár jőval kisebb intenzitással. 19

22 A piezometrikus nyomásszint a víztest területén ellaposodik, ami egy jóval kisebb térségi dinamikára utal. Ezt a hidraulikus gradiensek értékei is alátámasztják: 0,003 a Sebes Körös környékén, és mindössze 0,0003 a Szamos környékén. A transzmisszivitás értéke m 2 /nap, a vezetőképesség pedig 0,2-4 m/nap között váltakozik, a víztest kis potenciálértékét hangsúlyozva. Egyébként a vízkitermelés ebből a víztestből a legkisebb. A hegyvidéken a ROCR02 Zichy-Határ Királyerdő víztestben a felszínalatti vizek triász, júra és alsó-kréta korú erősen karsztosodott és repedezett mészkövekben és dolomitokban tárózódnak. A karszt teljes kiterjedése hozzávetőleg 452 km 2, amelyből 330 km 2 -nyi nyílt karszt. A legfontosabb vízkészleteket a nagy karsztrendszerekben tárolják. A karsztvizek utánpótlódása a csapadékból és felszíni vizekből történik, ami a sűrű repedés- és töréshálózaton keresztül kerül a rendszerbe. A megcsapolások lineárisok, pontszerűek vagy diffúzak. Nagyon sok forrás van a területen, amelyek hozama l/s között változik. A karbonátos kőzeteket helyenként permo-mezozoós molasz jellegű (homokkő, konglomerátum), eltérő permeabilitású képződmények fedik. A vízkémiai vizsgálatok alapján a karsztvizek típusa hidrogénkarbonát-kálcium, hidrogénkarbonát-kálcium-magnézium, szulfát-kálcium. Mivel nem végeztek mikrobiológiai vizsgálatokat, a fémtartalom, szénhidrogének és peszticidek kimutatása sem történt meg, a vizek szennyezettségi foka nincs megállapítva. A víztest természetes védettsége alacsony, de a területen a szennyezőforrások hiánya mégis jó védettségi feltételeket biztosít. A modellterületek meghatározásakor elsődleges szempont volt a főként természetes peremekkel lehatárolható, egységes vízforgalommal jellemezhető felszín alatti vízgyűjtő szemléletű koncepció, amellyel egy régió vízháztartása kielégítő pontossággal leírható. A HU_sp és p víztest a nyírség területén található. A Nyírség területe vízföldtani szempontból jelentős beszivárgási terület, negatív nyomásgradiensű. Nyírlugos környékén a legerősebb a leáramlás, a Nyírség szélén a leggyengébb. Helyi feláramlási zónák szinte mindenhol előfordulnak, felszíni megjelenési formájuk kisebb tavak illetve mocsaras, lápos mezők. A felszínalatti vizek áramlási iránya a Dél-Nyírségben zömében ÉK-DNy. Az országhatár környékén már sok helyen találunk K-i irányú áramlásokat is. A talajvíz átlagos mélysége a nyírségi völgyekben 1-2 m-rel, ugyanakkor a dombok alatt 4-8 m-rel áll a víztükör a felszín alatt. A Nyírség területén a jellemző vízadók az alsó-pleisztocénben találhatók, de sok helyen jó minőségű vízadó homokszintek vannak a felső-pliocénben és a felső-pannonban is. A negyedidőszaki képződmények a pleisztocén folyóvízi üledékek általában jó vízadók, jó vízvezető képességűek, horizontálisan is és vertikálisan is mintegy 50%-ra tehető a gyakorisága a víztesten belül. Ezen képződmények közé települt az övzátony és az ártéri fácies, melyek félig áteresztők a bennük található kőzetlisztes agyag, agyag rétegek miatt, melyek a negyedidőszaki képződmények vertikális vízvezető képességét rontják (20 %). 20

23 A Nagyalföldi Formáció félig áteresztő, vízvezető képessége horizontálisan a benne található kőzetliszt, homok, agyag, kavicsrétegek, agyagos és agyag-homok rétegek sűrű váltakozásából álló ártéri üledékek miatt gyenge. A vertikális vízvezető képessége szintén gyengének mondható. Gyakorisága 10 %. E képződmények alatt található Zagyvai Formáció félig áteresztő, horizontális vízvezető képessége gyenge, vertikális vízvezető képessége a víztest szempontjából szintén gyenge (10%). A Zagyvai Formáció és az Újfalui Homokkő Formáció együttes megléte félig áteresztő réteget alkot, melyek azonban a víztest vízvezető képességét a fölötte található Zagyvai Formációval együttesen befolyásolják. A víztest 40%-a regionálisan jó és 60%-a regionálisan rossz vízvezető képességű hidrosztratigráfiai egységekből áll. A HU_sp és p víztest a Hortobágy, Nagykunság, Bihar északi részén található. A víztestcsoport területe hidrodinamikai szempontból átmeneti jellegű, egyes vízadó rétegekben negatív, máshol pozitív gradiensű a nyomásállapot. Egy-egy területrész hidrodinamikai viszonyait alapvetően befolyásolja a víztermelés és a nagyrészt Ny-i oldalirányú vízutánpótlás. A terület alatt ősi folyómedrek húzódnak (pl. Ér, Ős Tisza, Ős Szamos, stb.), ezekben a negyedkori képződmények vastagok, másutt alig érik el a m-t. A határ közelében a medencealjzat változatos lépcsőzetes megjelenésű. A felszín alatti vizek áramlási iránya a medence belseje felé mutat. A Hortobágy területe hidrodinamikai szempontból megcsapolási területnek tekinthető. Itt a piezometrikus nyomásszintek a mélység felé haladva növekednek, a függőleges hidraulikus gradiens pozitív előjelű, ezért a talaj- és sekély rétegvízadókból a mélyebb helyzetű vízadókba történő vízátszivárgás - a rendszer természetes állapotában - nem lehetséges. A Hajdúhát területe átmeneti nyomásviszonyokkal jellemezhető. Itt a különböző mélységű vízadó szintek közötti függőleges irányú kommunikáció alárendelt jelentőségű a vízadó rétegekben történő vízszintes irányú vízáramláshoz képest. Ebben a zónában domináns a beszivárgási területen a mélyebb helyzet vízadókba jutott vízkészletnek a megcsapolási terület felé irányuló transzportja. A talajvíztartó átlagos mélysége 33 m. A talajvíztükör mélységi elhelyezkedésében igen jelentős különbségek tapasztalhatók. A talajvíztükör átlagos mélysége a Hortobágyon 2-3 m-rel a felszín alatt van. A Hajdúság sík vidékein azonban (például a Hajdúböszörmény Nagyhegyes Debrecen közötti terület jó részén) sok helyütt 8-15 m-rel a felszín alatt található a talajvíztükör. A Hortobágy felszíne vízzárónak mondható, alatta a víztükör nyomás alatt áll. A Hajdúságban már kis területen belül is változatos nyomásviszonyokkal találkozhatunk: az agyagon fekvő lösztakaró alatt a talajvíz mélyen helyezkedik el, míg a vízzáró löszös rétegekre települő vékony homokrétegek alatt a víztükör a felszín közelében található. A Hajdúság mélységi vízben szegény területnek minősül. A vízadó homokszintek általában m mélységben húzódnak, de csak néhány kút produkál l/p/m fajlagos mennyiséget, az átlagos érték l/p/m körül alakul. A Hortobágy térségében m mélységből, helyenként már felszín fölé szökő vizet lehet nyerni. A pleisztocén korú vízadó rétegek homok-kavicsos homok összetételek. A 21

24 vízadókból kitermelhető vízmennyiség l/p. A rétegvíztartó vastagsága átlagosan 380 m. A víztest középső részén, Hajdúszoboszló térségében a terepszint és 620 m között kb. 3 db vízrekesztő képződmény (agyag, iszapos agyag) található, melynek jellemző vastagsága 1-7 m és kb.9 db vízadó (homok), melyek átlagosan 5-10 m vastagságúak. Míg a víztest É-i részén, Hajdúnánás térségében a terepszint és 1200 m között kb. 31 db vízrekesztő képződmény (agyag, iszapos agyag) található, melynek jellemző vastagsága 6-10 m és kb.19 db vízadó (homok), melyek átlagosan 4-25 m vastagságúak. A területen m közötti réteg közepes, m között közepes, m között közepes, m között gyenge, m között jó vízadó képességű rétegek találhatók a kettős fajlagos hozamok alapján. A vezetőképesség a területen közepes, gyenge, rossz kategóriába esik a szivárgási tényező függvényében. A késő-pannon Nagyalföldi Formáció félig áteresztő, vízvezető képessége horizontálisan a benne található kőzetliszt, homok, agyag, kavicsrétegek, agyagos és agyaghomok rétegek sűrű váltakozásából álló ártéri üledékek miatt gyenge. A vertikális vízvezető képessége szintén gyengének mondható. E képződmények alatt található Zagyvai Formáció félig áteresztő, horizontális vízvezető képessége gyenge, vertikális vízvezető képessége a víztest szempontjából szintén gyenge. Az Újfalui Homokkő Formáció félig áteresztő réteget alkot, melyek azonban a víztest vízvezető képességét a fölötte található Zagyvai Formációval együttesen befolyásolják. A víztest 40%-a regionálisan jó és 60%-a regionálisan rossz vízvezető képességű hidrosztratigráfiai egységekből áll. Az sp 2.6.1, sp 2.6.2, p 2.6.1, p egységes hidrodinamikai rendszert alkotnak. HU_sp és p víztestek Körös-vidék, Sárrét területét foglalja magába. A Berettyó, Körösök völgye egyértelműen feláramlási terület. Vastag üledékek helyezkednek el a folyóvízi öntéstalajok alatt. A román oldalon a Kárpátok hegyeiben beszivárgó vizek hosszú földalatti áramlás után a medence különböző részein érnek a felszín közelébe, vagy egy-egy szerkezeti törésvonalon különböző vízfolyások medrébe. A negyedidőszaki képződmények, a pleisztocén folyóvízi üledékek ezen a területen nagyon jó vízadók, nagyon jó vízvezető képességűek, horizontálisan is és vertikálisan is mintegy 70%-ra tehető a gyakorisága a víztesten belül. Ezen képződmények közé települt az övzátony és az ártéri fácies, melyek félig áteresztők a bennük található kőzetlisztes agyag, agyag rétegek miatt, melyek a negyedidőszaki képződmények vertikális vízvezető képességét rontják (20%). A Nagyalföldi Formáció félig áteresztő, vízvezető képessége horizontálisan a benne található kőzetliszt, homok, agyag, kavicsrétegek, agyagos és agyag-homok rétegek sűrű váltakozásából álló ártéri üledékek miatt gyenge. A vertikális vízvezető képessége szintén gyengének mondható. Gyakorisága 10 %.A víztest 70%-a regionálisan jó és 30%-a regionálisan rossz vízvezető képességű hidrosztratigráfiai egységekből áll. 22

Hidrodinamikai vízáramlási rendszerek meghatározása modellezéssel a határral metszett víztesten

Hidrodinamikai vízáramlási rendszerek meghatározása modellezéssel a határral metszett víztesten Hidrodinamikai vízáramlási rendszerek meghatározása modellezéssel a határral metszett víztesten Hidrodinamikai modell Modellezés szükségessége Módszer kiválasztása A modellezendő terület behatárolása,rácsfelosztás

Részletesebben

Megbízó: Tiszántúli Vízügyi Igazgatóság (TIVIZIG) Bihor Megyei Tanács (Consiliul Judeţean Bihor)

Megbízó: Tiszántúli Vízügyi Igazgatóság (TIVIZIG) Bihor Megyei Tanács (Consiliul Judeţean Bihor) HURO/0901/044/2.2.2 Megbízó: Tiszántúli Vízügyi Igazgatóság (TIVIZIG) Bihor Megyei Tanács (Consiliul Judeţean Bihor) Kutatási program a Körös medence Bihar-Bihor Eurorégió területén, a határon átnyúló

Részletesebben

Magyarország-Románia Határon Átnyúló Együttműködési Program 2007 2013 keretében támogatott projekt (Projekt regisztrációs szám: HURO/0801/047)

Magyarország-Románia Határon Átnyúló Együttműködési Program 2007 2013 keretében támogatott projekt (Projekt regisztrációs szám: HURO/0801/047) Magyarország-Románia Határon Átnyúló Együttműködési Program 2007 2013 keretében támogatott projekt (Projekt regisztrációs szám: HURO/0801/047) Kutatási program a Körös medence Bihar-Bihor területén, a

Részletesebben

Ócsa környezetének regionális hidrodinamikai modellje és a területre történő szennyvíz kihelyezés lehetőségének vizsgálata

Ócsa környezetének regionális hidrodinamikai modellje és a területre történő szennyvíz kihelyezés lehetőségének vizsgálata Ócsa környezetének regionális hidrodinamikai modellje és a területre történő szennyvíz kihelyezés lehetőségének vizsgálata Kocsisné Jobbágy Katalin Közép-Duna-völgyi Vízügyi Igazgatóság 2016 Vizsgált terület

Részletesebben

Az Alföld rétegvíz áramlási rendszerének izotóphidrológiai vizsgálata. Deák József GWIS Kft Albert Kornél Micro Map BT

Az Alföld rétegvíz áramlási rendszerének izotóphidrológiai vizsgálata. Deák József GWIS Kft Albert Kornél Micro Map BT Az Alföld rétegvíz áramlási rendszerének izotóphidrológiai vizsgálata Deák József GWIS Kft Albert Kornél Micro Map BT Koncepcionális modellek az alföldi rétegvíz áramlási rendszerek működésére gravitációs

Részletesebben

A projekt részletes bemutatása

A projekt részletes bemutatása HURO/0901/044/2.2.2 Megbízó: Tiszántúli Vízügyi Igazgatóság (TIVIZIG) Kutatási program a Körös medence Bihar-Bihor Eurorégió területén, a határon átnyúló termálvíztestek hidrogeológiai viszonyainak és

Részletesebben

A fenntartható geotermikus energiatermelés modellezéséhez szüksége bemenő paraméterek előállítása és ismertetése

A fenntartható geotermikus energiatermelés modellezéséhez szüksége bemenő paraméterek előállítása és ismertetése A fenntartható geotermikus energiatermelés modellezéséhez szüksége bemenő paraméterek előállítása és ismertetése Boda Erika III. éves doktorandusz Konzulensek: Dr. Szabó Csaba Dr. Török Kálmán Dr. Zilahi-Sebess

Részletesebben

Lossos László-TIKÖVIZIG. 2010. November 19.

Lossos László-TIKÖVIZIG. 2010. November 19. Kutatási program a Körös-medence Bihar-Bihor területén, a határon átnyúló felszínalatti víztest hidrogeológiai viszonyainak, állapotának megismerésére (HURO/0801/047) Magyar oldali munkák ismertetése Lossos

Részletesebben

Hidrodinamikai modellezés a Dráva környéki távlati vízbázisok védelmében

Hidrodinamikai modellezés a Dráva környéki távlati vízbázisok védelmében Hidrodinamikai modellezés a Dráva környéki távlati vízbázisok védelmében Dr. Füle László Kiss Szabolcs XVIII. Konferencia a felszín alatti vizekről 2011. április 5. Siófok A munka keretei Távlati Vízbázisok

Részletesebben

Izotóphidrológiai módszerek alkalmazása a Kútfő projektben

Izotóphidrológiai módszerek alkalmazása a Kútfő projektben Izotóphidrológiai módszerek alkalmazása a Kútfő projektben Deák József 1, Szűcs Péter 2, Lénárt László 2, Székely Ferenc 3, Kompár László 2, Palcsu László 4, Fejes Zoltán 2 1 GWIS Kft., 8200. Veszprém,

Részletesebben

A földtani, vízföldtani, vízkémiai és geotermikus modellezés eddigi eredményei a TRANSENERGY projektben

A földtani, vízföldtani, vízkémiai és geotermikus modellezés eddigi eredményei a TRANSENERGY projektben A földtani, vízföldtani, vízkémiai és geotermikus modellezés eddigi eredményei a TRANSENERGY projektben Rotárné Szalkai Ágnes, Gál Nóra, Kerékgyártó Tamás, Maros Gyula, Szőcs Teodóra, Tóth György, Lenkey

Részletesebben

Szigetköz felszíni víz és talajvíz viszonyainak jellemzése az ÉDUVIZIG monitoring hálózatának mérései alapján

Szigetköz felszíni víz és talajvíz viszonyainak jellemzése az ÉDUVIZIG monitoring hálózatának mérései alapján Szigetköz felszíni víz és talajvíz viszonyainak jellemzése az ÉDUVIZIG monitoring hálózatának mérései alapján MHT Vándorgyűlés 2013. 07. 04. Előadó: Ficsor Johanna és Mohácsiné Simon Gabriella É s z a

Részletesebben

Dr. Fancsik Tamás Rotárné Szalkai Ágnes, Kun Éva, Tóth György

Dr. Fancsik Tamás Rotárné Szalkai Ágnes, Kun Éva, Tóth György Dr. Fancsik Tamás Rotárné Szalkai Ágnes, Kun Éva, Tóth György 1 Miért fontosak a felszín alatti vizek? Felszín alatti vizek áramlási rendszere kondenzáció csapadék Párolgás Párolgás Beszivárgási terület

Részletesebben

Vízkutatás, geofizika

Vízkutatás, geofizika Vízkutatás, geofizika Vértesy László, Gulyás Ágnes Magyar Állami Eötvös Loránd Geofizikai Intézet, 2012. Magyar Vízkútfúrók Egyesülete jubileumi emlékülés, 2012 február 24. Földtani szelvény a felszínközeli

Részletesebben

Magyar Földtani és Geofizikai Intézet. XXIII. Konferencia a felszín alatti vizekről április 6 7., Siófok

Magyar Földtani és Geofizikai Intézet. XXIII. Konferencia a felszín alatti vizekről április 6 7., Siófok Nemzeti Alkalmazkodási Térinformatikai Rendszer a klímaváltozás lehetséges hatásainak regionális léptékű előrejelzése és az alkalmazkodási intézkedések megalapozása érdekében Szőcs Teodóra, Kovács Attila,

Részletesebben

Hidrogeológiai kutatások. Mező Gyula hidrogeológus

Hidrogeológiai kutatások. Mező Gyula hidrogeológus A Paks II atomerőmű telephelyvizsgálatának tudományos eredményei Hidrogeológiai kutatások Mező Gyula hidrogeológus 1 A vízföldtani kutatás célja, hogy adatokat szolgáltasson a nukleáris létesítmény tervezéséhez,

Részletesebben

Mezők/oszlopok: Az egyes leíró adat kategóriákat mutatják.

Mezők/oszlopok: Az egyes leíró adat kategóriákat mutatják. 54 581 01 0010 54 01 FÖLDMÉRŐ ÉS TÉRINFORMATIKAI TECHNIKUS 54 581 01 0010 54 02 TÉRKÉPÉSZ TECHNIKUS szakképesítések 2244-06 A térinformatika feladatai A térinformatika területei, eszközrendszere vizsgafeladat

Részletesebben

INTEGRÁLT VÍZHÁZTARTÁSI TÁJÉKOZTATÓ ÉS ELŐREJELZÉS

INTEGRÁLT VÍZHÁZTARTÁSI TÁJÉKOZTATÓ ÉS ELŐREJELZÉS INTEGRÁLT VÍZHÁZTARTÁSI TÁJÉKOZTATÓ ÉS ELŐREJELZÉS 2015. március kivonat Készítette: az Országos Vízügyi Főigazgatóság Vízvédelmi és Vízgyűjtő-gazdálkodási Főosztály Vízkészlet-gazdálkodási Osztálya és

Részletesebben

geofizikai vizsgálata

geofizikai vizsgálata Sérülékeny vízbázisok felszíni geofizikai vizsgálata Plank Zsuzsanna-Tildy Péter MGI 2012.10.17. Új Utak a öldtudományban 2012/5. 1 lőzmények 1991 kormányhatározat Rövid és középtávú környezetvédelmi intézkedési

Részletesebben

Magyarország-Románia Határon Átnyúló Együttműködési Program 2007 2013 keretében támogatott projekt. (Projekt regisztrációs szám: HURO/0801/047)

Magyarország-Románia Határon Átnyúló Együttműködési Program 2007 2013 keretében támogatott projekt. (Projekt regisztrációs szám: HURO/0801/047) Magyarország-Románia Határon Átnyúló Együttműködési Program 2007 2013 keretében támogatott projekt (Projekt regisztrációs szám: HURO/0801/047) Kutatási program a Körös medence Bihar-Bihor területén, a

Részletesebben

Megbízók: Tiszántúli Környezetvédelmi és Vízügyi Igazgatóság (TIKOVIZIG) Bihor Megyei Tanács (Consiliul Judeţean Bihor)

Megbízók: Tiszántúli Környezetvédelmi és Vízügyi Igazgatóság (TIKOVIZIG) Bihor Megyei Tanács (Consiliul Judeţean Bihor) HURO/0801/047 Megbízók: Tiszántúli Környezetvédelmi és Vízügyi Igazgatóság (TIKOVIZIG) Bihor Megyei Tanács (Consiliul Judeţean Bihor) Kutatási program a Körös medence Bihar-Bihor területén, a határon átnyúló

Részletesebben

Sósvíz behatolás és megoldási lehetőségeinek szimulációja egy szíriai példán

Sósvíz behatolás és megoldási lehetőségeinek szimulációja egy szíriai példán Sósvíz behatolás és megoldási lehetőségeinek szimulációja egy szíriai példán Allow Khomine 1, Szanyi János 2, Kovács Balázs 1,2 1-Szegedi Tudományegyetem Ásványtani, Geokémiai és Kőzettani Tanszék 2-Miskolci

Részletesebben

Ivóvízbázisok sérülékenysége a klímaváltozással szemben. Rotárné Szalkai Ágnes, Homolya Emese, Selmeczi Pál

Ivóvízbázisok sérülékenysége a klímaváltozással szemben. Rotárné Szalkai Ágnes, Homolya Emese, Selmeczi Pál Ivóvízbázisok sérülékenysége a klímaváltozással szemben Rotárné Szalkai Ágnes, Homolya Emese, Selmeczi Pál Felszín alatti vizek, mint a globális vízkörforgalom elemei Légkör víztartalma (néhány nap) Biomassza

Részletesebben

Benyhe Balázs. Alsó-Tisza-vidéki Vízügyi Igazgatóság

Benyhe Balázs. Alsó-Tisza-vidéki Vízügyi Igazgatóság Hidrológiai modellezés a Fehértó-majsaifőcsatorna vízgyűjtőjén Benyhe Balázs Alsó-Tisza-vidéki Vízügyi Igazgatóság Bevezetés Aszályok a Kárpát-medencében: növekvő gyakoriság növekvő intenzitás Kevés objektíven

Részletesebben

A talaj termékenységét gátló földtani tényezők

A talaj termékenységét gátló földtani tényezők A talaj termékenységét gátló földtani tényezők Kerék Barbara és Kuti László Magyar Földtani és Geofizikai Intézet Környezetföldtani osztály kerek.barbara@mfgi.hu környezetföldtan Budapest, 2012. november

Részletesebben

Földtani és vízföldtani ismeretanyag megbízhatóságának szerepe a hidrodinamikai modellezésben, Szebény ivóvízbázis felülvizsgálatának példáján

Földtani és vízföldtani ismeretanyag megbízhatóságának szerepe a hidrodinamikai modellezésben, Szebény ivóvízbázis felülvizsgálatának példáján Földtani és vízföldtani ismeretanyag megbízhatóságának szerepe a hidrodinamikai modellezésben, Szebény ivóvízbázis felülvizsgálatának példáján Molnár Mária, Dr. Zachar Judit, Gondárné Sőregi Katalin, Büki

Részletesebben

Földtani alapismeretek III.

Földtani alapismeretek III. Földtani alapismeretek III. Vízföldtani alapok páraszállítás csapadék párolgás lélegzés párolgás csapadék felszíni lefolyás beszivárgás tó szárazföld folyó lefolyás tengerek felszín alatti vízmozgások

Részletesebben

Felszín alatti vizektől függő ökoszisztémák vízigénye és állapota a Nyírség és a Duna-Tisza köze példáján keresztül

Felszín alatti vizektől függő ökoszisztémák vízigénye és állapota a Nyírség és a Duna-Tisza köze példáján keresztül Felszín alatti vizektől függő ökoszisztémák vízigénye és állapota a Nyírség és a Duna-Tisza köze példáján keresztül XXI. Konferencia a felszín alatti vizekről 2014. Április 2-3. Siófok Biró Marianna Simonffy

Részletesebben

Kun Éva Székvölgyi Katalin - Gondárné Sőregi Katalin Gondár Károly XXI. Konferencia a felszín alatti vizekről Siófok,

Kun Éva Székvölgyi Katalin - Gondárné Sőregi Katalin Gondár Károly XXI. Konferencia a felszín alatti vizekről Siófok, Sűrűségüggő geotermikus modellezés tapasztalatai magyarországi esettanulmányok tükrében Kun Éva Székvölgyi Katalin - Gondárné Sőregi Katalin Gondár Károly, 2014.04.02-03 Előadás vázlata Csatolt víz és

Részletesebben

A felszín alatti víz áramlási viszonyainak monitoringja mint a kármentesítés egyik alapkérdése

A felszín alatti víz áramlási viszonyainak monitoringja mint a kármentesítés egyik alapkérdése A felszín alatti víz áramlási viszonyainak monitoringja mint a kármentesítés egyik alapkérdése Finta Béla Gyula Gergő Ligeti Zsolt BGT Hungaria Környezettechnológai Kft. www.bgt.hu OpenGIS konferencia

Részletesebben

Hogyan készül a Zempléni Geotermikus Atlasz?

Hogyan készül a Zempléni Geotermikus Atlasz? Hogyan készül a Zempléni Geotermikus Atlasz? MISKOLCI EGYETEM KÚTFŐ PROJEKT KÖZREMŰKÖDŐK: DR. TÓTH ANIKÓ NÓRA PROF. DR. SZŰCS PÉTER FAIL BOGLÁRKA BARABÁS ENIKŐ FEJES ZOLTÁN Bevezetés Kútfő projekt: 1.

Részletesebben

INTEGRÁLT VÍZHÁZTARTÁSI TÁJÉKOZTATÓ ÉS ELŐREJELZÉS

INTEGRÁLT VÍZHÁZTARTÁSI TÁJÉKOZTATÓ ÉS ELŐREJELZÉS INTEGRÁLT VÍZHÁZTARTÁSI TÁJÉKOZTATÓ ÉS ELŐREJELZÉS 2017. január kivonat Készítette: az Országos Vízügyi Főigazgatóság Vízjelző és Vízrajzi Főosztály Vízrajzi Monitoring Osztálya és az Alsó-Tisza-vidéki

Részletesebben

219/2004. (VII. 21.) Korm. rendelet a felszín alatti vizek védelméről

219/2004. (VII. 21.) Korm. rendelet a felszín alatti vizek védelméről Liebe Pál 219/2004. (VII. 21.) Korm. rendelet a felszín alatti vizek védelméről 3. E rendelet alkalmazásában: 6. (Mi) igénybevételi határérték: a víztest egy adott lehatárolt részén a legnagyobb megengedhető

Részletesebben

A Tihanyi-félsziget vízviszonyainak és vegetációs mintázatának változásai a 18.századtól napjainkig

A Tihanyi-félsziget vízviszonyainak és vegetációs mintázatának változásai a 18.századtól napjainkig A Tihanyi-félsziget vízviszonyainak és vegetációs mintázatának változásai a 18.századtól napjainkig Péntek Csilla Környezettudomány 2011. június 1. Vázlat Célkitűzések Módszerek A terület bemutatása Archív

Részletesebben

A szigetközi MODFLOW modellezés verifikálása, paraméter optimalizálás izotóp-adatokkal

A szigetközi MODFLOW modellezés verifikálása, paraméter optimalizálás izotóp-adatokkal A szigetközi MODFLOW modellezés verifikálása, paraméter optimalizálás izotóp-adatokkal Deák József Maginecz János Szalai József Dervaderits Borbála Földtani felépítés Áramlási viszonyok Vízföldtani kérdések

Részletesebben

Vajon kinek az érdekeit szolgálják (kit, vagy mit védenek) egy víztermelő kút védőterületének kijelölési eljárása során?

Vajon kinek az érdekeit szolgálják (kit, vagy mit védenek) egy víztermelő kút védőterületének kijelölési eljárása során? Vajon kinek az érdekeit szolgálják (kit, vagy mit védenek) egy víztermelő kút védőterületének kijelölési eljárása során? Tósné Lukács Judit okl. hidrogeológus mérnök egyéni vállalkozó vízimérnök tervező,

Részletesebben

INTEGRÁLT VÍZHÁZTARTÁSI TÁJÉKOZTATÓ ÉS ELŐREJELZÉS

INTEGRÁLT VÍZHÁZTARTÁSI TÁJÉKOZTATÓ ÉS ELŐREJELZÉS INTEGRÁLT VÍZHÁZTARTÁSI TÁJÉKOZTATÓ ÉS ELŐREJELZÉS 2015. november kivonat Készítette: az Országos Vízügyi Főigazgatóság Vízjelző és Vízrajzi Főosztály Vízrajzi Monitoring Osztálya és az Alsó-Tisza-vidéki

Részletesebben

INTEGRÁLT VÍZHÁZTARTÁSI TÁJÉKOZTATÓ ÉS ELŐREJELZÉS

INTEGRÁLT VÍZHÁZTARTÁSI TÁJÉKOZTATÓ ÉS ELŐREJELZÉS INTEGRÁLT VÍZHÁZTARTÁSI TÁJÉKOZTATÓ ÉS ELŐREJELZÉS 2017. január kivonat Készítette: az Országos Vízügyi Főigazgatóság Vízjelző és Vízrajzi Főosztály Vízrajzi Monitoring Osztálya és az Alsó-Tisza-vidéki

Részletesebben

Modellek kalibrációja és a paraméterérzékenységi vizsgálat Kovács Balázs & Szanyi János

Modellek kalibrációja és a paraméterérzékenységi vizsgálat Kovács Balázs & Szanyi János Modellezés és kalibráció Modellek kalibrációja és a paraméterérzékenységi vizsgálat Kovács Balázs & Szanyi János Kovács Szanyi, 4-6 A kalibráció ( bearányosítás, jaj!) A kalibráció során a ismert valós

Részletesebben

INTEGRÁLT VÍZHÁZTARTÁSI TÁJÉKOZTATÓ ÉS ELŐREJELZÉS

INTEGRÁLT VÍZHÁZTARTÁSI TÁJÉKOZTATÓ ÉS ELŐREJELZÉS INTEGRÁLT VÍZHÁZTARTÁSI TÁJÉKOZTATÓ ÉS ELŐREJELZÉS 2015. december - kivonat - Készítette: az Országos Vízügyi Főigazgatóság Vízjelző és Vízrajzi Főosztály Vízrajzi Monitoring Osztálya és az Alsó-Tisza-vidéki

Részletesebben

A végeselem módszer alapjai. 2. Alapvető elemtípusok

A végeselem módszer alapjai. 2. Alapvető elemtípusok A végeselem módszer alapjai Előadás jegyzet Dr. Goda Tibor 2. Alapvető elemtípusok - A 3D-s szerkezeteket vagy szerkezeti elemeket gyakran egyszerűsített formában modellezzük rúd, gerenda, 2D-s elemek,

Részletesebben

Villámárvíz modellezés a Feketevíz vízgyűjtőjén

Villámárvíz modellezés a Feketevíz vízgyűjtőjén Villámárvíz modellezés a Feketevíz vízgyűjtőjén Pálfi Gergely DHI Hungary Kft. 2016.07.07. MHT, XXXIV. Országos Vándorgyűlés Debrecen Villám árvíz modellezés A villámárvizek általában hegy és dombvidéki

Részletesebben

Modellezés elméleti alapismeretek

Modellezés elméleti alapismeretek Modellezés Modellezés elméleti alapismeretek Kovács Balázs & Szanyi János Kovács Szanyi, 4-6 Mi a modellezés? A MODELL a valós rendszer egyszerűsített, sematikus transzformációja. A modell a valós rendszer!

Részletesebben

Trícium ( 3 H) A trícium ( 3 H) a hidrogén hármas tömegszámú izotópja, egy protonból és két neutronból áll.

Trícium ( 3 H) A trícium ( 3 H) a hidrogén hármas tömegszámú izotópja, egy protonból és két neutronból áll. Trícium ( 3 H) A trícium ( 3 H) a hidrogén hármas tömegszámú izotópja, egy protonból és két neutronból áll. Bomláskor lágy - sugárzással stabil héliummá alakul át: 3 1 H 3 He 2 A trícium koncentrációját

Részletesebben

INTEGRÁLT VÍZHÁZTARTÁSI TÁJÉKOZTATÓ ÉS ELŐREJELZÉS

INTEGRÁLT VÍZHÁZTARTÁSI TÁJÉKOZTATÓ ÉS ELŐREJELZÉS INTEGRÁLT VÍZHÁZTARTÁSI TÁJÉKOZTATÓ ÉS ELŐREJELZÉS 2017. március - kivonat - Készítette: az Országos Vízügyi Főigazgatóság Vízjelző és Vízrajzi Főosztály Vízrajzi Monitoring Osztálya és az Alsó-Tisza-vidéki

Részletesebben

A rózsadombi megcsapolódási terület vizeinek komplex idősoros vizsgálata

A rózsadombi megcsapolódási terület vizeinek komplex idősoros vizsgálata XXII. Konferencia a felszín alatti vizekről Siófok, 2015. április 8-9. A rózsadombi megcsapolódási terület vizeinek komplex idősoros vizsgálata Bodor Petra 1, Erőss Anita 1, Mádlné Szőnyi Judit 1, Kovács

Részletesebben

INTEGRÁLT VÍZHÁZTARTÁSI TÁJÉKOZTATÓ ÉS ELŐREJELZÉS

INTEGRÁLT VÍZHÁZTARTÁSI TÁJÉKOZTATÓ ÉS ELŐREJELZÉS INTEGRÁLT VÍZHÁZTARTÁSI TÁJÉKOZTATÓ ÉS ELŐREJELZÉS 2015. február kivonat Készítette: az Országos Vízügyi Főigazgatóság Vízvédelmi és Vízgyűjtő-gazdálkodási Főosztály Vízkészlet-gazdálkodási Osztálya és

Részletesebben

A felszín alatti vizek mennyiségi és minőségi monitoring hálózata

A felszín alatti vizek mennyiségi és minőségi monitoring hálózata A felszín alatti vizek mennyiségi és minőségi monitoring hálózata Bagi Márta 1, Maginecz János 1, Rotárné Szalkai Ágnes 2, Szalai József 1, Szurdiné Veres Kinga 1 FAVA 2018 Siófok 1 Országos Vízügyi Főigazgatóság,

Részletesebben

Fekvése. 100000 km² MO-területén 50800 km² Határai: Nyugaton Sió, Sárvíz Északon átmeneti szegélyterületek (Gödöllőidombvidék,

Fekvése. 100000 km² MO-területén 50800 km² Határai: Nyugaton Sió, Sárvíz Északon átmeneti szegélyterületek (Gödöllőidombvidék, ALFÖLD Fekvése 100000 km² MO-területén 50800 km² Határai: Nyugaton Sió, Sárvíz Északon átmeneti szegélyterületek (Gödöllőidombvidék, É-mo-i hgvidék hegylábi felszínek) Szerkezeti határok: katlansüllyedék

Részletesebben

INTEGRÁLT VÍZHÁZTARTÁSI TÁJÉKOZTATÓ ÉS ELŐREJELZÉS

INTEGRÁLT VÍZHÁZTARTÁSI TÁJÉKOZTATÓ ÉS ELŐREJELZÉS INTEGRÁLT VÍZHÁZTARTÁSI TÁJÉKOZTATÓ ÉS ELŐREJELZÉS 2015. augusztus - kivonat - Készítette: az Országos Vízügyi Főigazgatóság Vízjelző és Vízrajzi Főosztály Vízrajzi Monitoring Osztálya és az Alsó-Tisza-vidéki

Részletesebben

INTEGRÁLT VÍZHÁZTARTÁSI TÁJÉKOZTATÓ ÉS ELŐREJELZÉS

INTEGRÁLT VÍZHÁZTARTÁSI TÁJÉKOZTATÓ ÉS ELŐREJELZÉS INTEGRÁLT VÍZHÁZTARTÁSI TÁJÉKOZTATÓ ÉS ELŐREJELZÉS 2015. június - kivonat - Készítette: az Országos Vízügyi Főigazgatóság Vízjelző és Vízrajzi Főosztály Vízrajzi Monitoring Osztálya és az Alsó-Tisza-vidéki

Részletesebben

1 ÁLTALÁNOS JELLEMZŐK

1 ÁLTALÁNOS JELLEMZŐK 1 ÁLTALÁNOS JELLEMZŐK 1.1. A víztest neve: Ecsegfalvi halastavak 1.2. A víztest VOR kódja: AIG946 1.3. A víztest VKI szerinti típusa, a típus leírása: hasonló típus: 11 meszes kis területű sekély nyílt

Részletesebben

INTEGRÁLT VÍZHÁZTARTÁSI TÁJÉKOZTATÓ ÉS ELŐREJELZÉS

INTEGRÁLT VÍZHÁZTARTÁSI TÁJÉKOZTATÓ ÉS ELŐREJELZÉS INTEGRÁLT VÍZHÁZTARTÁSI TÁJÉKOZTATÓ ÉS ELŐREJELZÉS 2016. április kivonat Készítette: az Országos Vízügyi Főigazgatóság Vízjelző és Vízrajzi Főosztály Vízrajzi Monitoring Osztálya és az Alsó-Tisza-vidéki

Részletesebben

INTEGRÁLT VÍZHÁZTARTÁSI TÁJÉKOZTATÓ, OPERATÍV ASZÁLY- ÉS VÍZHIÁNY- ÉRTÉKELÉS

INTEGRÁLT VÍZHÁZTARTÁSI TÁJÉKOZTATÓ, OPERATÍV ASZÁLY- ÉS VÍZHIÁNY- ÉRTÉKELÉS INTEGRÁLT VÍZHÁZTARTÁSI TÁJÉKOZTATÓ, OPERATÍV ASZÁLY- ÉS VÍZHIÁNY- ÉRTÉKELÉS 2019. február kivonat Készítette: az Országos Vízügyi Főigazgatóság Vízjelző és Vízrajzi Főosztály Vízrajzi Monitoring Osztálya

Részletesebben

befogadó kőzet: Mórágyi Gránit Formáció elhelyezési mélység: ~200-250 m (0 mbf) megközelítés: lejtősaknákkal

befogadó kőzet: Mórágyi Gránit Formáció elhelyezési mélység: ~200-250 m (0 mbf) megközelítés: lejtősaknákkal Új utak a földtudományban előadássorozat MBFH, Budapest, 212. április 18. Hidrogeológiai giai kutatási módszerek m Bátaapátibantiban Molnár Péter főmérnök Stratégiai és Mérnöki Iroda RHK Kft. A tárolt

Részletesebben

Vízminőség, vízvédelem. Felszín alatti vizek

Vízminőség, vízvédelem. Felszín alatti vizek Vízminőség, vízvédelem Felszín alatti vizek A felszín alatti víz osztályozása (Juhász J. 1987) 1. A vizet tartó rétegek anyaga porózus kőzet (jól, kevéssé áteresztő, vízzáró) hasadékos kőzet (karsztos,

Részletesebben

SZIMULÁCIÓS FUTTATÁSOK ALKALMAZÁSA A VÉDŐIDOMOK MEGHATÁROZÁSÁBAN

SZIMULÁCIÓS FUTTATÁSOK ALKALMAZÁSA A VÉDŐIDOMOK MEGHATÁROZÁSÁBAN A Miskolci Egyetem Közleménye, A sorozat, Bányászat, 72. kötet (2007) SZIMULÁCIÓS FUTTATÁSOK ALKALMAZÁSA A VÉDŐIDOMOK MEGHATÁROZÁSÁBAN Dr. Füle László - Korcsog Attila Aquaprofit RT. Környezetvédelmi és

Részletesebben

Regionális termálvíz áramlási rendszerek és jelentőségük

Regionális termálvíz áramlási rendszerek és jelentőségük Regionális termálvíz áramlási rendszerek és jelentőségük A regionális áramlási rendszerek modellezése, a hévíz- és a geotermikus energia-gazdálkodás támogatására a TRANSENERGY szupra-területén Tóth György

Részletesebben

1 ÁLTALÁNOS JELLEMZŐK

1 ÁLTALÁNOS JELLEMZŐK 1 ÁLTALÁNOS JELLEMZŐK 1.1. A víztest neve: Csengeri halastavak 1.2. A víztest VOR kódja: AIH033 1.3. A víztest VKI szerinti típusa, a típus leírása: hasonló tipus: 11 meszes kis területű sekély nyílt vízfelületű

Részletesebben

Magyar-Szlovák határmenti közös felszínalatti víztestek környezetállapota és fenntartható használata (ENWAT)

Magyar-Szlovák határmenti közös felszínalatti víztestek környezetállapota és fenntartható használata (ENWAT) Magyar-Szlovák határmenti közös felszínalatti víztestek környezetállapota és fenntartható használata (ENWAT) Szőcs Teodóra, Tóth György, Brezsnyánszky Károly, Gaál Gábor Magyar Állami Földtani Intézet

Részletesebben

INTEGRÁLT VÍZHÁZTARTÁSI TÁJÉKOZTATÓ ÉS ELŐREJELZÉS

INTEGRÁLT VÍZHÁZTARTÁSI TÁJÉKOZTATÓ ÉS ELŐREJELZÉS INTEGRÁLT VÍZHÁZTARTÁSI TÁJÉKOZTATÓ ÉS ELŐREJELZÉS kivonat 2013. augusztus Készítette az Országos Vízügyi Főigazgatóság Vízkészlet-gazdálkodási és Víziközmű Osztálya és az Alsó-Tisza vidéki Vízügyi Igazgatóság

Részletesebben

Vízszállító rendszerek a földkéregben

Vízszállító rendszerek a földkéregben Vízszállító rendszerek a földkéregben Módszertani gyakorlat földrajz tanárjelölteknek Mádlné Szőnyi Judit szjudit@ludens.elte.hu Csondor Katalin Szikszay László Általános és Alkalmazott Földtani Tanszék

Részletesebben

HIDROGEOLÓGIAI MODELLEZÉS SZLOVÁK-MAGYAR HATÁRON ÁTNYÚLÓ HÁROM FELSZÍN ALATTI VÍZTESTEN

HIDROGEOLÓGIAI MODELLEZÉS SZLOVÁK-MAGYAR HATÁRON ÁTNYÚLÓ HÁROM FELSZÍN ALATTI VÍZTESTEN HIDROGEOLÓGIAI MODELLEZÉS SZLOVÁK-MAGYAR HATÁRON ÁTNYÚLÓ HÁROM FELSZÍN ALATTI VÍZTESTEN 1114 Budapest, Villányi út 9. Tel: 361-4341, Fax: 279-0022 e-mail: smaragd@smaragd.hu www. smaragd.hu Budapest, 2007.

Részletesebben

INTEGRÁLT VÍZHÁZTARTÁSI TÁJÉKOZTATÓ ÉS ELŐREJELZÉS

INTEGRÁLT VÍZHÁZTARTÁSI TÁJÉKOZTATÓ ÉS ELŐREJELZÉS INTEGRÁLT VÍZHÁZTARTÁSI TÁJÉKOZTATÓ ÉS ELŐREJELZÉS 2016. december - kivonat - Készítette: az Országos Vízügyi Főigazgatóság Vízjelző és Vízrajzi Főosztály Vízrajzi Monitoring Osztálya és az Alsó-Tisza-vidéki

Részletesebben

A TRANSENERGY projekt (Szlovénia, Ausztria, Magyarország és Szlovákia határokkal osztott geotermikus erőforrásai) kihívásai és feladatai

A TRANSENERGY projekt (Szlovénia, Ausztria, Magyarország és Szlovákia határokkal osztott geotermikus erőforrásai) kihívásai és feladatai A TRANSENERGY projekt (Szlovénia, Ausztria, Magyarország és Szlovákia határokkal osztott geotermikus erőforrásai) kihívásai és feladatai Nádor Annamária Termálvizek az Alpok és a Kárpátok ölelésében -

Részletesebben

1 ÁLTALÁNOS JELLEMZŐK

1 ÁLTALÁNOS JELLEMZŐK 1 ÁLTALÁNOS JELLEMZŐK 1.1. A víztest neve: Sóskúti halastó 1.2. A víztest VOR kódja: AIH023 1.3. A víztest VKI szerinti típusa, a típus leírása: hasonló típus: 11 meszes kis területű sekély nyílt vízfelületű

Részletesebben

A vízgyűjtő-gazdálkodási tervezés célja

A vízgyűjtő-gazdálkodási tervezés célja A vízgyűjtő-gazdálkodási tervezés célja A vízgyűjtő-gazdálkodás célja a felszíni (folyók, patakok, csatornák, tavak, tározók) és a felszín alatti vizek állapotának megőrzése és javítása, a jó állapot elérése

Részletesebben

1 ÁLTALÁNOS JELLEMZŐK

1 ÁLTALÁNOS JELLEMZŐK 1 ÁLTALÁNOS JELLEMZŐK 1.1. A víztest neve: Tiszaszentimrei halastavak 1.2. A víztest VOR kódja: AIG998 1.3. A víztest VKI szerinti típusa, a típus leírása: hasonló típus: 11 meszes kis területű sekély

Részletesebben

Agrár-környezetvédelmi Modul Vízgazdálkodási ismeretek. KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc

Agrár-környezetvédelmi Modul Vízgazdálkodási ismeretek. KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc Agrár-környezetvédelmi Modul Vízgazdálkodási ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc Felszín alatti vízformák 12.lecke Mint azt a környezet védelmének általános szabályairól

Részletesebben

Korszerű, számítógépes modelleken alapuló vízkészlet-gazdálkodási döntéstámogató rendszer fejlesztése a Sió vízgyűjtőjére

Korszerű, számítógépes modelleken alapuló vízkészlet-gazdálkodási döntéstámogató rendszer fejlesztése a Sió vízgyűjtőjére MTA VEAB Biológiai Szakbizottság, Vízgazdálkodási Munkabizottsága Előadóülés, 2015. február 10., Győr Korszerű, számítógépes modelleken alapuló vízkészlet-gazdálkodási döntéstámogató rendszer fejlesztése

Részletesebben

A Balaton szél keltette vízmozgásainak modellezése

A Balaton szél keltette vízmozgásainak modellezése Numerikus modellezési feladatok a Dunántúlon 2015. február 10. A Balaton szél keltette vízmozgásainak modellezése Torma Péter Vízépítési és Vízgazdálkodási Tanszék Budapesti Műszaki és Gazdaságtudományi

Részletesebben

REGIONÁLIS KLÍMAMODELLEZÉS AZ OMSZ-NÁL. Magyar Tudományos Akadémia szeptember 15. 1

REGIONÁLIS KLÍMAMODELLEZÉS AZ OMSZ-NÁL. Magyar Tudományos Akadémia szeptember 15. 1 Regionális klímamodellezés az Országos Meteorológiai Szolgálatnál HORÁNYI ANDRÁS (horanyi.a@met.hu) Csima Gabriella, Szabó Péter, Szépszó Gabriella Országos Meteorológiai Szolgálat Numerikus Modellező

Részletesebben

Felszín alatti vizek mennyiségi állapotának meghatározása

Felszín alatti vizek mennyiségi állapotának meghatározása A Víz Keretirányelv hazai megvalósítása VÍZGYŰJTŐ-GAZDÁLKODÁSI TERV Felszín alatti vizek mennyiségi állapotának meghatározása 6-4-1 háttéranyag A tartós vízszintsüllyedések vizsgálata Projektvezető: Gondárné

Részletesebben

Szennyezőanyagok terjedésének numerikus szimulációja, MISKAM célszoftver

Szennyezőanyagok terjedésének numerikus szimulációja, MISKAM célszoftver Szennyezőanyagok terjedésének numerikus szimulációja, MISKAM célszoftver 1. A numerikus szimulációról általában A szennyeződés-terjedési modellek numerikus megoldása A szennyeződés-terjedési modellek transzportegyenletei

Részletesebben

Vízgyűjtő-gazdálkodási tervek készítése Magyarországon

Vízgyűjtő-gazdálkodási tervek készítése Magyarországon Vízgyűjtő-gazdálkodási tervek készítése Magyarországon Felszín alatti vizeink kémiai állapota Szőcs T. Zöldi I. Deák J. Tóth Gy. Cserny T. Magyar Állami Földtani Intézet, Vízügyi Tudományos Kutatóközpont,

Részletesebben

A talajok összenyomódásának vizsgálata

A talajok összenyomódásának vizsgálata A talajok összenyomódásának vizsgálata Amit már tudni kellene Összenyomódás Konszolidáció Normálisan konszolidált talaj Túlkonszolidált talaj Túlkonszolidáltsági arányszám,ocr Konszolidáció az az időben

Részletesebben

Vízminőségvédelem km18

Vízminőségvédelem km18 Vízminőségvédelem km18 2004/2005-es tanév I. félév 4. rész Dr. Zseni Anikó egyetemi adjunktus, SZE, MTK, ÉKI, Környezetmérnöki Tanszék Vízkészlet-gazdálkodás ~ a természetes és felhasználható vízkészletek

Részletesebben

A április havi csapadékösszeg területi eloszlásának eltérése az április átlagtól

A április havi csapadékösszeg területi eloszlásának eltérése az április átlagtól 1. HELYZETÉRTÉKELÉS Csapadék 2014 áprilisában a rendelkezésre álló adatok szerint az ország területére lehullott csapadék mennyisége 12 mm (Nyírábrány) és 84 mm (Kölked) között alakult, az országos területi

Részletesebben

ELSZIVÁRGÓ VIZEK HASZNOSÍTÁSI LEHETŐSÉGEI TORNABARAKONYBAN

ELSZIVÁRGÓ VIZEK HASZNOSÍTÁSI LEHETŐSÉGEI TORNABARAKONYBAN ELSZIVÁRGÓ VIZEK HASZNOSÍTÁSI LEHETŐSÉGEI TORNABARAKONYBAN SZAKDOLGOZAT Készítette: VISNOVITZ FERENC KÖRNYEZETTUDOMÁNY SZAKOS HALLGATÓ Környezetfizika-környezetföldtan szakirány Témavezető: Mádlné Dr.

Részletesebben

INTEGRÁLT VÍZHÁZTARTÁSI TÁJÉKOZTATÓ ÉS ELŐREJELZÉS

INTEGRÁLT VÍZHÁZTARTÁSI TÁJÉKOZTATÓ ÉS ELŐREJELZÉS INTEGRÁLT VÍZHÁZTARTÁSI TÁJÉKOZTATÓ ÉS ELŐREJELZÉS 2016. november kivonat Készítette: az Országos Vízügyi Főigazgatóság Vízjelző és Vízrajzi Főosztály Vízrajzi Monitoring Osztálya és az Alsó-Tisza-vidéki

Részletesebben

Integrált földtani, vízföldtani és geotermikus modell fejlesztés a TRANSENERGY projekt keretében

Integrált földtani, vízföldtani és geotermikus modell fejlesztés a TRANSENERGY projekt keretében Integrált földtani, vízföldtani és geotermikus modell fejlesztés a TRANSENERGY projekt keretében Rotárné Szalkai Ágnes, Tóth György, Gáspár Emese, Kovács Attila, Gregor Goetzl, Stefan Hoyer, Fatime Zekiri,

Részletesebben

Talajvízszintek változása Debrecenben - különös tekintettel a Nagyerdőre

Talajvízszintek változása Debrecenben - különös tekintettel a Nagyerdőre Talajvízszintek változása Debrecenben - különös tekintettel a Nagyerdőre XVII. Konferencia a felszín alatti vizekről Siófok, 2010. március 24-25. Újlaki Péter Debreceni Vízmű Zrt. 2010.04.23. 1 A talajvízszint

Részletesebben

A Vízgyűjtő-gazdálkodási Terv. egy hidrogeológus. szemével

A Vízgyűjtő-gazdálkodási Terv. egy hidrogeológus. szemével A Vízgyűjtő-gazdálkodási Terv egy hidrogeológus szemével Mennyit termelhetünk, ha azt akarjuk, hogy a felszín alatti víztestek jó mennyiségi állapota megmaradjon? A VGT érvénybe lépése után az igénybevételi

Részletesebben

A magyarországi termőhely-osztályozásról

A magyarországi termőhely-osztályozásról A magyarországi termőhely-osztályozásról dr. Bidló András 1 dr. Heil Bálint 1 Illés Gábor 2 dr. Kovács Gábor 1 1. Nyugat-Magyarországi Egyetem, Termőhelyismerettani Tanszék 2. Erdészeti Tudományos Intézet

Részletesebben

Az éghajlati modellek eredményeinek alkalmazhatósága hatásvizsgálatokban

Az éghajlati modellek eredményeinek alkalmazhatósága hatásvizsgálatokban Az éghajlati modellek eredményeinek alkalmazhatósága hatásvizsgálatokban Szépszó Gabriella Országos Meteorológiai Szolgálat, szepszo.g@met.hu RCMTéR hatásvizsgálói konzultációs workshop 2015. június 23.

Részletesebben

1 ÁLTALÁNOS JELLEMZŐK

1 ÁLTALÁNOS JELLEMZŐK 1 ÁLTALÁNOS JELLEMZŐK 1.1. A víztest neve: Telekhalmi halastavak 1.2. A víztest VOR kódja: AIH031 1.3. A víztest VKI szerinti típusa, a típus leírása: hasonló típus: 11 meszes kis területű sekély nyílt

Részletesebben

VÁROSI CSAPADÉKVÍZ GAZDÁLKODÁS A jelenlegi tervezési gyakorlat alkalmazhatóságának korlátozottsága az éghajlat változó körülményei között

VÁROSI CSAPADÉKVÍZ GAZDÁLKODÁS A jelenlegi tervezési gyakorlat alkalmazhatóságának korlátozottsága az éghajlat változó körülményei között VÁROSI CSAPADÉKVÍZ GAZDÁLKODÁS A jelenlegi tervezési gyakorlat alkalmazhatóságának korlátozottsága az éghajlat változó körülményei között Dr. Buzás Kálmán címzetes egyetemi tanár BME, Vízi Közmű és Környezetmérnöki

Részletesebben

INTEGRÁLT VÍZHÁZTARTÁSI TÁJÉKOZTATÓ ÉS ELŐREJELZÉS

INTEGRÁLT VÍZHÁZTARTÁSI TÁJÉKOZTATÓ ÉS ELŐREJELZÉS INTEGRÁLT VÍZHÁZTARTÁSI TÁJÉKOZTATÓ ÉS ELŐREJELZÉS - kivonat - 2013. január Készítette az Országos Vízügyi Főigazgatóság Vízkészlet-gazdálkodási és Víziközmű Osztálya és az Alsó-Tisza vidéki Vízügyi Igazgatóság

Részletesebben

1 ÁLTALÁNOS JELLEMZŐK

1 ÁLTALÁNOS JELLEMZŐK 1 ÁLTALÁNOS JELLEMZŐK 1.1. A víztest neve: Kengyeli halastó 1.2. A víztest VOR kódja: AIG979 1.3. A víztest VKI szerinti típusa, a típus leírása: hasonló típus: 11 meszes kis területű sekély nyílt vízfelületű

Részletesebben

Felszín alatti vizek állapota, nitrát-szennyezett területekre vonatkozó becslések. Dr. Deák József GWIS Környezetvédelmi és Vízminőségi Kft

Felszín alatti vizek állapota, nitrát-szennyezett területekre vonatkozó becslések. Dr. Deák József GWIS Környezetvédelmi és Vízminőségi Kft Felszín alatti vizek állapota, nitrát-szennyezett területekre vonatkozó becslések Dr. Deák József GWIS Környezetvédelmi és Vízminőségi Kft felszín alatti vizeink nitrát-szennyezettségi állapota, vízkémiai

Részletesebben

DOROG VÁROS FÖLDRAJZI, TERMÉSZETI ADOTTSÁGAI

DOROG VÁROS FÖLDRAJZI, TERMÉSZETI ADOTTSÁGAI 2. sz. Függelék DOROG VÁROS FÖLDRAJZI, TERMÉSZETI ADOTTSÁGAI 1. Földrajzi adottságok Dorog város közigazgatási területe, Gerecse, Pilis, és a Visegrádi hegység találkozásánál fekvő Dorogi medencében helyezkedik

Részletesebben

Vízkészlet-számítás és idősorok elemzése a Bükki Karsztvízszint Észlelő Rendszer adatai alapján

Vízkészlet-számítás és idősorok elemzése a Bükki Karsztvízszint Észlelő Rendszer adatai alapján Vízkészlet-számítás és idősorok elemzése a Bükki Karsztvízszint Észlelő Rendszer adatai alapján Darabos Enikő, Tóth Márton, Lénárt László Miskolci Egyetem Almássy Endre XXVI. Konferencia a Felszín Alatti

Részletesebben

FELSZÍN ALATTI VIZEK RADONTARTALMÁNAK VIZSGÁLATA ISASZEG TERÜLETÉN

FELSZÍN ALATTI VIZEK RADONTARTALMÁNAK VIZSGÁLATA ISASZEG TERÜLETÉN FELSZÍN ALATTI VIZEK RADONTARTALMÁNAK VIZSGÁLATA ISASZEG TERÜLETÉN Készítette: KLINCSEK KRISZTINA környezettudomány szakos hallgató Témavezető: HORVÁTH ÁKOS egyetemi docens ELTE TTK Atomfizika Tanszék

Részletesebben

Nagyfelbontású magassági szélklimatológiai információk dinamikai elıállítása

Nagyfelbontású magassági szélklimatológiai információk dinamikai elıállítása Nagyfelbontású magassági szélklimatológiai információk dinamikai elıállítása Szépszó Gabriella Országos Meteorológiai Szolgálat Éghajlati Osztály, Klímamodellezı Csoport Együttmőködési lehetıségek a hidrodinamikai

Részletesebben

Hidrogeológiai alapismeretek

Hidrogeológiai alapismeretek Hidrogeológia Hidrogeológiai alapismeretek Kovács Balázs & Szanyi János Kovács Szanyi, 004-006 Víz a felszín alatt TALAJNEDVESSÉG ZÓNÁJA: Háromfázisú telítetlen zóna, szemcsék közötti hézagok vizet és

Részletesebben

T-JAM Thermal Joint Aquifer Management

T-JAM Thermal Joint Aquifer Management T-JAM Thermal Joint Aquifer Management Közös felszín alatti termálvíztest lehatárolási és termálvíz-gazdálkodási javaslat a magyar-szlovén határmenti régióban Szőcs Teodóra Magyar Állami Földtani Intézet

Részletesebben

BUDAPEST VII. KERÜLET

BUDAPEST VII. KERÜLET M.sz.:1223/1 BUDAPEST VII. KERÜLET TALAJVÍZSZINT MONITORING 2012/1. félév Budapest, 2012. július-augusztus BP. VII. KERÜLET TALAJVÍZMONITORING 2012/1. TARTALOMJEGYZÉK 1. BEVEZETÉS... 3 2. A TALAJVÍZ FELSZÍN

Részletesebben

rség g felszín n alatti vizeinek mennyiségi

rség g felszín n alatti vizeinek mennyiségi A Nyírs rség g felszín n alatti vizeinek mennyiségi problémáinak megoldására javasolt intézked zkedések Csegény József Felső-Tisza-vidéki Környezetvédelmi és Vízügyi Igazgatóság "Vízgyűjtő-gazdálkodási

Részletesebben

Talpunk alatt is folyik. Felszín alatti vizek

Talpunk alatt is folyik. Felszín alatti vizek Katolikus Pedagógiai Szervezési és Továbbképzési Intézet Általános és középiskolai földrajztanárok szaktárgyi továbbképzése 2013. március 19. Mádlné Dr. Szőnyi Judit Talpunk alatt is folyik (ME 2.0) Felszín

Részletesebben

A TRANSENERGY TÉRSÉG JELENLEGI HÉVÍZHASZNOSÍTÁSÁNAK ÁTTEKINTÉSE

A TRANSENERGY TÉRSÉG JELENLEGI HÉVÍZHASZNOSÍTÁSÁNAK ÁTTEKINTÉSE A TRANSENERGY TÉRSÉG JELENLEGI HÉVÍZHASZNOSÍTÁSÁNAK ÁTTEKINTÉSE Gál Nóra Edit Magyar Földtani és Geofizikai Intézet Transenergy: Termálvizek az Alpok és Kárpátok ölelésében, 2012. 09. 13. FELHASZNÁLÓ ADATBÁZIS

Részletesebben