A napelemek fizikai alapjai
|
|
- Nikolett Orsósné
- 7 évvel ezelőtt
- Látták:
Átírás
1 A napelemek fizikai alapjai Dr. Rácz Ervin Ph.D. egyetemi docens intézetigazgató-helyettes kari oktatási igazgató Óbudai Egyetem, Villamosenergetikai Intézet Budapest 1034, Bécsi u. 94.
2 Tartalom 2
3 Tartalom A világ energia termelése és felhasználása: A napenergia helye a világ energiatermelésében Napelem cellák Fizikai háttér (működés) A napelem cellák és a besugárzás kapcsolata karakterisztikák, görbék Napelem cellák típusai Napelemes rendszerek az Óbudai Egyetemen 3
4 Napelem Definíció: A napelem vagy fotovillamos elem, amit az idegenes photovoltaikus kifejezésből a magyar irodalom olykor PV elemnek is nevez, olyan szilárdtest eszköz, amely az elektromágneses sugárzást (fotonbefogást) közvetlenül villamos energiává alakítja. Az energiaátalakítás alapja, hogy a sugárzás elnyelődésekor mozgásképes töltött részecskéket generál, amiket az eszközben az elektrokémiai potenciálok, illetve az elektron kilépési munkák különbözőségéből adódó beépített elektromos tér rendezett mozgásra kényszerít, vagyis elektromos áram jön létre. Ez a jelenség bármilyen megfelelő fényspektrummal rendelkező fényforrás esetén is lezajlik, nem szükséges kizárólagosan napfény. Első napelemek, kezdetek: - Becquerel (francia fizikus): Fotovoltaikus hatás demonstrálása, 1839-ben (19 évesen)! - Becquerel: 1839 az első napelem megépítése - Willoughby Smith brit elektromérnök az 1860-as években kezdett kísérletezni a fotovoltaikus technológiával egy véletlennek köszönhetően. Ezekben az években tenger alatti kábelekkel végzett kísérleteket, melyek közben felfedezte, hogy az ezekhez használt szelén éjszaka máshogyan viselkedik, mint nappal. - Charles Fritts amerikai feltaláló 1883-ban építette meg az első modern értelemben vett napelemet - Heinrich Hertz 1887-ben fedezte fel a fényelektromos (fotovoltaikus) jelenséget, munkája alapján pedig egymástól függetlenül 1888-ban Alexandr Sztoletov orosz és Wilhelm Hallwachs német fizikusok megállapították, hogy az ultraibolya sugarak negatív töltésű fémlapból negatív töltést szabadítanak ki és megépítették az első fotovoltaikus napelemeket. 4
5 A Föld energiahordozói 5
6 Nap Napelem cella Modul Panel Rendszer 6
7 A világ energiatermelése és a Nap besugárzása Vajon tudnánk-e az éves villamos energia felhasználásunkat a napfényből nyerhető energiával fedezni? A Napból a Földre érkező éves besugárzás Azonban: 100% besugárzott napenergia: -3% visszaverődik az atmoszféráról -23% foton energia a hosszú hullámhossz tartományba esik -32% foton energia a rövid hullámhossz tartományba esik -8.5% rekombináció -20% elektromos potenciál esés(vagy csökkenés) a napelem cellában -0.5% más veszteségek = 13% felhasználható elektromos energia urán gáz olaj szén Éves energia fogyasztás 7
8 Nap Cella Modul Panel Rendszer 8
9 A fotovoltaikus elemek működésének fizikai háttere 9
10 Szilárdtestek sávelméletéről szemléletesen 10
11 Szilárdtestek sávelméletéről szemléletesen 11
12 Szilárdtestek sávelméletéről szemléletesen 12
13 Szilárdtestek sávelméletéről szemléletesen 13
14 A fotovoltaikus elemek működésének fizikai háttere Szilícium: 1s2, 2s2, 2p6, 3s2, 3p2 14
15 A fotovoltaikus elemek működésének fizikai háttere 15
16 A fotovoltaikus elemek működésének fizikai háttere elektronok 16
17 A fotovoltaikus elemek működésének fizikai háttere Intrinsic (tiszta) félvezető 1. Kezdő állapot (Szilícium - Si) 4 vegyérték elektron kovalens kötésben Tetraéderes szerkezetben 2. Termikus gerjesztés Kovalens kötések felszakadhatnak Szabad elektronok keletkeznek Elektron áram kelthető 3. Lyukak A szabaddá vált elektron visszamaradó helye a kovalens kötésben = lyuk A lyuk egy pozitív töltéshordozó Szilícium atom Lyuk Vegyérték elektron Elektronpárral kialakított kötés Szabad elektron 17
18 A fotovoltaikus elemek működésének fizikai háttere Intrinsic (tiszta) félvezető Az alapsávból (A) gerjesztés hatására elektronok mehetnek át a vezetési (V) sávba. A tilos sávban (T) elektron soha nem tartozkodhat! 18
19 A fotovoltaikus elemek működésének fizikai háttere Extrinsic (szennyezett) félvezetők Extrinsic félvezetők: p-típusú: lyukak pozitív töltésű réteg kialakulása n-típusú: elektronok negatív töltésű réteg kialakulása Lyuk Elektron p-típusú szennyezés Bór atom Szilícium atom Foszfor atom n-típusú szennyezés 19
20 A fotovoltaikus elemek működésének fizikai háttere Extrinsic (szennyezett) félvezetők N-típusú szennyezés esetén ún. donornívók jönnek létre a vezetési sáv (V) közelében. A donornívókon a szennyezéssel bevitt elektronok helyezkednek el. Ezen elektronok könnyebben felgerjeszthetők a vezetési sávba (V), ahol szabad töltéshordozóként elektromos áram létrehozására képesek. 20
21 A fotovoltaikus elemek működésének fizikai háttere Extrinsic (szennyezett) félvezetők P-típusú szennyezés esetén ún. akceptornívók jönnek létre az alapsáv sáv (A) közelében. Az akceptornívókon a szennyezéssel bevitt lyukak helyezkednek el. Ezen lyukak vagy könnyebben rekombinálódnak az alapsávba (A), vagy pedig az alapsáv (A) tetején lévő elektronok könnyebben felgerjeszthetők az akceptornívóra mint a vezetési sávba (V). Az akceptornívóról az elektronok könnyebben jutnak fel a vezetési sávba, mint az alapsávból (A), mert a gap kisebb. 21
22 A fotovoltaikus elemek működésének fizikai háttere P-típusú réteg határréteg N-típusú réteg DIFFÚZIÓ szabad lyukak Töltött részecske transzport = szabad elektronok A határrétegben elektromos áram keletkezik 22
23 Egy fotovoltaikus cella struktúrája Fotoelektromos hatás Negatív elektróda N-típusú szilícium Pozitív elektróda P-típusú szilícium Határréteg 23
24 Nap Cella Modul Panel Rendszer 24
25 Abszorpciós koefficiens A fotovoltaikus elemek működésének fizikai háttere hullámhossz 25
26 A fotovoltaikus elemek és a Nap kapcsolata 26
27 A fotovoltaikus elemek és a Nap kapcsolata 27
28 A fotovoltaikus elemek és a Nap kapcsolata 28
29 Spektrális besugárzás [W/m 2 μm] Besugárzás Nap spektrum UV látható IR Nagyobb energia Kisebb energia Hullámhossz [μm] Pyranometer 29
30 A fotovoltaikus elemek és a Nap kapcsolata AM 1 és AM 1,5 értelmezése: Az AM-m érték meghatározásához egy adott földrajzi ponton mindig az m = 1 cos Θ képletet használjuk. STC = AM 1,5 25 C 1000 W m 2 30
31 Napelem panel árama [A] A napelem I-U karakterisztikája a besugárzás intenzitásának változásával tartomány Napelem modul feszültsége [V] 31
32 Napelem Module current panel árama [A] [A] Napelem panel I-U karakterisztikái a napelem modul hőmérsékletének változásával Napelem panelen eső feszültség [V] 32
33 Napelem panel teljesítménye [W] Egy napelem modul villamos teljesítménye a panel hőmérsékletének viszonylatában Panelen eső feszültség [V] 33
34 Nap Cella Modul Panel Rendszer 34
35 A fotovoltaikus cellák típusai Napelem típusok Kristályos szilícium cellák Vékonyfilm cellák Monokristályos cellák Gömb cellák Sáv cellák Polikristályos cellák Polikristályos sáv cellák Hibrid cellák Amorf Si cellák CuInSe 2 (CIS) Cellák (rézindiumdiselenid) CdTe Cellák (kadmiumtellurid) Festékérzékenyített cellák Kristályos Si Film Cellák 35
36 A fotovoltaikus cellák készítése Monokristályos Polikristályos Granulált poliszilícium Irányfüggő kristályosítás Szélezés Formázási eljárás Hasábokra vágás Hasáb Foszfor diffúzió az anyagba Lemezekre vágás Antireflexiós réteggel bevonás Elő- és hátoldali kontaktusok kialakítása PV cellák gyártása 36
37 Monokristályos napelem cellák Kvadratikus vagy négyzetes Félig szögletes Kerekre vágott 37
38 Polikristályos napelem cellák Zöld cellák Arany cellák Szürke cellák Barna cellák Ibolyaszín cellák 38
39 Áttetsző napelem cellák Egymásra merőleges rács struktúra 39
40 Új koncepció Új PV cella típusok Gömb cellák Negatív elektróda p-típusú szilícium p-n határréteg n-típusú szilícium Antireflexiós réteg Positív elektróda Perforált alumínium fólia (negatív elektróda) Alumínium fólia pozitív elektróda n-típusú szilícium p-n határréteg p-típusú silícium 40
41 Új koncepció új PV cella típusok Sávos cellák Fény Üveg Üveg reflektor Sávos PV cella modulok 41
42 Új koncepció új PV cella típusok Fókuszáló rendszerek Lencse felület: 4 4 cm 2 Fókuszált fény Egy fókuszáló rendszer mini modulja. 2 mm átmérőjű napelem cella 42
43 Új koncepció Új PV cella típusok Hibrid cellák Antireflexiós réteg + Kontakt rács A kontaktrács hátsó elektródája P-típusú amorf szilícium P-típusú amorf szilícium N-típusú monokristályos szilícium 43
44 A legjobb kísérleti napelem cella hatásfokok 44
45 Köszönöm a figyelmet! 45
Napenergia rendszerek létesítése a hazai és nemzetközi gyakorlatban
Napenergia rendszerek létesítése a hazai és nemzetközi gyakorlatban Tóth Boldizsár elnök, Megújuló Energia Szervezetek Szövetsége I. MMK Energetikai Fórum NAPERŐMŰVEK TERVEZŐINEK FÓRUMA 2018. május 25-27.
RészletesebbenG04 előadás Napelem technológiák és jellemzőik. Szent István Egyetem Gödöllő
G04 előadás Napelem technológiák és jellemzőik Kristályos szilícium napelem keresztmetszete negatív elektróda n-típusú szennyezés pozitív elektróda p-n határfelület p-típusú szennyezés Napelem karakterisztika
RészletesebbenA napenergia alapjai
A napenergia alapjai Magyarország energia mérlege sötét Ahonnan származik Forrás: Kardos labor 3 A légkör felső határára és a Föld felszínére érkező sugárzás spektruma Nem csak az a spektrum tud energiát
RészletesebbenNAPELEMEK KÖRNYEZETI SZEMPONTÚ VIZSGÁLATA AZ ÉLETCIKLUS ELEMZÉS SEGÍTSÉGÉVEL. Darvas Katalin
NAPELEMEK KÖRNYEZETI SZEMPONTÚ VIZSGÁLATA AZ ÉLETCIKLUS ELEMZÉS SEGÍTSÉGÉVEL Darvas Katalin AZ ÉLETCIKLUS ELEMZÉS Egy termék, folyamat vagy szolgáltatás környezetre gyakorolt hatásainak vizsgálatára használt
RészletesebbenBetekintés a napelemek világába
Betekintés a napelemek világába (mőködés, fajták, alkalmazások) Nemcsics Ákos Óbudai Egyetem Tartalom Bevezetés energetikai problémák napenergia hasznosítás módjai Napelemrıl nem középiskolás fokon napelem
Részletesebben8. Mérések napelemmel
A MÉRÉS CÉLJA: 8. Mérések napelemmel Megismerkedünk a fény-villamos átalakítók típusaival, a napelemekkel kapcsolatos alapfogalmakkal, az alternatív villamos rendszerek tervezési alapelveivel, a napelem
RészletesebbenFOTOELEKTROMOS ENERGIATERMELŐ RENDSZER ÜZEMELTETÉSÉNEK TAPASZTALATAI
Miskolci Egyetem, Multidiszciplináris tudományok, 1. kötet (2011) 1. szám, pp. 229-234. FOTOELEKTROMOS ENERGIATERMELŐ RENDSZER ÜZEMELTETÉSÉNEK TAPASZTALATAI Hagymássy Zoltán 1, Gindert-Kele Ágnes 2 1 egyetemi
RészletesebbenNapenergia Napelemek
Napenergia Napelemek Molnárné Dőry Zsófia Egyetemi tanársegéd, dory@energia.bme.hu Energetikai Gépek és Rendszerek Tanszék, D205. Szerkesztette: Molnárné Dőry Zsófia, Kaszás Csilla, Riz Dániel, Csurgó
Részletesebben2012. Dec.6. Herbert Ferenc LG-előadás. Napelemek
2012. Dec.6. Herbert Ferenc LG-előadás Napelemek Napsugárzás Történelem Napjaink napelem termékei: -Fajták -Karakterisztikák -Gyártásuk Főbb alkalmazásaik: -Sziget üzem -Hálózatszinkron üzem -Speciális
RészletesebbenA NAPENERGIA HASZNOSÍTÁSÁNAK HAZAI LEHETŐSÉGEI. Farkas István, DSc egyetemi tanár, intézetigazgató E-mail: Farkas.Istvan@gek.szie.
SZENT ISTVÁN EGYETEM A NAPENERGIA HASZNOSÍTÁSÁNAK HAZAI LEHETŐSÉGEI MTA Budapest, 2011. november 9. GÉPÉSZMÉRNÖKI KAR KÖRNYEZETIPARI RENDSZEREK INTÉZET Fizika és Folyamatirányítási Tanszék 2103 Gödöllő
RészletesebbenBicskei Oroszlán Patika Bt 22076423-2-07
MVM Partner - a vállalkozások energiatudatosságáért pályázat 2. rész A pályázó által megvalósított, energiahatékonyságot növelő beruházás és/vagy fejlesztés bemutatása A napelem a Napból érkező sugarak
RészletesebbenAtomfizika. Fizika kurzus Dr. Seres István
Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés J.J. Thomson (1897) Katódsugárcsővel végzett kísérleteket az elektron fajlagos töltésének (e/m) meghatározására. A katódsugarat alkotó részecskét
RészletesebbenA kvantummechanika kísérleti előzményei A részecske hullám kettősségről
A kvantummechanika kísérleti előzményei A részecske hullám kettősségről Utolsó módosítás: 2016. május 4. 1 Előzmények Franck-Hertz-kísérlet (1) A Franck-Hertz-kísérlet vázlatos elrendezése: http://hyperphysics.phy-astr.gsu.edu/hbase/frhz.html
RészletesebbenNapenergia beruházások gazdaságossági modellezése
Magyar Regionális Tudományi Társaság XII. vándorgyűlése Veszprém, 2014. november 27 28. Napenergia beruházások gazdaságossági modellezése KOVÁCS Sándor Zsolt tudományos segédmunkatárs MTA KRTK Regionális
RészletesebbenOPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István
OPTIKA Fénykibocsátás mechanizmusa Dr. Seres István Bohr modell Niels Bohr (19) Rutherford felfedezte az atommagot, és igazolta, hogy negatív töltésű elektronok keringenek körülötte. Niels Bohr Bohr ezt
RészletesebbenElektromos áram. Vezetési jelenségek
Elektromos áram. Vezetési jelenségek Emlékeztető Elektromos áram: töltéshordozók egyirányú áramlása Áramkör részei: áramforrás, vezető, fogyasztó Áramköri jelek Emlékeztető Elektromos áram hatásai: Kémiai
RészletesebbenA hőmérsékleti sugárzás
A hőmérsékleti sugárzás Alapfogalmak 1. A hőmérsékleti sugárzás Értelmezés (hőmérsékleti sugárzás): A testek hőmérsékletével kapcsolatos, a teljes elektromágneses spektrumra kiterjedő sugárzást hőmérsékleti
RészletesebbenMit sütünk ki mára?! (Napenergia és a Fizika) Dr. Seres István SZIE, Fizika és Folyamatirányítási Tanszék
Mit sütünk ki mára?! (Napenergia és a Fizika) Dr. Seres István SZIE, Fizika és Folyamatirányítási Tanszék Környezetvédelem: Széndioxid kibocsátás Dr. Seres István, 2 Környezetvédelem: Megújuló energiaforrások
RészletesebbenFÉLVEZETŐ ESZKÖZÖK I. Elektrotechnika 4. előadás
FÉLVEZETŐ ESZKÖZÖK I. Elektrotechnika 4. előadás FÉLVEZETŐ ESZKÖZÖK A leggyakrabban használt félvezető anyagok a germánium (Ge), és a szilícium (Si). Félvezető tulajdonsággal rendelkező elemek: szén (C),
RészletesebbenFarkas István és Seres István HÁLÓZATRA KAPCSOLT FOTOVILLAMOS RENDSZER MŐKÖDTETÉSI TAPASZTALATAI FIZIKA ÉS FOLYAMAT- IRÁNYÍTÁSI TANSZÉK
Farkas István és Seres István FIZIKA ÉS FOLYAMAT- IRÁNYÍTÁSI TANSZÉK HÁLÓZATRA KAPCSOLT FOTOVILLAMOS RENDSZER MŐKÖDTETÉSI TAPASZTALATAI KÖRNYEZETMÉRNÖKI INTÉZET GÉPÉSZMÉRNÖKI KAR SZENT ISTVÁN EGYETEM 2103,
RészletesebbenMit sütünk ki mára?! (Napenergia és a Fizika) Dr. Seres István SZIE, Fizika és Folyamatirányítási Tanszék
Mit sütünk ki mára?! (Napenergia és a Fizika) Dr. Seres István SZIE, Fizika és Folyamatirányítási Tanszék Környezetvédelem: Széndioxid kibocsátás https://hu.wikipedia.org/wiki/glob%c3%a1lis_felmeleged%c3%
RészletesebbenA természetes energia átalakítása elektromos energiáva (leckevázlat)
A természetes energia átalakítása elektromos energiáva (leckevázlat) - Az elektromos energia elınyei: - olcsón szállítható nagy távolságokra - egyszerre többen használhassák - könnyen átalakítható (hıvé,
RészletesebbenFIZIKA II. Dr. Rácz Ervin. egyetemi docens
FIZIKA II. Dr. Rácz Ervin egyetemi docens Fontos tudnivalók e-mail: racz.ervin@kvk.uni-obuda.hu web: http://uni-obuda.hu/users/racz.ervin/index.htm Iroda: Bécsi út, C. épület, 124. szoba Fizika II. - ismertetés
RészletesebbenXXXII. Kandó Konferencia 2016, Budapest november 17., Óbudai Egyetem
XXXII. Kandó Konferencia 2016, Budapest 2016. november 17., Óbudai Egyetem Polikristályos, monokristályos és festékérzékenyített napelem cellák üresjárási feszültségeinek kísérleti vizsgálata a beeső fény
RészletesebbenA Winaico napelemek előnyei
A Winaico napelemek előnyei PERC (Passivated Emitter Rear Cell) technológia...2 WINAICO WST-275-P6 PERC polikristályos napelemek...4 WINAICO biztosítás:...5 PERC (Passivated Emitter Rear Cell) technológia
RészletesebbenAtomfizika. Fizika kurzus Dr. Seres István
Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés 440 BC Democritus, Leucippus, Epicurus 1660 Pierre Gassendi 1803 1897 1904 1911 19 193 John Dalton Joseph John (J.J.) Thomson J.J. Thomson
RészletesebbenA napelemek környezeti hatásai
A napelemek környezeti hatásai különös tekintettel az energiatermelő zsindelyekre Készítette: Bathó Vivien Környezettudományi szak Amiről szó lesz Témaválasztás indoklása Magyarország tetőire (400 km 2
RészletesebbenNapelemes Rendszerek a GIENGER-től
Napelemes Rendszerek a GIENGER-től Előadó: Laszkovszky Csaba 1 Naperőmű kapacitás Világviszonylatban (2011) 2 Naperőmű kapacitás Európai viszonylatban (2011) 3 Kínai Gyártók Prognosztizált Napelem árai
RészletesebbenA napelemes villamosenergiatermelés hazai és nemzetközi helyzete
A napelemes villamosenergiatermelés hazai és nemzetközi helyzete Pálfy Miklós Okleveles Villamosmérnök Címzetes egyetemi docens Solart-System Igazgató Magyar Napenergia Társaság Fotovillamos Szakosztály
RészletesebbenA napenergia fotovillamos hasznositása
A napenergia fotovillamos hasznositása Pálfy Miklós Okleveles Villamosmérnök Címzetes egyetemi docens Solart-System Igazgató Magyar Napenergia Társaság Fotovillamos Szakosztály vezetője Magyar Elektrotechnikai
RészletesebbenA fotovillamos napenergia-hasznosítás alapjai. Szent István Egyetem Gödöllő
A fotovillamos napenergia-hasznosítás alapjai A napenergiában rejlő potenciál A Napból a Föld felszínére sugárzott energia: 8 10 8 TWh/év Az elsődleges energiafelhasználás a világon: 1 10 5 TWh/év Vagyis
RészletesebbenA fotovillamos (és napenergia ) rendszerek egyensúlyának (és potenciálbecslésének) kialakításakor figyelembe veendő klimatikus sajátosságok
A fotovillamos (és napenergia ) rendszerek egyensúlyának (és potenciálbecslésének) kialakításakor figyelembe veendő klimatikus sajátosságok Varjú Viktor (PhD) Tudományos munkatárs (MTA KRTK Regionális
RészletesebbenA fény korpuszkuláris jellegét tükröző fizikai jelenségek
A fény korpuszkuláris jellegét tükröző fizikai jelenségek A fény elektromágneses sugárzás, amely hullámjelleggel és korpuszkuláris sajátosságokkal is rendelkezik. A fény hullámjellege elsősorban az olyan
Részletesebben2011. április 6. Herbert Ferenc AEE-Győr NAPELEMEK VILLAMOS RENDSZERBE ILLESZTÉSE
2011. április 6. Herbert Ferenc AEE-Győr NAPELEMEK VILLAMOS RENDSZERBE ILLESZTÉSE NAPELEM TÁBLA TÍPUSOK Flexi Monokristályos Polikristályos Vékony film EGY TIPIKUS 200 Wp NAPELEM TÁBLA JELLEMZŐ KARAKTERISZTIKÁI
RészletesebbenEnergetikai Gépek és Rendszerek Tanszék Napelemek
Energetikai Gépek és Rendszerek Tanszék Napelemek laboratóriumi segédlet Energetikai méresek II. 2015 1 1. ELMÉLETI BEVEZETÉS 1.1. Napenergia és napelem szerkezet 1-1. ábra A napban való fúziós reakció
RészletesebbenNAPENERGIA HASZNOSÍTÁS - hazai és nemzetközi helyzetkép. Prof. Dr. Farkas István
NAPENERGIA HASZNOSÍTÁS - hazai és nemzetközi helyzetkép Előadó ülés Magyar Meteorológiai Társaság, Budapest, 2017. május 9. Prof. Dr. Farkas István Szent István Egyetem, KÖRI Fizika és Folyamatirányítási
RészletesebbenAz elektromágneses hullámok
203. október Az elektromágneses hullámok PTE ÁOK Biofizikai Intézet Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm Ritter Joseph von Fraunhofer Robert
RészletesebbenBevezetés az analóg és digitális elektronikába. V. Félvezető diódák
Bevezetés az analóg és digitális elektronikába V. Félvezető diódák Félvezető dióda Félvezetőknek nevezzük azokat az anyagokat, amelyek fajlagos ellenállása a vezetők és a szigetelők közé esik. (Si, Ge)
RészletesebbenEgyenáram. Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai
Egyenáram Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai Elektromos áram Az elektromos töltéshordozók meghatározott irányú rendezett mozgását elektromos áramnak nevezzük.
RészletesebbenA fény mint elektromágneses hullám és mint fényrészecske
A fény mint elektromágneses hullám és mint fényrészecske Segítség az 5. tétel (Hogyan alkalmazható a hullám-részecske kettősség gondolata a fénysugárzás esetében?) megértéséhez és megtanulásához, továbbá
RészletesebbenMűszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása
Abrankó László Műszeres analitika Molekulaspektroszkópia Minőségi elemzés Kvalitatív Cél: Meghatározni, hogy egy adott mintában jelen vannak-e bizonyos ismert komponensek. Vagy ismeretlen komponensek azonosítása
RészletesebbenFotovillamos helyzetkép
Fotovillamos helyzetkép Pálfy Miklós Solart-System www.solart-system.hu 1 Bevezetés Sugárzás Potenciál Napelemek (mennyiség, ár, költség, hatásfok, gyártás) Alkalmazások www.solart-system.hu 2 Sugárzási
Részletesebben1. SI mértékegységrendszer
I. ALAPFOGALMAK 1. SI mértékegységrendszer Alapegységek 1 Hosszúság (l): méter (m) 2 Tömeg (m): kilogramm (kg) 3 Idő (t): másodperc (s) 4 Áramerősség (I): amper (A) 5 Hőmérséklet (T): kelvin (K) 6 Anyagmennyiség
RészletesebbenTartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény; Abszorpciós spektroszkópia
Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2015 január 27.) Az abszorpció mérése;
RészletesebbenNAPELEMES ALKALMAZÁSOK fotovillamos rendszerek Villamos energia előállítása környezetbarát módon
NAPELEMES ALKALMAZÁSOK fotovillamos rendszerek Villamos energia előállítása környezetbarát módon 1.) BEVEZETŐ A fotoelektromos napenergia-technológia fejlődése és terjedése miatt, ma már egyre szélesebb
RészletesebbenNapelemes rendszerek teljes életciklus elemzése
Napelemes rendszerek teljes életciklus elemzése Manek Enikı Környezettan BSc Témavezetı: Farkas Zénó Tudományos munkatárs ELTE escience Regionális Egyetemi Tudásközpont 1 Az elıadás tartalma Bevezetés
RészletesebbenElektronika Alapismeretek
Alapfogalmak lektronika Alapismeretek Az elektromos áram a töltéssel rendelkező részecskék rendezett áramlása. Az ika az elektromos áram létrehozásával, átalakításával, befolyásolásával, irányításával
RészletesebbenNAPELEMES RENDSZEREK és ALKALMAZÁSUK TERVEZÉS, KIVITELEZÉS. Herbert Ferenc Budapest, 2012.dec. 6. LG
NAPELEMES RENDSZEREK és ALKALMAZÁSUK TERVEZÉS, KIVITELEZÉS Herbert Ferenc Budapest, 2012.dec. 6. LG Családi ház, Németország Fogadó Kis gazdaság, Németország Fogadó 2 LG 10 kw monokristályos napelemmel
RészletesebbenHelyzetkép a fotovillamos energiaátalakításról
Helyzetkép a fotovillamos energiaátalakításról Pálfy Miklós Okleveles Villamosmérnök Címzetes egyetemi docens Solart-System Magyar Elektrotechnikai Egyesület Energetikai Informatika Szakosztály Elnökség
RészletesebbenNapenergiás jövőkép. Varga Pál elnök. MÉGNAP Egyesület
Napenergiás jövőkép Varga Pál elnök MÉGNAP Egyesület Fototermikus napenergia-hasznosítás Napkollektoros hőtermelés Fotovoltaikus napenergia-hasznosítás Napelemes áramtermelés Új technika az épületgépészetben
RészletesebbenRadioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.
Különböző sugárzások tulajdonságai Típus töltés Energia hordozó E spektrum Radioaktí sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktí sugárzások detektálása. α-sugárzás pozití
RészletesebbenA napenergia fotovillamos hasznositásának helyzete
A napenergia fotovillamos hasznositásának helyzete Pálfy Miklós Solart-System Bevezetés Sugárzás Potenciál Napelemek (mennyiség, ár, költség, hatásfok, gyártás) Alkalmazások Grid paritás Sugárzási energia
RészletesebbenTartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény; Abszorpciós spektroszkópia
Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2016 március 1.) Az abszorpció mérése;
RészletesebbenBiofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése
Mi a biofizika tárgya? Biofizika Csik Gabriella Biológiai jelenségek fizikai leírása/értelmezése Pl. szívműködés, membránok szerkezete és működése, érzékelés stb. csik.gabriella@med.semmelweis-univ.hu
RészletesebbenFogorvosi anyagtan fizikai alapjai 9. Hőtani, elektromos és kémiai tulajdonságok
Fogorvosi anyagtan fizikai alapjai 9. Hőtani, elektromos és kémiai tulajdonságok Kiemelt témák: Elektromosságtan alapfogalmai Szilárdtestek energiasáv modelljei Félvezetők és alkalmazásaik Tankönyv fej.:
RészletesebbenSzilárdtestek sávelmélete. Sávelmélet a szabadelektron-modell alapján
Szilárdtestek sávelmélete Sávelmélet a szabadelektron-modell alapján A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra
RészletesebbenNAPELEM MŰKÖDÉSÉNEK ALAPJAI, A NAPELEMES VILLAMOSENERGIA- TERMELÉS ELMÉLETE ÉS GYAKORLATI MEGVALÓSÍTÁSA
Dr. Bodnár István NAPELEM MŰKÖDÉSÉNEK ALAPJAI, A NAPELEMES VILLAMOSENERGIA- TERMELÉS ELMÉLETE ÉS GYAKORLATI MEGVALÓSÍTÁSA Miskolc 2019 Szerző: Dr. Bodnár István, PhD egyetemi adjunktus Miskolci Egyetem
RészletesebbenSolar-Pécs. Napelem típusok ismertetése. Monokristályos Polikristályos Vékonyréteg Hibrid
Napelem típusok ismertetése Monokristályos Polikristályos Vékonyréteg Hibrid előnyök Monokristályos legjobb hatásfok: 15-18% 20-25 év teljesítmény garancia 30 év élettartam hátrányok árnyékra érzékeny
Részletesebben9. évfolyam. Osztályozóvizsga tananyaga FIZIKA
9. évfolyam Osztályozóvizsga tananyaga A testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás: gyorsulás fogalma, szabadon eső test mozgása 3. Bolygók mozgása: Kepler törvények A Newtoni
RészletesebbenÓBUDAI EGYETEM NAPELEMES RENDSZEREK ÁRAMÜTÉS ELLENI VÉDELME
ÓBUDAI EGYETEM NAPELEMES RENDSZEREK ÁRAMÜTÉS ELLENI VÉDELME Dr. NOVOTHNY FERENC (PhD) Óbudai Egyetem, Kandó Kálmán Villamosmérnöki Kar Villamosenergetikai intézet Budapest, Bécsi u. 96/b. H-1034 novothny.ferenc@kvk.uni-obuda.hu
RészletesebbenKombinált napkollektoros, napelemes, hőszivattyús rendszerek. Beleznai Nándor Wagner Solar Hungária Kft. ügyvezető igazgató
Kombinált napkollektoros, napelemes, hőszivattyús rendszerek Beleznai Nándor Wagner Solar Hungária Kft. ügyvezető igazgató Termikus napenergia hasznosítás napkollektoros rendszerekkel Általában kiegészítő
RészletesebbenA fotovillamos napenergia hasznosítás helyzete
A fotovillamos napenergia hasznosítás helyzete Pálfy Miklós Solart-System Bevezetés Sugárzás Potentciál Napelemek (mennyiség, ár, költség, hatásfok, gyártás) Alkalmazások Sugárzási energia 1168-1460/1150-1332
RészletesebbenF1301 Bevezetés az elektronikába Félvezető diódák
F1301 Bevezetés az elektronikába Félvezető diódák FÉLVEZETŐ DÓDÁK Félvezető P- átmeneti réteg (P- átmenet, kiürített réteg): A félvezető kristály két ellentétesen szennyezett tartományának határán kialakuló
RészletesebbenSzilárdtestek el e ek e tr t o r n o s n zer e k r ez e et e e t
Szilárdtestek elektronszerkezete Kvantummechanikai leírás Ismétlés: Schrödinger egyenlet, hullámfüggvény, hidrogén-atom, spin, Pauli-elv, periódusos rendszer 2 Szilárdtestek egyelektron-modellje a magok
RészletesebbenTrimo EcoSolutions Trimo EcoSolar PV Integrált fotovoltaikus rendszer
Trimo EcoSolutions Trimo EcoSolar PV Integrált fotovoltaikus rendszer Környezetbarát Esztétikus Könnyű Takarékos Időtálló Trimo EcoSolutions Trimo EcoSolar PV Innovatív gondolkodásmód, folyamatos fejlesztés,
RészletesebbenNAPELEMES ERŐMŰVEK ÁRAMÜTÉS ELLENI VÉDELME
NAPELEMES ERŐMŰVEK ÁRAMÜTÉS ELLENI VÉDELME Dr. Novothny Ferenc ( PhD) Egyetemi docens Óbudai Egyetem Kandó Kálmán Villamosmérnöki Kar Villamosenergetikai Intézet V. Energetikai konferencia 2010.11.25.
RészletesebbenKváziautonóm napelemes demonstrációs áramforrás SOLART-SYSTEM KFT. Napenergiás berendezések tervezése és kivitelezése
SOLART-SYSTEM KFT. Napenergiás berendezések tervezése és kivitelezése 1112 Budapest XI. Gulyás u 20. Telefon : 246-1783 Telefax : 246-1783 e-mail: mail@solart-system.hu web: www.solart-system.hu KVÁZIAUTONÓM
Részletesebben1. A Nap, mint energiaforrás:
A napelem egy olyan eszköz, amely a nap sugárzását elektromos árammá alakítja át a fényelektromos jelenség segítségével. A napelem teljesítménye függ annak típusától, méretétől, a sugárzás intenzitásától
RészletesebbenMagyarkuti András. Nanofizika szeminárium JC Március 29. 1
Magyarkuti András Nanofizika szeminárium - JC 2012. Március 29. Nanofizika szeminárium JC 2012. Március 29. 1 Abstract Az áram jelentős részéhez a grafén csík szélén lokalizált állapotok járulnak hozzá
Részletesebben-A homogén detektorok közül a gyakorlatban a Si és a Ge egykristályból készültek a legelterjedtebbek.
Félvezető detektorok - A legfiatalabb detektor család; a 1960-as évek közepétől kezdték alkalmazni őket. - Működésük bizonyos értelemben hasonló a gáztöltésű detektorokéhoz, ezért szokták őket szilárd
RészletesebbenSugárzások kölcsönhatása az anyaggal
Radioaktivitás Biofizika előadások 2013 december Sugárzások kölcsönhatása az anyaggal PTE ÁOK Biofizikai Intézet, Orbán József Összefoglaló radioaktivitás alapok Nukleononkénti kötési energia (MeV) Egy
RészletesebbenA napenergia fotovillamos hasznosítása
A napenergia fotovillamos hasznosítása Pálfy Miklós Okleveles Villamosmérnök Címzetes egyetemi docens Solart-System Magyar Elektrotechnikai Egyesület Energetikai Informatika Szakosztály Elnökség tagja
RészletesebbenPV (fotovoltaikus) rendszerek. Mérések Fogalmak-Tények. www.globalfocus.hu. Mit jelent a besugárzott szoláris teljesítmény (solar irradiance)?
GLOBAL FOCUS Kft. Cím: 1119 Bp. Etele út 59-61. Villamos és laboratóriumi mérőműszerek forgalmazása, javítása, karbantartása www.globalfocus.hu PV (fotovoltaikus) rendszerek Mérések Fogalmak-Tények Mit
RészletesebbenNapenergia hasznosítás
Fókusztéma - üzemeltetőknek Napenergia hasznosítás Szoláris potenciál (éves szoláris hozam) Fa Lignit Földgáz Tüzelőolaj A tájolás és a meredekség hatása az energiahozamra Tájolás (fok) Nyugat Kelet Délnyugat
RészletesebbenAz optika tudományterületei
Az optika tudományterületei Optika FIZIKA BSc, III/1. 1. / 17 Erdei Gábor Elektromágneses spektrum http://infothread.org/science/physics/electromagnetic%20spectrum.jpg Optika FIZIKA BSc, III/1. 2. / 17
RészletesebbenSolar-25 Napelem Modulok Telepítői Útmutató Version: 1.0
Version: 1.0 ELŐSZÓ Az útmutató a napelemek beüzemeléséhez szükséges általános használati és biztonsági információkat tartalmazza. Tervezési és méretezési kérdésekkel kapcsolatban hivatalos viszonteladóink
RészletesebbenFotovillamos napenergia-hasznosítás helyzete Magyarországon
Fotovillamos napenergia-hasznosítás helyzete Magyarországon Pálfy Miklós Solart-System Bevezetés Sugárzási energia Elözmények, mai helyzet, növekedés Napelemes berendezések Potenciál Európai helyzetkép
RészletesebbenSzilárd testek sugárzása
A fény keletkezése Szilárd testek sugárzása A szilárd test melegítés hatására fényt bocsát ki A sugárzás forrása a közelítőleg termikus egyensúlyban lévő kibocsátó test atomi részecskéinek véletlenszerű
RészletesebbenLaptop: a fekete doboz
Laptop: a fekete doboz Dankházi Zoltán ELTE Anyagfizikai Tanszék Lássuk a fekete doboz -t NÉZZÜK MEG! És hány GB-os??? SZEDJÜK SZÉT!!!.2.2. AtomCsill 2 ... hát akkor... SZEDJÜK SZÉT!!!.2.2. AtomCsill 3
RészletesebbenFotovillamos és fotovillamos-termikus modulok energetikai modellezése
Fotovillamos és fotovillamos-termikus modulok energetikai modellezése Háber István Ervin Nap Napja Gödöllő, 2016. 06. 12. Bevezetés A fotovillamos modulok hatásfoka jelentősen függ a működési hőmérséklettől.
RészletesebbenDR. KOVÁCS ERNŐ ELEKTRONIKA II. (DISZKRÉT FÉLVEZETŐK, ERŐSÍTŐK) ELŐADÁS JEGYZET
MISKOLCI EGYETEM VILLAMOSMÉRNÖKI INTÉZET ELEKTROTECHNIKAI- ELEKTRONIKAI TANSZÉK DR. KOVÁCS ERNŐ ELEKTRONIKA II. (DISZKRÉT FÉLVEZETŐK, ERŐSÍTŐK) ELŐADÁS JEGYZET 2003. 2.0. Diszkrét félvezetők és alkalmazásaik
RészletesebbenMézerek és lézerek. Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19.
és lézerek Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19. Fény és anyag kölcsönhatása 2 / 19 Fény és anyag kölcsönhatása Fény és anyag kölcsönhatása E 2 (1) (2) (3) E 1 (1) gerjesztés (2) spontán
RészletesebbenBevezetés a modern fizika fejezeteibe. 4. (a) Kvantummechanika. Utolsó módosítás: november 15. Dr. Márkus Ferenc BME Fizika Tanszék
Bevezetés a modern fizika fejezeteibe 4. (a) Kvantummechanika Utolsó módosítás: 2015. november 15. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum
RészletesebbenAZ ELEKTROMÁGNESES SUGÁRZÁS KETTŐS TERMÉSZETE
AZ ELEKTROMÁGNESES SUGÁRZÁS KETTŐS TERMÉSZETE A Planck-féle sugárzási törvény Hipotézis 1.: A hősugárzást (elektromágneses hullámokat) kis, apró rezgő oszcillátorok hozzák létre. Egy ilyen oszcillátor
RészletesebbenNapelem Modulok Telepítői útmutató Version: 1.0. alarm shop
Napelem Modulok Telepítői útmutató Version: 1.0 1 ELŐSZÓ Az útmutató a napelemek beüzemeléséhez szükséges általános használati és biztonsági információkat tartalmazza. Tervezési és méretezési kérdésekkel
RészletesebbenAbszorpciós spektroszkópia
Tartalomjegyzék Abszorpciós spektroszkópia (Nyitrai Miklós; 2011 február 1.) Dolgozat: május 3. 18:00-20:00. Egész éves anyag. Korábbi dolgozatok nem számítanak bele. Felmentés 80% felett. A fény; Elektromágneses
RészletesebbenSOLART-SYSTEM KFT. Napenergiás berendezések tervezése és kivitelezése. 1112 Budapest XI. Gulyás u. 20 Telefon: 2461783 Telefax: 2461783
30 ÉV Napenergiás berendezések tervezése és kivitelezése Több napelem, több energia Csak egyszer kell megvenni, utána a villany ingyen van! 1m 2 jóminőségű napelem egy évben akár 150 kwh villamos energiát
Részletesebben72-74. Képernyő. monitor
72-74 Képernyő monitor Monitorok. A monitorok szöveg és grafika megjelenítésére alkalmas kimeneti (output) eszközök. A képet képpontok (pixel) alkotják. Általános jellemzők (LCD) Képátló Képarány Felbontás
Részletesebben- elektromos szempontból az anyagokat három csoportra oszthatjuk: vezetők félvezetők szigetelő anyagok
lektro- és irányítástechnika. jegyzet-vázlat 1. Félvezető anyagok - elektromos szempontból az anyagokat három csoportra oszthatjuk: vezetők félvezetők szigetelő anyagok - vezetők: normál körülmények között
RészletesebbenMérés és adatgyűjtés
Mérés és adatgyűjtés 7. óra Mingesz Róbert Szegedi Tudományegyetem 2013. április 11. MA - 7. óra Verzió: 2.2 Utolsó frissítés: 2013. április 10. 1/37 Tartalom I 1 Szenzorok 2 Hőmérséklet mérése 3 Fény
RészletesebbenNCST és a NAPENERGIA
SZIE Egyetemi Klímatanács SZENT ISTVÁN EGYETEM NCST és a NAPENERGIA Tóth László ACRUX http://klimatanacs.szie.hu TARTALOM 1.Napenergia potenciál 2.A lehetséges megoldások 3.Termikus és PV rendszerek 4.Nagyrendszerek,
RészletesebbenRöntgendiffrakció. Orbán József PTE, ÁOK, Biofizikai Intézet november
Röntgendiffrakció Orbán József PTE, ÁOK, Biofizikai Intézet 2013. november Előadás vázlata Röntgen sugárzás Interferencia, diffrakció (elektromágneses hullámok) Kristályok szerkezete Röntgendiffrakció
RészletesebbenMediSOLAR napelem és napkollektor rendszer
MediSOLAR napelem és napkollektor rendszer Érvényes: 2014. február 1-től. A gyártó a műszaki változás jogát fenntartja. A nyomdai hibákból eredő károkért felelősséget nem vállalunk. Miért használjunk NAPENERGIÁT?
RészletesebbenHasználati útmutató 1
Használati útmutató 1 Ismerje meg készülékét Elölnézet, napelem Cipzáras zseb az állványon USB-s Kimenet Szolár töltőkábel (8 mm-es töltőkábel a Sherpa Power Pack vagy Goal Zero Yeti hordozható töltőállomáshoz)
RészletesebbenKuthi Edvárd Bálint szakértő mérnök Műszaki Szolgáltató Iroda. Napelemek a mindennapjainkban , Budapest, Construma
Kuthi Edvárd Bálint szakértő mérnök Műszaki Szolgáltató Iroda Napelemek a mindennapjainkban 2017.04.08., Budapest, Construma I. A napelemes rendszerek alapjai 3 Napelemek és napkollektorok A napenergia
RészletesebbenMűszeres analitika II. (TKBE0532)
Műszeres analitika II. (TKBE0532) 4. előadás Spektroszkópia alapjai Dr. Andrási Melinda Debreceni Egyetem Természettudományi és Technológiai Kar Szervetlen és Analitikai Kémiai Tanszék A fény elektromágneses
RészletesebbenA napenergia fotovillamos hasznosítása
A napenergia fotovillamos hasznosítása Pálfy Miklós Okleveles Villamosmérnök Címzetes egyetemi docens Solart-System Magyar Napenergia Társaság Fotovillamos Szakosztály vezetője Magyar Elektrotechnikai
RészletesebbenA napelemes villamosenergiatermelés hazai és nemzetközi helyzete
A napelemes villamosenergiatermelés hazai és nemzetközi helyzete Pálfy Miklós Okleveles Villamosmérnök Címzetes egyetemi docens Solart-System Magyar Napenergia Társaság Fotovillamos Szakosztály vezetője
RészletesebbenÁttörés a szolár-technológiában a Konarka-val?
A Konarka Power Plastic egy olyan fotovoltaikus anyag, amely képes akár a beltéri, akár a kültéri fényből elektromos egyenáramot előállítani. Az így termelt energia azonnal hasznosítható, tárolható későbbi
RészletesebbenE (total) = E (translational) + E (rotation) + E (vibration) + E (electronic) + E (electronic
Abszorpciós spektroszkópia Abszorpciós spektrofotometria 29.2.2. Az abszorpciós spektroszkópia a fényabszorpció jelenségét használja fel híg oldatok minőségi és mennyiségi vizsgálatára. Abszorpció Az elektromágneses
Részletesebben