Fogalomgyűjtemény Kémiai rendszerek állapot és összetétel szerinti leírása

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Fogalomgyűjtemény Kémiai rendszerek állapot és összetétel szerinti leírása"

Átírás

1 Fogalomgyűjtemény Kémiai rendszerek állapot és összetétel szerinti leírása anyagmennyiség az a mennyiség, amely annyi egységet tartalmaz, mint amennyi atom van 12 g 12 C nuklidban. rendszer az általunk vizsgált térrész. környezet a rendszert körülvevő tér. nyílt rendszer az a rendszer, ahol mind energia- mind anyagátmenet lehetséges a rendszer és környezete között. zárt rendszer az a rendszer, ahol energiaátmenet lehetséges és anyagátmenet nem lehet a rendszer és környezete között. elszigetelt rendszer az a rendszer, ahol sem energia- sem anyagátmenet nem lehetséges a rendszer és környezete között. állapothatározó egy fizikai rendszer makroszkopikus állapotát meghatározó mennyiség. állapotegyenlet az állapothatározók között fennálló összefüggés. extenzív tulajdonság a rendszer méretétől függő tulajdonság, mely részrendszerek egyesítésekor összeadódik. (pl. tömeg, anyagmennyiség) intenzív tulajdonság a rendszer anyagmennyiségétől független tulajdonság, mely részrendszerek egyesítésekor kiegyenlítődik (pl. hőmérséklet, nyomás). gőz olyan légnemű anyag, mely adott hőmérsékleten nyomásnövelés hatására cseppfolyósítható. gázegyenlet pv = nrt, ahol p a nyomás, V a térfogat, n az anyagmennyiség, R az egyetemes gázállandó és T a hőmérséklet. kompresszibilitási tényező (Z) Z = pv m /RT, ahol V m = V /n a moláris térfogat. van der Waals egyenlet ) (p + an2 V 2 (V bn) = nrt, ahol a a részecskék közti vonzóerőre jellemző, b a részecskék saját térfogatára jellemző állandó. felületi feszültség (γ,n/m) az egységnyi felület létrehozásához szükséges energia. tenzió egy folyadékkal egyensúlyban levő gőz nyomása. telített gőz egy folyadékkal egyensúlyban levő gőz. viszkozitás a folyadék folyással szembeni ellenállásának mértéke. forráspont az a hőmérséklet, amelyben a folyadék gőznyomása eléri a külső nyomást. kritikus pont az a pont, amelyen túl a gáz csak a nyomás növelésével már nem cseppfolyósítható. hármaspont az a pont, ahol mindhárom fázis létezik és egymással egyensúlyban van. 1

2 túlhevítés az a jelenség, amikor adott anyag átmenetileg folyadékhalmazállapotú marad olyan hőmérsékleten is, amely egyensúlyban már gázhalmazállapotú anyag lenne. túlhűtés az a jelenség, amikor adott anyag átmenetileg folyadékhalmazállapotú marad olyan hőmérsékleten is, amely egyensúlyban már szilárd halmazállapotú anyag lenne. komponens olyan kémiai anyagfajta, mely fizikai módszerekkel nem bontható összetevőire. atom az anyagot felépítő részecske, mely kémiai módszerekkel nem bontható további részekre, azaz a kémiai tulajdonságok hordozója. elem az az anyagfajta, mely azonos rendszámú atomokból áll. vegyület két vagy több különböző elemből épül fel jól meghatározott állandó arányban. allotróp módosulat az egyes elemek különböző számú atomokból történő összekapcsolódása (pl.o 2 illetve O 3 ). állandó súlyviszonyok törvénye Adott vegyületekben az elemek tömegének viszonya állandó és az adott vegyületre jellemző. pl. NaCl vagy H 2 O többszörös súlyviszonyok törvénye Két elem, ha többféle vegyületet alkothat egymással, akkor a 2 elem úgy vegyül egymással, hogy tömegviszonyuk egyszerű egész számmal legyen megadható. pl. CO CO 2 vagy NO 2 és N 2 O 4 vegyjel elemek jelölésére használt jel. fázis makroszkopikus határfelületekkel elválasztott homogén rendszer. homogén rendszer vagy egyfázisú rendszer az a rendszer, ahol nincsenek makroszkopikus határfelületek, a rendszer intenzív tulajdonságai a rendszer minden részében megegyeznek. heterogén rendszer vagy többfázisú rendszer, az a rendszer, ahol a rendszer fizikai tulajdonságai (intenzív) ugrásszerű változást mutatnak, makroszkopikus határfelület létezik. pl. víz+jég; gőz+jég inhomogén rendszer azon rendszer, ahol az intenzív fizikai tulajdonságok nem állandóak, értékük helyről helyre változik, de nincs bennük ugrásszerű változás. keverék többkomponensű heterogén rendszer. elegy többkomponensű homogén rendszer. oldat azon elegy, mely egyik komponense a többihez képest nagy feleslegben van, vagy valamilyen sajátsága miatt kiemelt jelentőségű. A kiemelt, vagy nagy mennyiségű komponenst oldószernek, a többit oldott anyagnak nevezzük. Avogadro törvénye kimondja, hogy adott nyomáson, hőmérsékleten azonos térfogatú gázok azonos számú molekulát tartalmaznak. relatív atomtömeg (A r ) a természetes nuklidösszetételű elem 1 atom átlagos tömegének a viszonya a 12 C 1 atom tömegének 1/12 részéhez pl. A r (O) = 15,999. relatív molekulatömeg (M r ) A természetes nuklidösszetételű vegyület képlet szerinti egység átlagos tömegének viszonya a 12 C 1 atom tömegének 1/12 részéhez pl. M r (H 2 O) = 17,999. moláris tömeg (M,g/mol) M = m/n, ahol m az anyag tömege, n az anyagmennyisége. 2

3 szolvatáció azon jelenségek összesége, mely azt eredményezi, hogy az oldószer molekulák körülveszik az oldott anyagot. koncentráció (c, mol/dm 3 ) az oldott anyag anyagmennyiségének, n B és az oldat térfogatának hányadosa V oldat, azaz c B = n B /V oldat. molalitás ( m,mol/kg) az oldott anyag anyagmennyiségének, n B és az oldószer tömegének, m A hányadosa, azaz m B = n B /m A. tömegtört (w) az oldott anyag tömegének, m B és az oldat tömegének hányadosa, azaz w B = m B /m oldat, ahol az oldat tömege, m oldat = K m i, az oldatban levő összes komponens tömegének összege. térfogattört (ϕ) az oldott anyag térfogatának, V B és az oldat térfogatának hányadosa, azaz ϕ B = V B /V oldat. anyagmennyiség-tört, móltört (x) az oldott anyag anyagmennyiségének, n B és az oldat anyagmennyiségének hányadosa x B = n B /n oldat, ahol az oldat anyagmennyisége az oldatban levő összes komponens anyagmennyiségeinek összege: n oldat = K n i. tömegkoncentráció (ρ B,g/cm 3 ) az oldott anyag tömegének, m B és az oldat térfogatának hányadosa, azaz ρ B = m B /V oldat. hígítás (V,dm 3 /mol) a koncentráció reciproka, azaz V = 1/c. titrálás olyan eljárás, melynek során ahol egy anyag (titrálandó oldat) anyagmennyiségét egy ismert koncentrációjú reagens (titráló oldat) térfogatának adagolásával határozzuk meg. ekvivalenciapont az a pont, ahol sztöchiometriai mennyiségben adtuk a titráló oldatot a titrálandó oldathoz a titrálás során. parciális nyomás (p i,pa) p i = x i p, ahol p az össznyomás és x i az i-ik komponensre vonatkozó móltört. Dalton törvénye p = K p i, azaz tökéletes gázoknál a parciális nyomás az a nyomás, amelyet akkor fejtene ki az adott anyag, ha a rendelkezésre álló térfogatot egyedül töltené ki. korlátlan elegyedés az a folyamat, amikor az elegyek tetszés szerinti összetételben előállíthatók. korlátolt elegyedés két vagy több anyag csak meghatározott arányokban képez elegyet. oldhatóság az a maximális mennyiségű anyag, mely adott hőmérsékleten oldott állapotban lehet adott mennyiségű oldószerben. Henry-törvény a gázok folyadékban való oldhatóságát írja le: p oldott a. = K H x oldott a., ahol p oldott a. az oldódó gáz parciális nyomása az oldat felett, K H pedig az adott gázra jellemző Henry-együttható és x oldott a. a folyadékelegyben az oldott anyag móltörtje. kolligatív tulajdonság Azon anyagi minőségtől független tulajdonságok, melyek csak a részecskeszámtól függenek. pl. forráspont-emelkedés, fagyáspontcsökkenés és gőznyomás(tenzió)csökkenés, ozmózisnyomás. Raoult-törvény p oldószer = p 0 oldószer x oldószer, ahol p oldószer a gőztérben az oldószer gőznyomása, p 0 oldószer a tiszta oldószer gőznyomása és x oldószer a folyadékelegyben az oldószer móltörtje. 3

4 fagyáspontcsökkenés ( T f agy,k) mennyiségi kifejezése T f agy = T M, f agy m B, ahol vizes oldatra T M, f agy =1,86 K kg/mol forráspont-emelkedés ( T f orr,k) mennyiségi kifejezése T f orr = T M, f orr m B, ahol vizes oldatra T M, f orr =0,52 K kg/mol. ozmózis az oldószer mozgása féligáteresztő hártyán keresztül. ozmózisnyomás (π, Pa) féligáteresztő hártya két oldala között kialakuló nyomáskülönbség, mely arányos a membránon áthaladni nem tudó oldott anyag koncentrációjával (c oldott a ), azaz π = c oldott a RT. Sztöchiometria kémiai egyenlet a kémiai változás leírására szolgáló egyenlet. sztöchiometria a kémiai egyenletekkel való számolás. oxidációs szám megadja, hogy egy vegyületben a semleges atomhoz képest mekkora az elektrontöbblet vagy hiány az adott atomon. redukció elektronfelvétellel járó folyamat. oxidáció elektronleadással járó folyamat. Termodinamika munka (w,j) az erő és az irányába eső elmozdulás szorzata (rendezett mozgás). energia (E,J) a rendszer munkavégzőképessége. hő (q,j) a hőmérséklet-különbség okozta energiaváltozás. endoterm folyamat olyan kémiai vagy fizikai folyamat, amelyben hő nyelődik el. exoterm folyamat olyan kémiai vagy fizikai folyamat, amelyben hő szabadul fel. belső energia (U, J) egy testet felépítő részecskék kölcsönhatási és kinetikus energiája; abszolút értéke határozatlan, változását a termodinamika I. főtétele írja le. A belső energia állapotfüggvény és extenzív mennyiség. állapotfüggvény olyan mennyiség, amelyet az állapotjelzők értékei határoznak meg. Megváltozása csak az állapotjelzők kezdeti és végső értékétől függ és független attól, hogy az állapotjelzők a változás során milyen közbenső értékeken mentek át. termodinamika I. főtétele Zárt rendszer belső energiája állandó, míg munkavégzés vagy hőcsere meg nem változtatja. Egyenlettel kifejezve: U = q + w. reverzíbilis változás az a változás, mely egyensúlyi folyamatokon keresztül játszódik le és ezért infinitezimális hatásra megfordítható. entalpia (H, J) H = U + pv, amelynek egy adott folyamatban bekövetkező változása megadja az állandó nyomáson felvett/leadott hőt, amennyiben nincs hasznos munkavégzés. 4

5 hőkapacitás (C,J/K) C = q/ T, ahol q a rendszer által felvett ( vagy ) leadott hő, T az eközben bekövetkező hőmérséklet-változás. Állandó térfogaton: C V = U ( ) T és állandó nyomáson: C p = H V T. p Vagy szemléletesen: a hőkapacitás az a hőmennyiség, ami a rendszer hőmérsékletét 1 Kelvinnel növeli meg. fajlagos hőkapacitás (c,j/(gk)) egységnyi tömegű anyag hőkapacitása, azaz c = C/m. moláris hőkapacitás (C m,j/(molk)) egységnyi anyagmennyiségű anyag hőkapacitása, azaz C m = C/n. reakcióentalpia a reakció során fellépő entalpiaváltozás. képződési entalpia egy mol anyag adott hőmérsékleten stabilis elemeiből való képződésekor fellépő entalpiaváltozás. standard képződési entalpia egy mol standard állapotú anyag standard állapotú stabilis elemeiből való képződése során fellépő entalpiaváltozás. Standard állapot: 1 atm nyomás, 1 mol vagy aktivitásnyi anyag adott hőmérsékleten. Hess-tétele Eredő reakcióentalpia azon egyedi reakciók entalpiáinak összege, melyre a bruttó reakció felbontható. Egyensúly tömeghatás törvénye Egyensúly esetén a termékek megfelelő hatványra emelt egyensúlyi koncentrációi szorzatának és a reaktánsok megfelelő hatványra emelt egyensúlyi koncentrációi szorzatának hányadosa állandó hőmérsékleten és állandó nyomáson állandó. Az ν A A+ν B B+ν C C+... ν K K+ν L L+ ν M M +... reakcióra K = [K]ν K[L] ν L[M] ν M... [A] ν A [B] ν B[C] ν C... koncentráció standardre vonatkoztatott reakcióhányados (Q c ) ( ci ) νi Q = c 0 n ahol ν i az adott komponens sztöchiometriai együtthatója, mely termékre pozitív reaktánsra pedig negatív, n a komponensek száma, c i az adott komponens pillanatnyi koncentrációja és c 0 =1 mol/dm 3 a standard koncentráció. koncentráció standardre vonatkoztatott egyensúlyi állandó (K c ) ( ci ) νi K c = c 0 n ahol ν i az adott komponens sztöchiometriai együtthatója, mely termékre pozitív reaktánsra pedig negatív, n a komponensek száma, c i az adott komponens egyensúlyi koncentrációja és c 0 =1 mol/dm 3 a standard koncentráció. nyomás standardre vonatkoztatott egyensúlyi állandó (K p ) ( pi K p = p 0 n ahol ν i az adott komponens sztöchiometriai együtthatója, mely termékre pozitív reaktánsra pedig negatív, n a komponensek száma, p i az adott komponens egyensúlyi nyomása és p 0 =1 atm a standard koncentráció. 5 ) νi

6 LeChatelier-Braun elv Ha az egyensúlyban levő rendszer külső körülmények hatására változik, akkor olyan folyamatok mennek végbe, amelyek ezen külső változások hatását csökkenteni igyekeznek. elektrolit azok a vegyületek, melyek oldat vagy olvadék állapotukban vezetik az elektromos áramot. disszociációfok (α) megadja, hogy az elektrolitok hanyadrésze disszociál. Értéke 0 és 1 között van. α = biner elektrolit azon elektrolit, mely 2 ionra esik szét. Ostwald-féle hígítási törvény disszociált molekulák száma eredeti molekulák száma K d = cα2 (1 α)c 0 ahol c a kezdeti koncentráció, α a disszociációfok, K d a disszociációs egyensúlyi állandó, és c 0 = 1mol/dm 3 a standard koncentráció. vízionszorzat (K v ) a víz disszociációjára jellemző egyensúlyi állandó, azaz K v = [H + ][OH ]/c 02, ahol c 0 = 1mol/dm 3 a standard koncentráció. ph az oldatban levő hidrogénion koncentrációjának negatív logaritmusa, azaz ph = lg([h + ]/c 0 ), ahol c 0 = 1mol/dm 3 a standard koncentráció. amfoter elektrolit proton felvételre és leadásra is képes elektrolit. puffer olyan oldat, amelyben egy gyenge sav és annak erős bázissal alkotott sója vagy egy gyenge bázis és annak erős savval alkotott sója együtt található. heterogén egyensúly az az egyensúly, ahol a reaktánsok és termékek külön fázisban vannak. oldhatósági szorzat (L) L = K (c i /c 0 ) ν i, ahol ν i az adott, nem szilárd halmazállapotú, komponens sztöchiometriai együtthatója, mely termékre pozitív reaktánsra pedig negatív, K a komponensek száma, és c 0 =1 mol/dm 3. vezetés (G,S) az ellenállás reciproka G = 1/R. Elektrokémia fajlagos vezetés (κ,s/m) annak a cellának a vezetése, amelyben egységnyi felületű elektródok egymástól egységnyi távolságra vannak. Egyenlettel kifejezve: G = κa/l, ahol A az elektródok felülete és l az elektródok közti távolság. moláris fajlagos vezetés (Λ,Sm 2 /mol) olyan cella vezetése, ahol az elektródok közti távolság egységnyi és felülete akkora, hogy az oldott anyag mennyisége 1 mol legyen. Egyenlettel kifejezve: Λ = κ/c. elsőfajú vezető/elektronvezető az az anyag, ahol az elektron elmozdulása hozza létre az áramot. másodfajú vezető/ionvezető az az anyag, ahol töltéssel bíró részecskék (ionok) elmozdulása hozza létre az áramot. elektrokémiai cella az a rendszer, ahol két elsőfajú vezető merül egy(-egy) másodfajú vezető oldatába. 6

7 galváncella az az elektrokémiai cella, ahol önként végbemenő kémiai reakció hatására elektromosság keletkezik. elektrolizáló cella az az elektrokémiai cella, ahol külső áramforrás igénybevételével (önként végbe nem menő) reakció játszódik le. elektród szűkebb értelemben egy elektronvezető, tágabb értelemben egy elektronvezető és egy elektrolit együttese. (Ez utóbbit félcellának is nevezik.) anód az az elektród, ahol oxidáció történik. katód az az elektród, ahol redukció történik. cellapotenciál a két félcella közti potenciálkülönbség. elektródpotenciál azon cella cellapotenciálja, ahol az anód az egyensúlyban levő standard hidrogén elektród a katód pedig a vizsgálandó elektród. standard elektródpotenciál az az elektródpotenciál, ahol a vizsgált elektród is standard körülmények között és egyensúlyban van (p=1atm, egységnyi aktivitású oldat). standard hidrogén elektród azon elektród, ahol egy platina lemez merül 1 atm nyomású hidrogéngáz telített oldatába, amely egységnyi koncentrációjú hidrogéniont tartalmaz adott hőmérsékleten. elektromotoros erő terhelésmentes cellapotenciál. Nernst-egyenlet ( ) E = E 0 RT zf lnq = E0 RT n ( zf ln ci ) νi c 0, ahol E 0 a standard elektródpotenciál, z a félcellában bekövetkező elektródszámváltozás, F=96485 C/mol a Faraday-állandó, c i az egyes komponensek koncentrációja, ν i a redukcióra felírt reakcióban szereplő komponensek sztöchiometriai együtthatója, mely reaktánsra negatív, termékre pedig pozitív. elsőfajú elektród azon elektród, ahol fém a saját ionjait tartalmazó oldatba merül és érvényes rá a Nernstegyenlet. másodfajú elektród azon elektród, ahol a fém olyan oldatba merül, amely a saját ionjait rosszul oldódó só formájában tartalmazza, és még olyan jól oldódó sót, aminek az anionja a rosszul oldódó só anionjával egyezik meg és érvényes rá a Nernst-egyenlet. redoxi elektród azon elektród, ahol egy inert elektronvezető merül az ionvezető oxidált és redukált formáját is tartalmazó oldatba és érvényes rá a Nernst-egyenlet. elektrolízis azon folyamat, ahol külső áramforrás igénybevételével (önként le nem játszódó) reakciót játszatunk le. 7

8 Reakciókinetika (térfogattal osztott) reakciósebesség (v,mol/(dm 3 s)) v = 1 ν j dc j dt, ahol ν j az adott j komponens sztöchiometriai együtthatója. empirikus sebességi egyenlet v = k r ahol v a reakciósebesség, c i az egyes komponensek koncentrációja, β i az egyes komponensekhez tartozó részrend és k a sebességi együttható. sebességi együttható a sebességi egyenletben a reakciósebesség és a koncentrációk megfelelő hatványon vett szorzata közti arányossági tényező. részrend (egy adott komponensre) a sebességi egyenletben az adott komponens koncentrációjához tartozó hatványkitevő. c β i i, bruttó rend a reakcióban résztvevő összes anyagra vonatkozó részrend összege. felezési idő az az időtartam, amely alatt az anyag kiindulási koncentrációja a felére csökken. sebességi egyenlet elsőrendű reakcióra v = d[a]/dt = k[a], ahol v a reakciósebesség, k a sebességi együttható és [A] az A reaktáns koncentrációja adott időpillanatban. integrált sebességi egyenlet elsőrendű reakcióra ln [A] [A] 0 = kt vagy [A] = [A] 0 e kt, ahol [A] 0 a reaktáns kiindulási koncentrációja, t az eltelt idő és [A] a reaktáns t időpontbeli koncentrációja. felezési idő elsőrendű reakcióra (t 1/2,s) t 1/2 = ln2/k, ahol k a sebességi együttható. Arrhenius-egyenlet k = Aexp( E A /RT ) vagy linearizált alakban lnk = lna E A /RT, ahol A a preexponenciális tényező, E A az aktiválási energia és T a hőmérséklet. elemi reakció olyan reakciólépés, mely a felírt egyenlet szerint valóban végbemegy. reakciómechanizmus azon elemi lépések sokasága, mely a rendszer viselkedését leírja. katalizátor a reakciósebességét új utak nyitásával növelő anyagfajta, mely a reakció végén változatlan mennyiségben visszamarad. katalízis katalizátor közreműködésével végbemenő reakció. autokatalizátor A reakció terméke a reakció katalizátora, azaz a termék saját képződésének sebességét növeli. autokatalízis olyan katalízis, ahol valamelyik reakciótermék a katalizátor. 8

9 Anyagszerkezet természetes radioaktivitás természetben jelenlévő instabil magok radioaktív sugárzás kibocsátása melletti átalakulása. izotón atom azonos neutronszámú atomok (pl. 3 1 H és 4 2 He). izobar atom azonos tömegszámú, de eltérő rendszámú atomok (pl Ca és Ar). izotóp atom azonos rendszámú (protonszámú), de eltérő tömegszámú atomok (pl. hidrogén, deutérium, trícium). izotóparány a természetben előforduló izotópok megoszlását fejezi ki (független az anyag származási helyétől). hullám az anyag valamely tulajdonságának periódikus, időben ismétlődő változása és ennek tovaterjedése. hullámhossz (λ,m) két azonos állapotú hely közti legkisebb távolság egy adott időpillanatban. hullámszám (σ,m 1 ) a hullámhossz reciproka. frekvencia (ν,s 1 ) egy adott helyen egységnyi idő alatt áthaladt hullámok száma. spektroszkópia a besugárzott/sugárzó energia és az anyag kölcsönhatásának tanulmányozásán alapuló módszer. spektrum az anyag által kibocsátott vagy átengedett elektromágneses sugárzás frekvencia vagy hullámhossz szerinti eloszlása. általános sorozattörvény ( ) a hidrogénatom emissziós spektrumának vonalait leíró összefüggés: σ = R 1 H 1, ahol σ az egyes spektrumvonalakhoz tartozó hullámszám, R n 2 v n 2 H = 1, m 1 k és n v < n k. ionizációs energia az az energia, amely ahhoz szükséges, hogy gázhalmazállapotú atomról a "külső", leggyengébben kötött elektront leszakítsuk. Heisenberg-féle bizonytalansági reláció p x = m v x h 4π ahol p az impulzus, x az elmozdulás, m a tömeg, v a sebesség. foton energiája E = hν, ahol h a Planck-féle hatáskvantum és ν a frekvencia. főkvantumszám (n) az elektron energiáját döntően meghatározó paraméter. Értékei 1, 2,... egész számok lehetnek. mellékkvantumszám (l) az atomi pályák térbeli alakját meghatározó paraméter. bármely egész szám lehet. Értéke 0-tól n 1-ig mágneses kvantumszám (m l ) az atomi pálya térbeli irányítottságát megadó paraméter. Értéke -l-től l-ig bármilyen egész szám lehet. spinkvantumszám (m S ) az elektron saját impulzusmomentumának térbeli irányítottságát megadó paraméter. Értéke ±1/2. 9

10 elektronhéj az azonos főkvantumszámú elektronok összessége. elektronegativitás a kötésben levő atomok elektronvonzóképessége. eletronaffinitás az az energia, mely felszabadul, amikor gázhalmazállapotú semleges atom elektront megkötve anionná válik. Pauli-féle kizárási elv kimondja, hogy nem létezhet egy atomban 2 azonos állapotú elektron, azaz nem lehet 2 elektronnak mind a 4 kvantumszáma azonos. Aufbau/felépítési elv kimondja, hogy alapállapotban növekvő (n+l) értékek szerint épülnek be az elektronok és azonos n+l értéknél, előbb a kisebb n értékhez tartozó pályák töltődnek fel. Hund szabály kimondja, hogy maximális számú párosítatlan elektron van jelen az atom alapállapotában. nemesgáz azon elemek, amelyeknél a külső s és p pályák betöltöttek, azaz szerkezetük: s 2 p 6. vegyértékelektron a nemesgáz szerkezeten felüli többletelektron. elsődleges kötés molekulán belüli, molekulát összetartó, az atomok között fellépő vonzóerőn alapuló kötés. másodlagos kötés molekulák között fellépő, az elsődleges kötésekhez képest jóval gyengébb vonzóerőn alapuló kötés. ionos kötés azon kémiai kötés, ahol az összetartó erő az ionok közötti elektrosztatikus vonzóerő. kovalens kötés azon kémiai kötés, ahol a vegyületet alkotó atomok elektronjai megoszlanak az atomok között, és az elektronok egyszerre több atommaggal vannak elektrosztatikus kölcsönhatásban. fémes kötés azon kémiai kötés, ahol az elektronok nagyon sok atom erőterében mozognak nagyon sok atommaggal egyidejű kölcsönhatásban. datív kötés a kovalens kötést létrehozó közös elektronpár csak az egyik atomból származik. van der Waals kötés a molekulában az elektroneloszlás állandó vagy átmeneti/pillanatnyi eltolódásból származó vonzóerőn alapuló kötés. hidrogénhíd kötés egy molekula nagy elektronegativitású atom kötetlen elektronpárja és egy másik molekula hidrogén atomja között fellépő dipólus-dipólus kölcsönhatáson alapuló kötés. kötésrend MO módszer szerint a kötőpályán és a lazítópályán levő elektronok különbségének a fele. kötőelektron kötőpályán lévő elektron. kötetlen elektron kötésben részt nem vevő elektron. lazító elektron lazítópályán lévő elektron. nemkötő elektron nemkötő pályán lévő elektron. kötőpálya azon molekulapálya, melynek energiája alacsonyabb az azt alkotó atomi pályák átlagos energiájánál. nemkötőpálya azon molekulapálya, mely azonos az azt alkotó atomi pályával. lazító pálya azon molekulapálya, melynek energiája magasabb az azt alkotó atomi pályák átlagos energiájánál. 10

Kémiai rendszerek állapot és összetétel szerinti leírása

Kémiai rendszerek állapot és összetétel szerinti leírása Kémiai rendszerek állapot és összetétel szerinti leírása komponens olyan kémiai anyagfajta, mely fizikai módszerekkel nem bontható összetevőire. fázis makroszkopikus határfelületekkel elválasztott homogén

Részletesebben

Általános kémia képletgyűjtemény. Atomszerkezet Tömegszám (A) A = Z + N Rendszám (Z) Neutronok száma (N) Mólok száma (n)

Általános kémia képletgyűjtemény. Atomszerkezet Tömegszám (A) A = Z + N Rendszám (Z) Neutronok száma (N) Mólok száma (n) Általános kémia képletgyűjtemény (Vizsgára megkövetelt egyenletek a szimbólumok értelmezésével, illetve az egyenletek megfelelő alkalmazása is követelmény) Atomszerkezet Tömegszám (A) A = Z + N Rendszám

Részletesebben

Általános kémia vizsgakérdések

Általános kémia vizsgakérdések Általános kémia vizsgakérdések 1. Mutassa be egy atom felépítését! 2. Mivel magyarázza egy atom semlegességét? 3. Adja meg a rendszám és a tömegszám fogalmát! 4. Mit nevezünk elemnek és vegyületnek? 5.

Részletesebben

Gergely Pál - Erdőd! Ferenc ALTALANOS KÉMIA

Gergely Pál - Erdőd! Ferenc ALTALANOS KÉMIA Gergely Pál - Erdőd! Ferenc ALTALANOS KÉMIA TARTALOM KÉMIAI ALAPFOGALMAK 1 Sí rendszer 1 Atomok és elemek 2 Tiszta anyagok és keverékek 3 Az atomok szerkezete 4 Az atom alkotórészei 4 Az atommag felépítése

Részletesebben

1. feladat Összesen: 8 pont. 2. feladat Összesen: 11 pont. 3. feladat Összesen: 7 pont. 4. feladat Összesen: 14 pont

1. feladat Összesen: 8 pont. 2. feladat Összesen: 11 pont. 3. feladat Összesen: 7 pont. 4. feladat Összesen: 14 pont 1. feladat Összesen: 8 pont 150 gramm vízmentes nátrium-karbonátból 30 dm 3 standard nyomású, és 25 C hőmérsékletű szén-dioxid gáz fejlődött 1800 cm 3 sósav hatására. A) Írja fel a lejátszódó folyamat

Részletesebben

Kémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai

Kémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai Kémiai átalakulások 9. hét A kémiai reakció: kötések felbomlása, új kötések kialakulása - az atomok vegyértékelektronszerkezetében történik változás egyirányú (irreverzibilis) vagy megfordítható (reverzibilis)

Részletesebben

HOMOGÉN EGYENSÚLYI ELEKTROKÉMIA: ELEKTROLITOK TERMODINAMIKÁJA

HOMOGÉN EGYENSÚLYI ELEKTROKÉMIA: ELEKTROLITOK TERMODINAMIKÁJA HOMOGÉN EGYENSÚLYI ELEKTROKÉMIA: ELEKTROLITOK TERMODINAMIKÁJA I. Az elektrokémia áttekintése. II. Elektrolitok termodinamikája. A. Elektrolitok jellemzése B. Ionok termodinamikai képződési függvényei C.

Részletesebben

Energia. Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia

Energia. Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia Kémiai változások Energia Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia Potenciális (helyzeti) energia: a részecskék kölcsönhatásából származó energia. Energiamegmaradás

Részletesebben

Kémiai alapismeretek 7.-8. hét

Kémiai alapismeretek 7.-8. hét Kémiai alapismeretek 7.-8. hét Horváth Attila Pécsi Tudományegyetem, Természettudományi Kar, Kémia Intézet, Szervetlen Kémiai Tanszék 2012. október 16.-október 19. 1/12 2012/2013 I. félév, Horváth Attila

Részletesebben

A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés azonosítószáma és megnevezése 54 524 03 Vegyész technikus Tájékoztató

Részletesebben

Kémiai reakciók sebessége

Kémiai reakciók sebessége Kémiai reakciók sebessége reakciósebesség (v) = koncentrációváltozás változáshoz szükséges idő A változás nem egyenletes!!!!!!!!!!!!!!!!!! v= ± dc dt a A + b B cc + dd. Melyik reagens koncentrációváltozását

Részletesebben

Az atom- olvasni. 1. ábra Az atom felépítése 1. Az atomot felépítő elemi részecskék. Proton, Jele: (p+) Neutron, Jele: (n o )

Az atom- olvasni. 1. ábra Az atom felépítése 1. Az atomot felépítő elemi részecskék. Proton, Jele: (p+) Neutron, Jele: (n o ) Az atom- olvasni 2.1. Az atom felépítése Az atom pozitív töltésű atommagból és negatív töltésű elektronokból áll. Az atom atommagból és elektronburokból álló semleges kémiai részecske. Az atommag pozitív

Részletesebben

ÁLTALÁNOS ÉS SZERVETLEN KÉMIA SZIGORLATI VIZSGAKÉRDÉSEK 2010/2011 TANÉVBEN ÁLTALÁNOS KÉMIA

ÁLTALÁNOS ÉS SZERVETLEN KÉMIA SZIGORLATI VIZSGAKÉRDÉSEK 2010/2011 TANÉVBEN ÁLTALÁNOS KÉMIA ÁLTALÁNOS ÉS SZERVETLEN KÉMIA SZIGORLATI VIZSGAKÉRDÉSEK 2010/2011 TANÉVBEN ÁLTALÁNOS KÉMIA 1. Kémiai alapfogalmak: - A kémia alaptörvényei ( a tömegmegmaradás törvénye, állandó tömegarányok törvénye) -

Részletesebben

1. Mi a folytonos anyagelmélet négy eleme? 2. Mi a Dalton-féle atomelmélet négy alaptétele (posztulátuma)? 3. Mi az SI mértékegység rendszer 7

1. Mi a folytonos anyagelmélet négy eleme? 2. Mi a Dalton-féle atomelmélet négy alaptétele (posztulátuma)? 3. Mi az SI mértékegység rendszer 7 1. Mi a folytonos anyagelmélet négy eleme? 2. Mi a Dalton-féle atomelmélet négy alaptétele (posztulátuma)? 3. Mi az SI mértékegység rendszer 7 alapmennyisége, mi ezek jele? 4. Mi az SI mértékegység rendszer

Részletesebben

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gázegyenlet és általánosított gázegyenlet 5-4 A tökéletes gázegyenlet alkalmazása 5-5 Gáz reakciók 5-6 Gázkeverékek

Részletesebben

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet 5-4 A tökéletes gáz egyenlet alkalmazása 5-5 Gáz halmazállapotú reakciók

Részletesebben

3. A kémiai kötés. Kémiai kölcsönhatás

3. A kémiai kötés. Kémiai kölcsönhatás 3. A kémiai kötés Kémiai kölcsönhatás ELSŐDLEGES MÁSODLAGOS OVALENS IONOS FÉMES HIDROGÉN- KÖTÉS DIPÓL- DIPÓL, ION- DIPÓL, VAN DER WAALS v. DISZPERZIÓS Kémiai kötések Na Ionos kötés Kovalens kötés Fémes

Részletesebben

Az anyagi rendszer fogalma, csoportosítása

Az anyagi rendszer fogalma, csoportosítása Az anyagi rendszer fogalma, csoportosítása A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 1 1 A rendszer fogalma A körülöttünk levő anyagi világot atomok, ionok, molekulák építik

Részletesebben

Általános kémia gyakorlat biomérnököknek

Általános kémia gyakorlat biomérnököknek Általános kémia gyakorlat biomérnököknek Zárthelyi követelmények A zárthelyik időtartama 90 perc. Mindkét zárthelyin legalább 50%-ot kell teljesíteni az elégséges jegyért. Akinek nincs meg az 50%-os eredménye,

Részletesebben

Elektronegativitás. Elektronegativitás

Elektronegativitás. Elektronegativitás Általános és szervetlen kémia 3. hét Elektronaffinitás Az az energiaváltozás, ami akkor következik be, ha 1 mól gáz halmazállapotú atomból 1 mól egyszeresen negatív töltésű anion keletkezik. Mértékegysége:

Részletesebben

Orvosi Fizika 13. Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet

Orvosi Fizika 13. Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika 13. Elektromosságtan és mágnességtan az életfolyamatokban 2. Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Szeged, 2011. december 5. Egyenáram Vezető

Részletesebben

Általános kémia gyakorlat vegyészmérnököknek. 2015/2016. őszi félév

Általános kémia gyakorlat vegyészmérnököknek. 2015/2016. őszi félév Általános kémia gyakorlat vegyészmérnököknek 2015/2016. őszi félév Zárthelyik A zárthelyik időpontja az kari zh-időpont: 17 00 19 00. A zárthelyik időtartama 90 perc. Mindkét zárthelyin legalább 50%-ot

Részletesebben

13 Elektrokémia. Elektrokémia Dia 1 /52

13 Elektrokémia. Elektrokémia Dia 1 /52 13 Elektrokémia 13-1 Elektródpotenciálok mérése 13-2 Standard elektródpotenciálok 13-3 E cella, ΔG és K eq 13-4 E cella koncentráció függése 13-5 Elemek: áramtermelés kémiai reakciókkal 13-6 Korrózió:

Részletesebben

Energiaminimum- elve

Energiaminimum- elve Energiaminimum- elve Minden rendszer arra törekszi, hogy stabil állapotba kerüljön. Milyen kapcsolat van a stabil állapot, és az adott állapot energiája között? Energiaminimum elve Energiaminimum- elve

Részletesebben

Reakciókinetika. Általános Kémia, kinetika Dia: 1 /53

Reakciókinetika. Általános Kémia, kinetika Dia: 1 /53 Reakciókinetika 9-1 A reakciók sebessége 9-2 A reakciósebesség mérése 9-3 A koncentráció hatása: a sebességtörvény 9-4 Nulladrendű reakció 9-5 Elsőrendű reakció 9-6 Másodrendű reakció 9-7 A reakciókinetika

Részletesebben

Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens.

Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens. Kémia, BMEVEAAAMM Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens Jegyzet dr. Horváth Viola, KÉMIA I. http://oktatas.ch.bme.hu/oktatas/konyvek/anal/

Részletesebben

Kötések kialakítása - oktett elmélet

Kötések kialakítása - oktett elmélet Kémiai kötések Az elemek és vegyületek halmazai az atomok kapcsolódásával - kémiai kötések kialakításával - jönnek létre szabad atomként csak a nemesgázatomok léteznek elsődleges kémiai kötések Kötések

Részletesebben

FOGALOMGYŰJTEMÉNY A KÉMIAI RENDSZEREK ÁLLAPOTÁNAK LEÍRÁSA. kémia: az anyag összetételével, és annak változásával, foglalkozó tudomány.

FOGALOMGYŰJTEMÉNY A KÉMIAI RENDSZEREK ÁLLAPOTÁNAK LEÍRÁSA. kémia: az anyag összetételével, és annak változásával, foglalkozó tudomány. FOGALOMGYŰJTEMÉNY kémia: az anyag összetételével, és annak változásával, foglalkozó tudomány. A KÉMIAI RENDSZEREK ÁLLAPOTÁNAK LEÍRÁSA anyagmennyiség: jele: n; mértékegysége: 1 mol az anyag azon mennyisége,

Részletesebben

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 Kérdések. 1. Mit mond ki a termodinamika nulladik főtétele? Azt mondja ki, hogy mindenegyes termodinamikai kölcsönhatáshoz tartozik a TDR-nek egyegy

Részletesebben

ELEKTROKÉMIA. - elektrolitokban: ionok irányított mozgása. Elektrolízis: elektromos áram által előidézett kémiai átalakulás

ELEKTROKÉMIA. - elektrolitokban: ionok irányított mozgása. Elektrolízis: elektromos áram által előidézett kémiai átalakulás ELEKTROKÉMIA 1 ELEKTROKÉMIA Elektromos áram: - fémekben: elektronok áramlása - elektrolitokban: ionok irányított mozgása Elektrolízis: elektromos áram által előidézett kémiai átalakulás Galvánelem: elektromos

Részletesebben

Kémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai

Kémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai Kémiai átalakulások 9. hét A kémiai reakció: kötések felbomlása, új kötések kialakulása - az atomok vegyértékelektronszerkezetében történik változás egyirányú (irreverzibilis) vagy megfordítható (reverzibilis)

Részletesebben

Anyagvizsgálati módszerek Elektroanalitika. Anyagvizsgálati módszerek

Anyagvizsgálati módszerek Elektroanalitika. Anyagvizsgálati módszerek Anyagvizsgálati módszerek Elektroanalitika Anyagvizsgálati módszerek Pannon Egyetem Mérnöki Kar Anyagvizsgálati módszerek Optikai módszerek 1/ 18 Potenciometria Potenciometria olyan analitikai eljárások

Részletesebben

Az előadás vázlata: Állapotjelzők: Állapotjelzők: Állapotjelzők: Állapotjelzők: nagy közepes kicsi. Hőmérséklet, T tapasztalat (hideg, meleg).

Az előadás vázlata: Állapotjelzők: Állapotjelzők: Állapotjelzők: Állapotjelzők: nagy közepes kicsi. Hőmérséklet, T tapasztalat (hideg, meleg). Az előadás vázlata: I. A tökéletes gáz és állapotegyenlete. izoterm, izobár és izochor folyamatok. II. Tökéletes gázok elegyei, a móltört fogalma, a parciális nyomás, a Dalton-törvény. III. A reális gázok

Részletesebben

A gáz halmazállapot. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011

A gáz halmazállapot. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 A gáz halmazállapot A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 0 Halmazállapotok, állapotjelzők Az anyagi rendszerek a részecskék közötti kölcsönhatásoktól és az állapotjelzőktől függően

Részletesebben

Termodinamikai bevezető

Termodinamikai bevezető Termodinamikai bevezető Alapfogalmak Termodinamikai rendszer: Az univerzumnak az a részhalmaza, amit egy termodinamikai vizsgálat során vizsgálunk. Termodinamikai környezet: Az univerzumnak a rendszeren

Részletesebben

Atomszerkezet. Atommag protonok, neutronok + elektronok. atompályák, alhéjak, héjak, atomtörzs ---- vegyérték elektronok

Atomszerkezet. Atommag protonok, neutronok + elektronok. atompályák, alhéjak, héjak, atomtörzs ---- vegyérték elektronok Atomszerkezet Atommag protonok, neutronok + elektronok izotópok atompályák, alhéjak, héjak, atomtörzs ---- vegyérték elektronok periódusos rendszer csoportjai Periódusos rendszer A kémiai kötés Kémiai

Részletesebben

Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár,

Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Facebook,

Részletesebben

Radioaktív nyomjelzés

Radioaktív nyomjelzés Radioaktív nyomjelzés A radioaktív nyomjelzés alapelve Kémiai indikátorok: ugyanazoknak a követelményeknek kell eleget tenniük, mint az indikátoroknak általában: jelezniük kell valamely elemnek ill. vegyületnek

Részletesebben

Kémiai kötések. Kémiai kötések kj / mol 0,8 40 kj / mol

Kémiai kötések. Kémiai kötések kj / mol 0,8 40 kj / mol Kémiai kötések A természetben az anyagokat felépítő atomok nem önmagukban, hanem gyakran egymáshoz kapcsolódva léteznek. Ezeket a kötéseket összefoglaló néven kémiai kötéseknek nevezzük. Kémiai kötések

Részletesebben

Általános Kémia, BMEVESAA101

Általános Kémia, BMEVESAA101 Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Óravázlatok:

Részletesebben

Sillabusz orvosi kémia szemináriumokhoz 1. Kémiai kötések

Sillabusz orvosi kémia szemináriumokhoz 1. Kémiai kötések Sillabusz orvosi kémia szemináriumokhoz 1. Kémiai kötések Pécsi Tudományegyetem Általános Orvostudományi Kar 2010-2011. 1 A vegyületekben az atomokat kémiai kötésnek nevezett erők tartják össze. Az elektronok

Részletesebben

Redox reakciók. azok a reakciók, melyekben valamely atom oxidációs száma megváltozik.

Redox reakciók. azok a reakciók, melyekben valamely atom oxidációs száma megváltozik. Redox reakciók azok a reakciók, melyekben valamely atom oxidációs száma megváltozik. Az oxidációs szám megadja, hogy egy atomnak mennyi lenne a töltése, ha gondolatban a kötő elektronpárokat teljes mértékben

Részletesebben

Általános Kémia, 2008 tavasz

Általános Kémia, 2008 tavasz 9 Elektrokémia 9-1 Elektródpotenciálok mérése 9-1 Elektródpotenciálok mérése 9-2 Standard elektródpotenciálok 9-3 E cell, ΔG, és K eq 9-4 E cell koncentráció függése 9-5 Elemek: áramtermelés kémiai reakciókkal

Részletesebben

Tartalom Az atom szerkezete... 1 9 Atom. Részecske. Molekula... 1 4 Atommodellek... 4 6 A.) J. Thomson féle atommodell...4 B.) A Rutherford-féle vagy

Tartalom Az atom szerkezete... 1 9 Atom. Részecske. Molekula... 1 4 Atommodellek... 4 6 A.) J. Thomson féle atommodell...4 B.) A Rutherford-féle vagy Tartalom Az atom szerkezete... 1 9 Atom. Részecske. Molekula... 1 4 Atommodellek... 4 6 A.) J. Thomson féle atommodell...4 B.) A Rutherford-féle vagy bolygó atommodell... 4 5 C.) A Bohr-féle atommodell...

Részletesebben

5. előadás 12-09-16 1

5. előadás 12-09-16 1 5. előadás 12-09-16 1 H = U + PV; U=Q-PV H = U + (PV); P= áll H = U + P V; U=Q-P V; U=Q-P V H = Q U= Q V= áll P= áll H = G + T S Munkává nem alakítható Hátalakulás = G + T S 2 3 4 5 6 7 Szilárd halmazállapot

Részletesebben

Művelettan 3 fejezete

Művelettan 3 fejezete Művelettan 3 fejezete Impulzusátadás Hőátszármaztatás mechanikai műveletek áramlástani műveletek termikus műveletek aprítás, osztályozás ülepítés, szűrés hűtés, sterilizálás, hőcsere Komponensátadás anyagátadási

Részletesebben

Energia. Energiamegmaradás törvénye: Energia: munkavégző, vagy hőközlő képesség. Az energia nem keletkezik, nem is szűnik meg, csak átalakul.

Energia. Energiamegmaradás törvénye: Energia: munkavégző, vagy hőközlő képesség. Az energia nem keletkezik, nem is szűnik meg, csak átalakul. Kémiai változások Energia Energia: munkavégző, vagy hőközlő képesség. Energiamegmaradás törvénye: Az energia nem keletkezik, nem is szűnik meg, csak átalakul. A világegyetem energiája állandó. Energia

Részletesebben

Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek

Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek Atomok elsődleges kölcsönhatás kovalens ionos fémes véges számú atom térhálós szerkezet 3D ionos fémek vegyületek ötvözetek molekulák atomrácsos vegyületek szilárd gázok, folyadékok, szilárd anyagok Gázok

Részletesebben

Általános kémia gyakorlat biomérnököknek

Általános kémia gyakorlat biomérnököknek Általános kémia gyakorlat biomérnököknek Zárthelyi követelmények A zárthelyik időtartama 90 perc. Mindkét zárthelyin legalább 50%-ot kell teljesíteni az elégséges jegyért. Akinek nincs meg az 50%-os eredménye,

Részletesebben

Bevezetés a kémiába (TKBE0141, TTBE0141) témakörei. Általános kémia

Bevezetés a kémiába (TKBE0141, TTBE0141) témakörei. Általános kémia Bevezetés a kémiába (TKBE0141, TTBE0141) témakörei Általános kémia 1. Az atom szerkezete Az atom felépítése, alkotó részei jellemzése. Rendszám, tömegszám, izotópok. Az atompálya fogalma, a kvantumszámok

Részletesebben

ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK

ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK HŐTÁGULÁS lineáris (hosszanti) hőtágulási együttható felületi hőtágulási együttható megmutatja, hogy mennyivel változik meg a test hossza az eredeti hosszához képest, ha

Részletesebben

ELEKTROKÉMIA. - elektrolitokban: ionok irányított mozgása. Elektrolízis: elektromos áram által előidézett kémiai átalakulás

ELEKTROKÉMIA. - elektrolitokban: ionok irányított mozgása. Elektrolízis: elektromos áram által előidézett kémiai átalakulás Elekrtokémia 1 ELEKTROKÉMIA Elektromos áram: - fémekben: elektronok áramlása - elektrolitokban: ionok irányított mozgása Elektrolízis: elektromos áram által előidézett kémiai átalakulás Galvánelem: elektromos

Részletesebben

Minta vizsgalap I. Karikázza be az egyetlen megfelelő válasz betűjelét! (10x1 pont) 1. Melyik sorban szerepel csak só?

Minta vizsgalap I. Karikázza be az egyetlen megfelelő válasz betűjelét! (10x1 pont) 1. Melyik sorban szerepel csak só? Minta vizsgalap I. Karikázza be az egyetlen megfelelő válasz betűjelét! (10x) 1. Melyik sorban szerepel csak só? A) CH 3 COONa, K 2 SO 4, Na 3 PO 4, NH 4 Cl B) H 2 SO 4, Na 3 PO 4, NH 4 Cl, NaCl C) Fe(NO

Részletesebben

Az anyagi rendszerek csoportosítása

Az anyagi rendszerek csoportosítása Kémia 1 A kémiai ismeretekről A modern technológiai folyamatok és a környezet védelmére tett intézkedések alig érthetőek kémiai tájékozottság nélkül. Ma már minden mérnök számára alapvető fontosságú a

Részletesebben

Termokémia. Termokémia Dia 1 /55

Termokémia. Termokémia Dia 1 /55 Termokémia 6-1 Terminológia 6-2 Hő 6-3 Reakcióhő, kalorimetria 6-4 Munka 6-5 A termodinamika első főtétele 6-6 Reakcióhő: U és H 6-7 H indirekt meghatározása: Hess-tétel 6-8 Standard képződési entalpia

Részletesebben

Légköri termodinamika

Légköri termodinamika Légköri termodinamika Termodinamika: a hőegyensúllyal, valamint a hőnek, és más energiafajtáknak kölcsönös átalakulásával foglalkozó tudományág. Meteorológiai vonatkozása ( a légkör termodinamikája): a

Részletesebben

Reakció kinetika és katalízis

Reakció kinetika és katalízis Reakció kinetika és katalízis 1. előadás: Alapelvek, a kinetikai eredmények analízise Felezési idők 1/22 2/22 : A koncentráció ( ) időbeli változása, jele: mol M v, mértékegysége: dm 3. s s Legyen 5H 2

Részletesebben

Termodinamika (Hőtan)

Termodinamika (Hőtan) Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi

Részletesebben

Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27

Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27 Az egyensúly 6'-1 6'-2 6'-3 6'-4 6'-5 Dinamikus egyensúly Az egyensúlyi állandó Az egyensúlyi állandókkal kapcsolatos összefüggések Az egyensúlyi állandó számértékének jelentősége A reakció hányados, Q:

Részletesebben

Kolloidkémia 1. előadás Első- és másodrendű kémiai kötések és szerepük a kolloid rendszerek kialakulásában. Szőri Milán: Kolloidkémia

Kolloidkémia 1. előadás Első- és másodrendű kémiai kötések és szerepük a kolloid rendszerek kialakulásában. Szőri Milán: Kolloidkémia Kolloidkémia 1. előadás Első- és másodrendű kémiai kötések és szerepük a kolloid rendszerek kialakulásában 1 Órarend 2 Kurzussal kapcsolatos emlékeztető Kurzus: Az előadás látogatása ajánlott Gyakorlat

Részletesebben

7 Elektrokémia. 7-1 Elektródpotenciálok mérése

7 Elektrokémia. 7-1 Elektródpotenciálok mérése 7 Elektrokémia 7-1 Elektródpotenciálok mérése 7-2 Standard elektródpotenciálok 7-3 E cell, ΔG, és K eq 7-4 E cell koncentráció függése 7-5 Elemek: áramtermelés kémiai reakciókkal 7-6 Korrózió: nem kívánt

Részletesebben

Megismerhető világ. Bevezetés a kémiába. Hullámok. Ismert kölcsönhatások. EM sugárzás fajtái (spektruma) Az atom felépítése

Megismerhető világ. Bevezetés a kémiába. Hullámok. Ismert kölcsönhatások. EM sugárzás fajtái (spektruma) Az atom felépítése Megismerhető világ Bevezetés a kémiába Általános kémia tudományos módszer reprodukálható kísérletek, mérések Világegyetem építőkövei anyagi testek (korpuszkulák)» nem fednek át, véges a sebességük, tömegük

Részletesebben

FELADATMEGOLDÁS. Tesztfeladat: Válaszd ki a helyes megoldást!

FELADATMEGOLDÁS. Tesztfeladat: Válaszd ki a helyes megoldást! FELADATMEGOLDÁS Tesztfeladat: Válaszd ki a helyes megoldást! 1. Melyik sorozatban található jelölések fejeznek ki 4-4 g anyagot? a) 2 H 2 ; 0,25 C b) O; 4 H; 4 H 2 c) 0,25 O; 4 H; 2 H 2 ; 1/3 C d) 2 H;

Részletesebben

Kémiai alapismeretek 1. hét

Kémiai alapismeretek 1. hét Kémiai alapismeretek 1. hét Horváth Attila Pécsi Tudományegyetem, Természettudományi Kar, Kémia Intézet, Szervetlen Kémiai Tanszék 2012. február 7. 1/14 2011/2012 II. félév, Horváth Attila c Előadás látogatás

Részletesebben

Oldatok - elegyek. Elegyek: komponensek mennyisége azonos nagyságrendű

Oldatok - elegyek. Elegyek: komponensek mennyisége azonos nagyságrendű Oldatok - elegyek Többkomponensű homogén (egyfázisú) rendszerek Elegyek: komponensek mennyisége azonos nagyságrendű Oldatok: egyik komponens mennyisége nagy (oldószer) a másik, vagy a többihez (oldott

Részletesebben

Kémiai reakciók. Kémiai reakció feltételei: Aktivált komplexum:

Kémiai reakciók. Kémiai reakció feltételei: Aktivált komplexum: Kémiai reakció feltételei: részecskék ütközése nagyobb koncentrációban gyakoribb: a részecskék megfelelı térhelyzetben legyenek Aktivált komplexum: részecskék ütközés utáni nagyon rövid ideig tartó összekapcsolódása

Részletesebben

Minta feladatsor. Az ion neve. Az ion képlete O 4. Szulfátion O 3. Alumíniumion S 2 CHH 3 COO. Króm(III)ion

Minta feladatsor. Az ion neve. Az ion képlete O 4. Szulfátion O 3. Alumíniumion S 2 CHH 3 COO. Króm(III)ion Minta feladatsor A feladatok megoldására 90 perc áll rendelkezésére. A megoldáshoz zsebszámológépet használhat. 1. Adja meg a következő ionok nevét, illetve képletét! (8 pont) Az ion neve.. Szulfátion

Részletesebben

Makroszkópos tulajdonságok, jelenségek, közvetlenül mérhető mennyiségek leírásával foglalkozik (például: P, V, T, összetétel).

Makroszkópos tulajdonságok, jelenségek, közvetlenül mérhető mennyiségek leírásával foglalkozik (például: P, V, T, összetétel). Mire kell? A mindennapi gyakorlatban előforduló jelenségek (például fázisátalakulások, olvadás, dermedés, párolgás) értelmezéséhez, kvantitatív leírásához. Szerkezeti anyagok tulajdonságainak változása

Részletesebben

Az anyagi rendszerek csoportosítása

Az anyagi rendszerek csoportosítása Általános és szervetlen kémia 1. hét A kémia az anyagok tulajdonságainak leírásával, átalakulásaival, elıállításának lehetıségeivel és felhasználásával foglalkozik. Az általános kémia vizsgálja az anyagi

Részletesebben

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyző jeligéje:... Megye:...

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyző jeligéje:... Megye:... T I T - M T T Hevesy György Kémiaverseny A megyei forduló feladatlapja 7. osztály A versenyző jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:... pont 4. feladat:...

Részletesebben

KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1997

KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1997 1. oldal KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1997 JAVÍTÁSI ÚTMUTATÓ I. A HIDROGÉN, A HIDRIDEK 1s 1, EN=2,1; izotópok:,, deutérium,, trícium. Kétatomos molekula, H 2, apoláris. Szobahőmérsékleten

Részletesebben

1. Mi a termodinamikai rendszer? Miben különbözik egymástól a nyitott és a zárt termodinamikai

1. Mi a termodinamikai rendszer? Miben különbözik egymástól a nyitott és a zárt termodinamikai 3.1. Ellenőrző kérdések 1. Mi a termodinamikai rendszer? Miben különbözik egymástól a nyitott és a zárt termodinamikai rendszer? Az anyagi valóság egy, általunk kiválasztott szempont vagy szempontrendszer

Részletesebben

Kémiai kötések. Kémiai kötések. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011

Kémiai kötések. Kémiai kötések. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 Kémiai kötések A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 1 Cl + Na Az ionos kötés 1. Cl + - + Na Klór: 1s 2 2s 2 2p 6 3s 2 3p 5 Kloridion: 1s2 2s2 2p6 3s2 3p6 Nátrium: 1s 2 2s

Részletesebben

Általános kémia 2e. + 1gy.

Általános kémia 2e. + 1gy. Általános kémia 2e. + 1gy. 2. előadás 12-09-16 1 Az egyesített gáztörvény általános alakja: p*v = n*r*t, illetve n = m/m és így p*v = (m/m)*r*t Az állapotegyenlet érvényessége megkívánja hogy a gáz alkotórészei

Részletesebben

Az energia. Energia : munkavégző képesség (vagy hőközlő képesség)

Az energia. Energia : munkavégző képesség (vagy hőközlő képesség) Az energia Energia : munkavégző képesség (vagy hőközlő képesség) Megjelenési formái: Munka: irányított energiaközlés (W=Fs) Sugárzás (fényrészecskék energiája) Termikus energia: atomok, molekulák véletlenszerű

Részletesebben

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdasá Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI

Részletesebben

Általános Kémia GY, 2. tantermi gyakorlat

Általános Kémia GY, 2. tantermi gyakorlat Általános Kémia GY, 2. tantermi gyakorlat Sztöchiometriai számítások -titrálás: ld. : a 2. laborgyakorlat leírásánál Gáztörvények A kémhatás fogalma -ld.: a 2. laborgyakorlat leírásánál Honlap: http://harmatv.web.elte.hu

Részletesebben

Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek

Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek Atomok elsődleges kölcsönhatás kovalens ionos fémes véges számú atom térhálós szerkezet 3D ionos fémek vegyületek ötvözetek molekulák atomrácsos vegyületek szilárd gázok, folyadékok, szilárd anyagok Gázok

Részletesebben

Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27

Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27 Az egyensúly 10-1 Dinamikus egyensúly 10-2 Az egyensúlyi állandó 10-3 Az egyensúlyi állandókkal kapcsolatos összefüggések 10-4 Az egyensúlyi állandó számértékének jelentősége 10-5 A reakció hányados, Q:

Részletesebben

KÉMIA FELVÉTELI DOLGOZAT

KÉMIA FELVÉTELI DOLGOZAT KÉMIA FELVÉTELI DOLGOZAT I. Egyszerű választásos teszt Karikázza be az egyetlen helyes, vagy egyetlen helytelen választ! 1. Hány neutront tartalmaz a 127-es tömegszámú, 53-as rendszámú jód izotóp? A) 74

Részletesebben

Curie Kémia Emlékverseny 2018/2019. Országos Döntő 9. évfolyam

Curie Kémia Emlékverseny 2018/2019. Országos Döntő 9. évfolyam A feladatokat írta: Kódszám: Pócsiné Erdei Irén, Debrecen... Lektorálta: Kálnay Istvánné, Nyíregyháza 2019. május 11. Curie Kémia Emlékverseny 2018/2019. Országos Döntő 9. évfolyam A feladatok megoldásához

Részletesebben

Általános Kémia GY tantermi gyakorlat 1.

Általános Kémia GY tantermi gyakorlat 1. Általános Kémia GY tantermi gyakorlat 1. Oxidációs számok Redoxiegyenletek rendezése Oldatkészítés, koncentrációegységek átváltása Honlap: http://harmatv.web.elte.hu Példatárak: Villányi Attila: Ötösöm

Részletesebben

A kémiai kötés. Kémiai kölcsönhatás

A kémiai kötés. Kémiai kölcsönhatás A kémiai kötés Kémiai kölcsönhatás ELSŐDLEGES MÁSODLAGOS KOVALENS IONOS FÉMES HIDROGÉN- KÖTÉS DIPÓL- DIPÓL, ION- DIPÓL, VAN DER WAALS v. DISZPERZIÓS Ionos kötés Na Cl Ionpár képződése e - Na + Cl - Na:

Részletesebben

Alkalmazás a makrókanónikus sokaságra: A fotongáz

Alkalmazás a makrókanónikus sokaságra: A fotongáz Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,

Részletesebben

Elegyek. Csonka Gábor 2008 Általános Kémia: oldatok 1 dia

Elegyek. Csonka Gábor 2008 Általános Kémia: oldatok 1 dia Elegyek 7-1 Elegyek fajtái 7-2 Koncentrációk 7-3 Intermolekuláris erők, az elegyedés folyamata 7-4 Elegyek keletkezése, egyensúly 7-5 Gázok oldhatósága 7-6 Elegyek gőznyomása 7-7 Ozmózis nyomás 7-8 Fagyáspont

Részletesebben

Spontaneitás, entrópia

Spontaneitás, entrópia Spontaneitás, entrópia 6-1 Spontán folyamat 6-2 Entrópia 6-3 Az entrópia kiszámítása 6-4 Spontán folyamat: a termodinamika második főtétele 6-5 Standard szabadentalpia változás, ΔG 6-6 Szabadentalpia változás

Részletesebben

Kémiai alapismeretek 2. hét

Kémiai alapismeretek 2. hét Kémiai alapismeretek 2. hét Horváth Attila Pécsi Tudományegyetem, Természettudományi Kar, Kémia Intézet, Szervetlen Kémiai Tanszék 2014. szeptember 9.-12. 1/13 2014/2015 I. félév, Horváth Attila c Hullámtermészet:

Részletesebben

TANMENET KÉMIA IX. ÉVFOLYAM 2012/2013

TANMENET KÉMIA IX. ÉVFOLYAM 2012/2013 MISKOLCI MAGISTER GIMNÁZIUM TANMENET KÉMIA IX. ÉVFOLYAM 2012/2013 Készítette: ZÁRDAI-CSINTALAN ANITA I. Év eleji ismétlés (3 óra) 1. A kémiai alapismeretek ismétlése 2. Az atomszerkezeti ismeretek ismétlése

Részletesebben

ÁLTALÁNOS KÉMIA SZEMINÁRIUM (TTKBG0101) I. ÉVES KÉMIA, VEGYÉSZMÉRNÖK ÉS BIOMÉRNÖK BSC SZAKOS HALLGATÓK SZÁMÁRA (2017/18. I. félév)

ÁLTALÁNOS KÉMIA SZEMINÁRIUM (TTKBG0101) I. ÉVES KÉMIA, VEGYÉSZMÉRNÖK ÉS BIOMÉRNÖK BSC SZAKOS HALLGATÓK SZÁMÁRA (2017/18. I. félév) 1 ÁLTALÁNOS KÉMIA SZEMINÁRIUM (TTKBG0101) I. ÉVES KÉMIA, VEGYÉSZMÉRNÖK ÉS BIOMÉRNÖK BSC SZAKOS HALLGATÓK SZÁMÁRA (2017/18. I. félév) oktató szak A csoport B csoport C csoport D csoport Sebestyén Annamária

Részletesebben

Általános és szervetlen kémia 3. hét Kémiai kötések. Kötések kialakítása - oktett elmélet. Lewis-képlet és Lewis szerkezet

Általános és szervetlen kémia 3. hét Kémiai kötések. Kötések kialakítása - oktett elmélet. Lewis-képlet és Lewis szerkezet Általános és szervetlen kémia 3. hét Kémiai kötések Az elemek és vegyületek halmazai az atomok kapcsolódásával - kémiai kötések kialakításával - jönnek létre szabad atomként csak a nemesgázatomok léteznek

Részletesebben

MISKOLCI MAGISTER GIMNÁZIUM KÉMIA TANMENET. IX. évfolyam 2013/2014

MISKOLCI MAGISTER GIMNÁZIUM KÉMIA TANMENET. IX. évfolyam 2013/2014 MISKOLCI MAGISTER GIMNÁZIUM KÉMIA TANMENET IX. évfolyam 2013/2014 A 110/2012. (VI. 4.) Korm. rendelet és az 51/2012. (XII. 21.) EMMI rendelet alapján készítette Zárdai-Csintalan Anita I. Mivel foglalkozik

Részletesebben

Kinetika. Általános Kémia, kinetika Dia: 1 /53

Kinetika. Általános Kémia, kinetika Dia: 1 /53 Kinetika 15-1 A reakciók sebessége 15-2 Reakciósebesség mérése 15-3 A koncentráció hatása: a sebességtörvény 15-4 Nulladrendű reakció 15-5 Elsőrendű reakció 15-6 Másodrendű reakció 15-7 A reakció kinetika

Részletesebben

Oldatok - elegyek. Többkomponensű homogén (egyfázisú) rendszerek. Elegyek: komponensek mennyisége azonos nagyságrendű

Oldatok - elegyek. Többkomponensű homogén (egyfázisú) rendszerek. Elegyek: komponensek mennyisége azonos nagyságrendű Oldatok - elegyek Többkomponensű homogén (egyfázisú) rendszerek Elegyek: komponensek mennyisége azonos nagyságrendű Oldatok: egyik komponens mennyisége nagy (oldószer) a másik, vagy a többihez (oldott

Részletesebben

Visy Csaba Kredit 4 Heti óraszám 3 típus AJÁNLOTT IRODALOM. P. W. Atkins: Fizikai kémia I.

Visy Csaba Kredit 4 Heti óraszám 3 típus AJÁNLOTT IRODALOM. P. W. Atkins: Fizikai kémia I. A tárgy neve FIZIKAI KÉMIA 1. Meghirdető tanszék(csoport) SZTE TTK FIZIKAI KÉMIAI TANSZÉK Felelős oktató: Visy Csaba Kredit 4 Heti óraszám 3 típus Előadás Számonkérés Kollokvium Teljesíthetőség feltétele

Részletesebben

Sók oldékonysági szorzatának és oldáshőjének meghatározása vezetés méréssel

Sók oldékonysági szorzatának és oldáshőjének meghatározása vezetés méréssel Sók oldékonysági szorzatának és oldáshőjének meghatározása vezetés méréssel 1. Bevezetés Az elektromos ellenállás anyagi tulajdonság, melyen -definíció szerint- az anyagon áthaladó 1 amper intenzitású

Részletesebben

Az atom szerkezete... 1

Az atom szerkezete... 1 Tartalom Az atom szerkezete... 1 Atom. Részecske. Molekula... 1 Atommodellek... 3 A.) J. Thomson féle atommodell... 3 B.) A Rutherford-féle vagy bolygó atommodell... 4 C.) A Bohr-féle atommodell... 4 Orbitál

Részletesebben

ÁLTALÁNOS KÉMIA SZEMINÁRIUM (TTKBG0101) I. ÉVES KÉMIA, VEGYÉSZMÉRNÖK BSC ÉS KÉMIA TANÁR SZAKOS HALLGATÓK SZÁMÁRA (2019/20. I.

ÁLTALÁNOS KÉMIA SZEMINÁRIUM (TTKBG0101) I. ÉVES KÉMIA, VEGYÉSZMÉRNÖK BSC ÉS KÉMIA TANÁR SZAKOS HALLGATÓK SZÁMÁRA (2019/20. I. 1 ÁLTALÁNOS KÉMIA SZEMINÁRIUM (TTKBG0101) I. ÉVES KÉMIA, VEGYÉSZMÉRNÖK BSC ÉS KÉMIA TANÁR SZAKOS HALLGATÓK SZÁMÁRA (2019/20. I. félév) A csoport B csoport C csoport D csoport oktató Kánya Nándor Homolya

Részletesebben

5/12/2010. Elegyek. 4-1 Az elegyek fajtái. 10% etanol oldat (v/v) 4-2 Koncentrációk. Mol koncentrációk. 4-3 intermolekuláris kölcsönhatások

5/12/2010. Elegyek. 4-1 Az elegyek fajtái. 10% etanol oldat (v/v) 4-2 Koncentrációk. Mol koncentrációk. 4-3 intermolekuláris kölcsönhatások Elegyek 4-1 Az elegyek fajtái 4-1 Elegyek fajtái 4-2 Koncentrációk 4-3 Intermolekuláris erők, az elegyedés folyamata 4-4 Elegyek keletkezése, egyensúly 4-5 Gázok oldhatósága 4-6 Elegyek gőznyomása 4-7

Részletesebben

Elektromos áram. Vezetési jelenségek

Elektromos áram. Vezetési jelenségek Elektromos áram. Vezetési jelenségek Emlékeztető Elektromos áram: töltéshordozók egyirányú áramlása Áramkör részei: áramforrás, vezető, fogyasztó Áramköri jelek Emlékeztető Elektromos áram hatásai: Kémiai

Részletesebben

Összesen: 20 pont. 1,120 mol gázelegy anyagmennyisége: 0,560 mol H 2 és 0,560 mol Cl 2 tömege: 1,120 g 39,76 g (2)

Összesen: 20 pont. 1,120 mol gázelegy anyagmennyisége: 0,560 mol H 2 és 0,560 mol Cl 2 tömege: 1,120 g 39,76 g (2) I. FELADATSOR (KÖZÖS) 1. B 6. C 11. D 16. A 2. B 7. E 12. C 17. E 3. A 8. A 13. D 18. C 4. E 9. A 14. B 19. B 5. B (E is) 10. C 15. C 20. D 20 pont II. FELADATSOR 1. feladat (közös) 1,120 mol gázelegy

Részletesebben