Elosztott adatbázisok és peerto-peer. Simon Csaba

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Elosztott adatbázisok és peerto-peer. Simon Csaba"

Átírás

1 Elosztott adatbázisok és peerto-peer (P2P) Simon Csaba

2 Miről lesz szó? Mi a P2P? Kell-e nekünk és miért? Struktúrálatlan P2P DHT Elosztott P2P adatbázisok 2

3 P2P

4 Legal Download in EU 4

5 CAP tétel CAP = Consistency, Availability, Partition Tolerance Elosztott rendszerekben Egyszerre nem lehet mind a három célt elérni wer/brewers-cap-theorem 5

6 DHT 6

7 P2P Keresés Strukturálatlan P2P rendszerek Gnutella, KaZaa, stb... Véletlenszerű keresés Nincs információ a fájl lehetséges tárolási helyéről Példa: koncentrikusan szélesedő keresés Expanding Ring Search (ERS) Nagy terhelés a rendszeren Minél több helyen tárolva, annál kisebb a keresés által generált terhelés 7

8 P2P Keresés (II) Strukturált P2P rendszerek Irányított keresés Kijelölt peer-ek kijelölt fájlokat (vagy azok fele mutató pointereket) kell tároljanak Mint egy információs pult Ha valaki keresi a fájlt, tudja kit kérdezzen Elvárt tulajdonságok Elosztottság Felelősség elosztása a résztvevők között Alkalmazkodás A peer-ek ki és bekapcsolódnak a rendszerbe Az új peer-eknek feladatokat osztani A kilépő peer-ek feladatai újraosztani 8

9 Elosztott hash táblák - DHT Distributed Hash Tables DHT Egy hash függvény a keresett fájlhoz egy egyéni azonosítót társít Példa: h( P2P_előadás ) -> 123 A hash függvény értékkészletét elosztja a peer-ek között Egy peer-nek tudnia kell minden olyan fájlról, melynek a hash-elt értéke a saját értékkészletébe tartozik Vagy saját maga tárolja a fájlt... Vagy tudja ki tárolja a fájlt. 9

10 DHT példa h(x) [0..799] 10

11 DHT példa h(x) [0..799] 11

12 DHT útválasztás Minden peer mely információt tartalmaz egy fájlról elérhető kell legyen egy rövid úton Korlátozott számú lépésen belül A kereső peer által A fájlt tároló peer-ek által Korlátozott számú szomszéd Skálázható a rendszer méretétől függetlenül A különböző DHT megoldások lényégében az útválasztásban térnek el CAN, Chord, Pastry, Tapestry 12

13 CAN 13

14 CAN Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, Scott Shenker, A Scalable Content-Addressable Network, Proceedings of the ACM SIGCOMM'01 Conference, San Diego, CA (August 2001). mary?doi= Sylvia Ratnasamy, A Scalable Content-Addressable Network, Ph.D. Thesis, October

15 Content Addressable Network CAN = egy elosztott, Internet szinten skálázható hash tábla Tároló (Insert), kereső (Lookup) és adattörlő (Delete) műveleteket biztosít egy (Kulcs, Érték) paraméter párra CAN tulajdonságok Teljesen elosztott rendszer Skálázható: minden résztvevő csak korlátozott számú állapotot tárol, a résztvevők számától függetlenül Hibatűrő: akkor is működőképes ha a rendszer egy része meghibásodott 6

16 CAN architektúra A hash-tábla egy d-dimenziós ortogonális (Descartes) koordináta rendszerben kialakított D-tóruszon működik Ciklikus d-dimenziós tér hash(k)=(x1,, xd) 1-dimenziós ciklikus tér = 0.2

17 CAN architektúra A hash-tábla egy d-dimenziós ortogonális (Descartes) koordináta rendszerben kialakított D-tóruszon működik Ciklikus d-dimenziós tér hash(k)=(x1,, xd) Ortogonális (Descartes) távolság

18 CAN architektúra A hash-tábla egy d-dimenziós ortogonális (Descartes) koordináta rendszerben kialakított D-tóruszon működik Ciklikus d-dimenziós tér hash(k)=(x1,, xd) Ortogonális (Descartes) távolság p1 = 0.2; p2 = 0.8 CartDist (p1, p2) = 0.4

19 CAN architektúra A hash-tábla egy d-dimenziós ortogonális (Descartes) koordináta rendszerben kialakított D-tóruszon működik Ciklikus d-dimenziós tér hash(k)=(x1,, xd) Ortogonális (Descartes) távolság p1 = 0.2; p2 = 0.8 CartDist (p1, p2) = dimenziós ciklikus tér = 0.2 Koordináta zóna Egy szelet a Descartes térből

20 CAN architektúra (II) CAN csomópontok Egy CAN csomópont = egy gép a rendszerben Egy CAN csomópont peer A peer-nek itt más jelentése van, lásd Zónák túlterhelése - később Minden CAN csomópont a tér egy külön zónájáért (szeletéjért) felel A csomópont információt tárol az összes olyan állományról mely a saját zónájába hash-elődik A csomópontok egymás között lefedik a teljes teret

21 CAN szomszédok 2 CAN csomópont szomszéd ha a zónáik átfedik egymást d-1 dimenzió mentén és szomszédosak 1 dimenzió mentén Egy csomópont ismeri az összes szomszédja IP címét Egy csomópont ismeri az összes szomszédos zóna koordinátáit A csomópontok csak a szomszédaikkal tudnak kommunikálni

22 CAN csatlakozás Egy CAN-nek van egy DNS domain neve Egy vagy több Bootstrap Node IP címére képződik le A Bootstrap Node tárolja néhány résztvevő csomópont IP címét Gateway csomópontok Az új csomópont véletlenszerűen kiválaszt egyet, és rajta keresztül próbál csatlakozni A hash tábla egy szeletét (zónát) az új csomópontnak kell adni A kapcsolódó állományokat, illetve az azokra vonatkozó adatokat tárolni kell az új csomóponton Az új csomópont be kell kapcsolódjon az útválasztásba

23 CAN csatlakozás (II) Zóna keresése az új csomópont részére 1. Véletlenszerűen választ egy P pontot 2. A JOIN üzenetet a P pontért felelős csomóponthoz küldi 3. A kérést a CAN útválasztást használva továbbítja

24 CAN routing 1. Elindul egy tetszőleges pontból 2. P = a K kulcs hash-elt értéke 3. Greedy (mohó) forwarding Az aktuális csomópont: 1. Leellenőrzi hogy a saját vagy a szomszédai zónája tartalmazza-e a P pontot 2. HA NEM a. Rangsorolja a szomszédait a P ponttal szembeni Descartes távolságuk alapján b. Az üzenetet a P ponthoz legközelebb álló szomszédhoz küldi c. Megismétli az 1. lépést 3. HA IGEN A pozitív választ (a keresett állományt) visszaküldi a keresőhöz

25 CAN routing 1. Elindul egy tetszőleges pontból 2. P = a K kulcs hash-elt értéke 3. Greedy (mohó) forwarding Az aktuális csomópont: 1. Leellenőrzi hogy a saját vagy a szomszédai zónája tartalmazza-e a P pontot 2. HA NEM a. Rangsorolja a szomszédait a P ponttal szembeni Descartes távolságuk alapján b. Az üzenetet a P ponthoz legközelebb álló szomszédhoz küldi c. Megismétli az 1. lépést 3. HA IGEN A pozitív választ (a keresett állományt) visszaküldi a keresőhöz

26 CAN routing 1. Elindul egy tetszőleges pontból 2. P = a K kulcs hash-elt értéke 3. Greedy (mohó) forwarding Az aktuális csomópont: 1. Leellenőrzi hogy a saját vagy a szomszédai zónája tartalmazza-e a P pontot 2. HA NEM a. Rangsorolja a szomszédait a P ponttal szembeni Descartes távolságuk alapján b. Az üzenetet a P ponthoz legközelebb álló szomszédhoz küldi c. Megismétli az 1. lépést 3. HA IGEN A pozitív választ (a keresett állományt) visszaküldi a keresőhöz

27 CAN routing 1. Elindul egy tetszőleges pontból 2. P = a K kulcs hash-elt értéke 3. Greedy (mohó) forwarding Az aktuális csomópont: 1. Leellenőrzi hogy a saját vagy a szomszédai zónája tartalmazza-e a P pontot 2. HA NEM a. Rangsorolja a szomszédait a P ponttal szembeni Descartes távolságuk alapján b. Az üzenetet a P ponthoz legközelebb álló szomszédhoz küldi c. Megismétli az 1. lépést 3. HA IGEN A pozitív választ (a keresett állományt) visszaküldi a keresőhöz

28 CAN routing 1. Elindul egy tetszőleges pontból 2. P = a K kulcs hash-elt értéke 3. Greedy (mohó) forwarding Az aktuális csomópont: 1. Leellenőrzi hogy a saját vagy a szomszédai zónája tartalmazza-e a P pontot 2. HA NEM a. Rangsorolja a szomszédait a P ponttal szembeni Descartes távolságuk alapján b. Az üzenetet a P ponthoz legközelebb álló szomszédhoz küldi c. Megismétli az 1. lépést 3. HA IGEN A pozitív választ (a keresett állományt) visszaküldi a keresőhöz

29 CAN routing 1. Elindul egy tetszőleges pontból 2. P = a K kulcs hash-elt értéke 3. Greedy (mohó) forwarding Az aktuális csomópont: 1. Leellenőrzi hogy a saját vagy a szomszédai zónája tartalmazza-e a P pontot 2. HA NEM a. Rangsorolja a szomszédait a P ponttal szembeni Descartes távolságuk alapján b. Az üzenetet a P ponthoz legközelebb álló szomszédhoz küldi c. Megismétli az 1. lépést 3. HA IGEN A pozitív választ (a keresett állományt) visszaküldi a keresőhöz

30 CAN routing 1. Elindul egy tetszőleges pontból 2. P = a K kulcs hash-elt értéke 3. Greedy (mohó) forwarding Az aktuális csomópont: 1. Leellenőrzi hogy a saját vagy a szomszédai zónája tartalmazza-e a P pontot 2. HA NEM a. Rangsorolja a szomszédait a P ponttal szembeni Descartes távolságuk alapján b. Az üzenetet a P ponthoz legközelebb álló szomszédhoz küldi c. Megismétli az 1. lépést 3. HA IGEN A pozitív választ (a keresett állományt) visszaküldi a keresőhöz

31 CAN routing 1. Elindul egy tetszőleges pontból 2. P = a K kulcs hash-elt értéke 3. Greedy (mohó) forwarding Az aktuális csomópont: 1. Leellenőrzi hogy a saját vagy a szomszédai zónája tartalmazza-e a P pontot 2. HA NEM a. Rangsorolja a szomszédait a P ponttal szembeni Descartes távolságuk alapján b. Az üzenetet a P ponthoz legközelebb álló szomszédhoz küldi c. Megismétli az 1. lépést 3. HA IGEN A pozitív választ (a keresett állományt) visszaküldi a keresőhöz

32 CAN routing Hibatűrő útválasztás 1. Elindul egy tetszőleges pontból 2. P = a K kulcs hash-elt értéke 3. Greedy (mohó) forwarding a. Mielőtt továbbküldené az üzenetet, ellenőrzi a szomszéd készenléti állapotát b. Az üzenetet a rendelkezésre álló legjobb szomszédhoz küldi el

33 CAN routing Hibatűrő útválasztás 1. Elindul egy tetszőleges pontból 2. P = a K kulcs hash-elt értéke 3. Greedy (mohó) forwarding a. Mielőtt továbbküldené az üzenetet, ellenőrzi a szomszéd készenléti állapotát b. Az üzenetet a rendelkezésre álló legjobb szomszédhoz küldi el

34 CAN routing Hibatűrő útválasztás 1. Elindul egy tetszőleges pontból 2. P = a K kulcs hash-elt értéke 3. Greedy (mohó) forwarding a. Mielőtt továbbküldené az üzenetet, ellenőrzi a szomszéd készenléti állapotát b. Az üzenetet a rendelkezésre álló legjobb szomszédhoz küldi el

35 CAN routing Hibatűrő útválasztás 1. Elindul egy tetszőleges pontból 2. P = a K kulcs hash-elt értéke 3. Greedy (mohó) forwarding a. Mielőtt továbbküldené az üzenetet, ellenőrzi a szomszéd készenléti állapotát b. Az üzenetet a rendelkezésre álló legjobb szomszédhoz küldi el

36 CAN routing Hibatűrő útválasztás 1. Elindul egy tetszőleges pontból 2. P = a K kulcs hash-elt értéke 3. Greedy (mohó) forwarding a. Mielőtt továbbküldené az üzenetet, ellenőrzi a szomszéd készenléti állapotát b. Az üzenetet a rendelkezésre álló legjobb szomszédhoz küldi el A célcsomópontot elérjük ha létezik legalább egy út

37 CAN csatlakozás (II) Zóna keresése az új csomópont részére 1. Véletlenszerűen választ egy P pontot 2. A JOIN üzenetet a P pontért felelős csomóponthoz küldi 3. A kérést a CAN útválasztást használva továbbítja 4. A P pontért felelős csomópont kettévágja zónáját Az egyik fele az új csomóponté lesz A másik fele megmarad a régi csomópontnál 5. Az elosztás a zóna legnagyobb oldalának megfelelő dimenzió mentén történik Ha két oldal egyenlő, a kisebbik rangú dimenzió mentén osztódik 6. A hash tábla alapján az új csomópont zónájába eső állományokra vonatkozó adatokat átküldi

38 CAN csatlakozás (II) Zóna keresése az új csomópont részére 1. Véletlenszerűen választ egy P pontot 2. A JOIN üzenetet a P pontért felelős csomóponthoz küldi 3. A kérést a CAN útválasztást használva továbbítja 4. A P pontért felelős csomópont kettévágja zónáját Az egyik fele az új csomóponté lesz A másik fele megmarad a régi csomópontnál 5. Az elosztás a zóna legnagyobb oldalának megfelelő dimenzió mentén történik Ha két oldal egyenlő, a kisebbik rangú dimenzió mentén osztódik 6. A hash tábla alapján az új csomópont zónájába eső állományokra vonatkozó adatokat átküldi

39 CAN csatlakozás (II) Zóna keresése az új csomópont részére 1. Véletlenszerűen választ egy P pontot 2. A JOIN üzenetet a P pontért felelős csomóponthoz küldi 3. A kérést a CAN útválasztást használva továbbítja 4. A P pontért felelős csomópont kettévágja zónáját Az egyik fele az új csomóponté lesz A másik fele megmarad a régi csomópontnál 5. Az elosztás a zóna legnagyobb oldalának megfelelő dimenzió mentén történik Ha két oldal egyenlő, a kisebbik rangú dimenzió mentén osztódik 6. A hash tábla alapján az új csomópont zónájába eső állományokra vonatkozó adatokat átküldi

40 CAN csatlakozás (II) Zóna keresése az új csomópont részére 1. Véletlenszerűen választ egy P pontot 2. A JOIN üzenetet a P pontért felelős csomóponthoz küldi 3. A kérést a CAN útválasztást használva továbbítja 4. A P pontért felelős csomópont kettévágja zónáját Az egyik fele az új csomóponté lesz A másik fele megmarad a régi csomópontnál 5. Az elosztás a zóna legnagyobb oldalának megfelelő dimenzió mentén történik Ha két oldal egyenlő, a kisebbik rangú dimenzió mentén osztódik 6. A hash tábla alapján az új csomópont zónájába eső állományokra vonatkozó adatokat átküldi

41 CAN csatlakozás (II) Zóna keresése az új csomópont részére 1. Véletlenszerűen választ egy P pontot 2. A JOIN üzenetet a P pontért felelős csomóponthoz küldi 3. A kérést a CAN útválasztást használva továbbítja 4. A P pontért felelős csomópont kettévágja zónáját Az egyik fele az új csomóponté lesz A másik fele megmarad a régi csomópontnál 5. Az elosztás a zóna legnagyobb oldalának megfelelő dimenzió mentén történik Ha két oldal egyenlő, a kisebbik rangú dimenzió mentén osztódik 6. A hash tábla alapján az új csomópont zónájába eső állományokra vonatkozó adatokat átküldi

42 CAN csatlakozás (III) Bekapcsolódás az útválasztásba 1. Az új csomópont megkapja a régi csomópont (kinek a zónáját osztottuk) szomszédainak listáját 2. A régi csomópont frissíti a szomszédait Törli az elvesztett szomszédokat Bejegyzi az új csomópontot 3. Minden szomszéd kap egy frissítő üzenetet, a saját szomszéd-táblája frissítéséhez Törli a régi csomópontot Bejegyzi az új csomópontot

43 CAN csatlakozás (III) Bekapcsolódás az útválasztásba 1. Az új csomópont megkapja a régi csomópont (kinek a zónáját osztottuk) szomszédainak listáját 2. A régi csomópont frissíti a szomszédait Törli az elvesztett szomszédokat Bejegyzi az új csomópontot 3. Minden szomszéd kap egy frissítő üzenetet, a saját szomszéd-táblája frissítéséhez Törli a régi csomópontot Bejegyzi az új csomópontot

44 CAN csatlakozás (III) Bekapcsolódás az útválasztásba 1. Az új csomópont megkapja a régi csomópont (kinek a zónáját osztottuk) szomszédainak listáját 2. A régi csomópont frissíti a szomszédait Törli az elvesztett szomszédokat Bejegyzi az új csomópontot 3. Minden szomszéd kap egy frissítő üzenetet, a saját szomszéd-táblája frissítéséhez Törli a régi csomópontot Bejegyzi az új csomópontot

45 CAN csatlakozás (III) Bekapcsolódás az útválasztásba 1. Az új csomópont megkapja a régi csomópont (kinek a zónáját osztottuk) szomszédainak listáját 2. A régi csomópont frissíti a szomszédait Törli az elvesztett szomszédokat Bejegyzi az új csomópontot 3. Minden szomszéd kap egy frissítő üzenetet, a saját szomszéd-táblája frissítéséhez Törli a régi csomópontot Bejegyzi az új csomópontot

46 Csomópont távozása Csomópont kilép a rendszerből a. Ha az egyik szomszéd zónája egyesíthető a kilépő csomópont zónájával, akkor ez a szomszéd veszi át az egyesített zóna kezelését egyesíthető = szabályos konvex zóna keletkezik b. Ha nem, akkor az egyik szomszéd két külön zónát kezel majd

47 Csomópont távozása Csomópont kilép a rendszerből a. Ha az egyik szomszéd zónája egyesíthető a kilépő csomópont zónájával, akkor ez a szomszéd veszi át az egyesített zóna kezelését egyesíthető = szabályos konvex zóna keletkezik b. Ha nem, akkor az egyik szomszéd két külön zónát kezel majd

48 Csomópont távozása Csomópont kilép a rendszerből a. Ha az egyik szomszéd zónája egyesíthető a kilépő csomópont zónájával, akkor ez a szomszéd veszi át az egyesített zóna kezelését egyesíthető = szabályos konvex zóna keletkezik b. Ha nem, akkor az egyik szomszéd két külön zónát kezel majd Mindkét esetben (a és b): 1. A kilépő csomópont adatai átkerülnek a zónát átvevő csomóponthoz 2. A zónát átvevő csomópont frissíti a szomszédainak listáját 3. Az összes szomszédot értesíti a cseréről, azok pedig frissítik a saját szomszéd-listájukat

49 Csomópont távozása (II) Ha egy csomópont angolosan távozik (ungraceful departure)... Szabályos időközönként a csomópontok frissítő üzeneteket küldenek a szomszédaiknak A saját zonájuk koordinátái, a szomszédaik listája, illetve azok zónáinak koordinátái Ha egy csomópont egy adott t időn belül nem kapott üzenetet az egyik szomszédjától, elindítja a TAKEOVER procedúrát Megpróbálja átvenni a halottnak hitt csomópont zónáját Egy TAKEOVER üzenetet küld a halott csomópont minden szomszédjának Ha egy csomópont kap egy TAKEOVER üzenetet, összehasonlítja a saját zónáját a küldő zónájával Ha optimálisabb, hogy ő vegye át a zónát, saját maga küld egy új TAKEOVER üzenetet a halott csomópont szomszédainak Az a szomszéd veszi át a zónát, aki nem kap választ a TAKEOVER üzenetére t időn belül A halott csomóponton tárolt adatok nem elérhetőek mindaddig ameddig a forrás nem publikálja újból őket (elküldi az új csomópontnak)

50 Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, Hari Balakrishnan presentation is based on slides by Robert Morris (SIGCOMM 01) presentation is based on slides by Daniel Figueiredo, for Peer-to-Peer and Application-Level Networking Seminar, at the University of Massachusetts at Amherst 50

51 Motiváció Hogyan találjuk meg az adatot egy elosztott fájl megosztó rendszerben? Publisher Key= LetItBe Value=MP3 data N 1 N 2 N 3 Internet Hatékony keresés a fő probléma! N 5 N 4 Client? Lookup( LetItBe ) 51

52 Központosított megoldás Központi szerver (pl.: Napster) Publisher Key= LetItBe Value=MP3 data N 1 N 2 N 3 Internet DB N 4 N 5 Client Lookup( LetItBe ) Követelmények: O(M) állapot Központi elem kiesése 52

53 Elosztott megoldások - I Elárasztás (pl.: Gnutella, Morpheus) Publisher Key= LetItBe Value=MP3 data N 1 N 2 N 3 Internet N 4 N 5 Client Lookup( LetItBe ) Legrosszabb esetben O(N) üzenet per keresés 53

54 Elosztott megoldások - II Irányított (Routed) üzenetek (Freenet, Tapestry, Chord, CAN, stb ) Publisher Key= LetItBe Value=MP3 data N 1 N 2 N 3 Internet N 4 Kizárólag teljes egyezés N 5 Client Lookup( LetItBe ) 54

55 Keresés kihívásai Hasznos kulcs egyezőség ( távolság ) Alacsony üzenet továbbítási szám Mérsékelt üzenet továbbítási táblázat méret mérsékelt == pont megfelelő Robosztus működés gyorsan változó résztvevők Chord: Fókuszban: hatékonyság és egyszerűség 55

56 Chord áttekintés P2P hash keresési szolgálat Lookup(key) IP address Figyelem: a tárolt adatok különválasztva!!! Kérdések: Hogyan talál meg egy csomópontot? Hogyan tartja fenn az üzenet továbbítási táblázatot? Hogyan adaptálódik a résztvevők változásához? 56

57 Chord jellegzetességei Hatékony: O(Log N) üzenet kersésenként ahol N a kiszolgálók (csomópontok) száma Skálázódik: O(Log N) állapot csomópontonként Robosztus: megbirkózik jelentős résztvevő változással Állítások bizonyításai [tech_report] Feltételezés: nincs rosszakaratú résztvevő 57

58 Chord Azonosítók (IDs) m bites azonosító tér a kulcsoknak és a csomópontoknak Kulcs azo. = SHA-1(key) KEY= LetItBe! SHA-1 ID=60 Csomópont azo. = SHA-1(IP address) IP= ! SHA-1 ID=123 Egyenletes eloszlással Hogyan lehet a kulcs azo.-at a csomóponti azo.-khoz rendelni? 58

59 Konzisztens Hash Konzisztens HASH függvény mind csomóponthoz és kulcshoz egy m bites azonosító SHA 1 algoritmussal (Secure Hash Standard) m tetszőleges szám, elég nagy, hogy az ütközés valószínűsége kicsi legyen KEY ID = SHA-1(key) NODE ID = SHA-1(IP cím) Egyenletes eloszlást követve Értékkészlet: egyazon tartomány 59

60 Konzisztens Hash-elés [Karger 97] IP= K5 N123 K20 K101 Circular 7-bit ID space N32 N90 K60 Key= LetItBe Minden kulcs az őt követő legközelebbi csomópontnál kerül tárolásra 60

61 Chord: Gyűrű - I Azonosítók egy azonosító gyűrű mentén elhelyezve modulo 2 m Chord ring 61

62 The Chord algorithm Construction of the Chord ring a key k is assigned to the node whose identifier is equal to or greater than the key s identifier this node is called successor(k) and is the first node clockwise from k. 62

63 Konzisztens Hash-elés Minden csomópont ismeri az összes többi csomópontot globális információ tárolási kényszer üzenet továbbítási táblák nagyok O(N) Gyors keresés O(1) 0 N10 Where is LetItBe? N123 Hash( LetItBe ) = K60 N32 N90 has K60 K60 N90 N55 63

64 Chord: alap keresés - I Minden csomópont ismeri az őt követőt a gyűrűn 0 N10 N123 Where is LetItBe? Hash( LetItBe ) = K60 N32 K60 N90 N90 has K60 N55 Keresési idő: O(N) 64

65 Chord: alap keresés - II // ask node n to find the successor of id n.find_successor(id) if (id 2 (n; successor]) return successor; else // forward the query around the circle return successor.find_successor(id); Keresési idő ~ üzenetek száma: O(N) 65

66 Mutató táblák - I (finger tables) Minden egyes csomópont m számú további csomópontot tart nyilván Az előre mutató távolság exponenciálisan növekszik N96 N N N80 66

67 Mutató táblák - II Az i. bejegyzése a mutató táblának az n+2 i. kulcsot követő csomópont címe N120 N112 N16 N N80 67

68 Chord: gyors/skálázódó keresés - I A mutató táblák segítségével a keresésnek O(log N) csomópontot kell bejárnia N5 N110 N99 N10 N20 N32 K19 Lookup(K19) N80 N60 68

69 Chord: gyors/skálázódó keresés - II Minden csomópont m további bejegyzést tartalmaz Minél közelebbi a kulcs annál részletesebb információval rendelkezik róla a csomópont Általában nem biztosítja az azonnali célba jutást 69

70 Új érkezők Három lépésben (alap működés) Újonnan érkező mutató táblájának feltöltése Gyűrű csomópontok mutató táblájának frissítése Kulcsok cseréje Lusta vagy kevésbé agresszív működés Csak a követő csomópont beállítása Periodikus követő successor, megelőző predecessor ellenőrzés Periodikus mutató tábla frissítés 70

71 Új érkező: mutató táblák Kiindulás: bármely p ismert csomópontból Kérjük meg p-t, hogy építse fel a mutató táblánkat Táblázat visszaadása N5 N36 N99 N20 1. Lookup(37,38,40,,100,164) N40 N80 N60 71

72 Új érkező: gyűrű mutató táblák A gyűrű csomópontok mutató tábláinak frissítése új érkező a frissítés funkciót kelti életre a szomszédos csomópontokban csomópontok rekurzívan frissíttetik a további csomópontok mutató tábláit N99 N80 N5 N20 N36 N40 1. N40 successor(n36) 2. N36 értesíti N40-et N36.predecessor N40.predecessor N40.predecessor N36 3. N20 frissít (stabilizál) N20.successor N40.prececessor N60 72

73 Új érkező: kulcsok kicserélése A követő csomóponttól az megfelelő kulcsok átvétele csak a hozzárendelt tartományhoz tartozó kulcsok átadása N5 N99 N80 N20 N36 N40 K30 K30 K38 K38 Copy keys from N40 to N36 N60 73

74 Új érkezők: keresés Korrekt mutató táblák esetén O(log N) Ha csak a követő lánc helyes, akkor is korrekt, de lassabb működés Hibás követő lánc, szünet majd újra próbálkozni 74

75 Hibák kezelése - I Csomópontok kiesése (hiba) helytelen keresést eredményezhet N102 N113 N120 N10 N85 Lookup(90) N80 N80 nem ismeri az őt követőt, így a keresés eredménytelen A követő lánc elégséges a keresés sikeréhez 75

76 Hibák kezelése - II Követő lista Az egyetlen követő helyett r soron követő csomópont regisztrációja Hiba esetén ismeri a soron következő (élő) csomópontot helyes keresés Valószínűségi garancia r megválasztása, hogy a keresési hiba valószínűsége megfelelően alacsony legyen r ~ O(log N) 76

77 Teljesítmény elemzés Gyors keresés nagy rendszerekben Alacsony szórással a keresési időben Robosztus, még gyakori csomóponti hibák esetén is Teoretikus eredmények összhangban a numerikus vizsgálatokkal 77

78 Average Messages per Lookup Keresés Költség: O(log N) összhangban a teoretikus eredményekkel Number of Nodes 78

79 Robosztusság - I Statikus eset hiba = csomóponti hiba, nincs többszörözve a kulcs Kulcsok egyenletesen elosztva (SHA-1) 79

80 Robosztusság - II Dinamikus eset: mutató tábla hibás csomópontra mutat hibás útvonal 500 csomópont kezdetben stabilize( ) hívás átlag 30sec 1 keresés/sec (Poisson) x {join fail}/sec (Poisson) 80

81 Chord implementáció 3000 soros C++ kód Library amely tetszőleges alkalmazáshoz linkelhető Kis Internet teszthálón kipóbálva Funkciók lookup(key): azon csomópont IP címe amely a kulcsért felelős kulcs-felelősség változások terjesztése 81

82 Alkalmazás: Chord-DNS DNS keresési szolgálat host name IP cím Chord-based DNS: nincsenek root serverek nincs manuális routing information menedzsment nincs naming structure olyan objektumokat is megtalálhat amelyek nincsenek adott géphez kötve 82

83 Erősségek Teoretikus eredményeken alapul (konzisztens hash) Bizonyított teljesítmény analízis nagy valószínűséggel Robosztusság 83

84 Gyengeségek és felvetések Korántsem olyan egyszerű mint amilyennek látszik Új érkezők túl sok üzenet és frissítés (pl. kulcsok cseréje, mutató táblák) konvergencia kérdése ha a lusta frissítést használjuk Legrosszabb esetben a keresés lassú lehet Kulcsok teljes egyezőség kulcsszó vagy regexp keresés Biztonság rosszindulatú adatok (key) rosszindulatú Chord tábla 84

85 Irodalom I. Stoica, R. Morris, D. Karger, F. Kaashoek, H. Balakrishnan, "Chord: A Scalable Peer-To-Peer Lookup Service for Internet Applications," AC Sigcomm2001, 85

Hálózatba kapcsolt erőforrás platformok és alkalmazásaik. Simon Csaba TMIT 2017

Hálózatba kapcsolt erőforrás platformok és alkalmazásaik. Simon Csaba TMIT 2017 Hálózatba kapcsolt erőforrás platformok és alkalmazásaik Simon Csaba TMIT 2017 Strukturált P2P 3 P2P Keresés Strukturálatlan P2P rendszerek Gnutella, KaZaa, stb... Véletlenszerű keresés Nincs információ

Részletesebben

Hálózatba kapcsolt erőforrás platformok és alkalmazásaik. Simon Csaba TMIT 2017

Hálózatba kapcsolt erőforrás platformok és alkalmazásaik. Simon Csaba TMIT 2017 Hálózatba kapcsolt erőforrás platformok és alkalmazásaik Simon Csaba TMIT 2017 Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications Ion Stoica, Robert Morris, David Karger, M. Frans

Részletesebben

Hálózatok II 2005/ : Peer-To-Peer Hálózatok II

Hálózatok II 2005/ : Peer-To-Peer Hálózatok II Hálózatok II 2005/2006 7: Peer-To-Peer Hálózatok II 1 P2P hálózatok kritériumai Kezelhetőség Milyen nehéz a hálózatot működtetni Információ-koherencia Mennyire jól osztja el az információt? Bővíthetőség

Részletesebben

Elosztott Hash Táblák. Jelasity Márk

Elosztott Hash Táblák. Jelasity Márk Elosztott Hash Táblák Jelasity Márk Motiváció Nagyméretű hálózatos elosztott rendszerek az Interneten egyre fontosabbak Fájlcserélő rendszerek (BitTorrent, stb), Grid, Felhő, Gigantikus adatközpontok,

Részletesebben

Számítógépes Hálózatok Felhasználói réteg DNS, , http, P2P

Számítógépes Hálózatok Felhasználói réteg DNS,  , http, P2P Számítógépes Hálózatok 2007 13. Felhasználói réteg DNS, email, http, P2P 1 Felhasználói réteg Domain Name System Példák a felhasználói rétegre: E-Mail WWW Content Delivery Networks Peer-to-Peer-Networks

Részletesebben

Felhasználói réteg. Számítógépes Hálózatok Domain Name System (DNS) DNS. Domain Name System

Felhasználói réteg. Számítógépes Hálózatok Domain Name System (DNS) DNS. Domain Name System Felhasználói réteg Domain Name System Számítógépes Hálózatok 2007 13. Felhasználói réteg DNS, email, http, P2P Példák a felhasználói rétegre: E-Mail WWW Content Delivery Networks Peer-to-Peer-Networks

Részletesebben

10: Peer-To-Peer Hálózatok I. HálózatokII, 2007

10: Peer-To-Peer Hálózatok I. HálózatokII, 2007 Hálózatok II 2007 10: Peer-To-Peer Hálózatok I 1 Definíció Egy Peer-to-Peer hálózat egy kommunikációs hálózat számítógépek között, melyben minden résztvevő mind client, mind server feladatokat végrehajt.

Részletesebben

PEER-TO-PEER HÁLÓZATOK

PEER-TO-PEER HÁLÓZATOK PEER-TO-PEER HÁLÓZATOK Ez a doksi a Peer-to-peer hálózatok című választható tárgyhoz kiadott előadásfóliák vizsgán számonkért diáiból készült vázlat. Az esetleges hibákért elnézést kérek; észrevételeket,

Részletesebben

Készítette: Weimann András

Készítette: Weimann András Készítette: Weimann András Fájlcserélők, fájlmegosztók Online tárhelyek Peer-to-peer DHT BitTorrent Biztonság Jogi fenyegetettség Fájlokat tárolhatunk Lokálisan P2p FTP Felhőben DropBox Skydrive Google

Részletesebben

Hálózati architektúrák laborgyakorlat

Hálózati architektúrák laborgyakorlat Hálózati architektúrák laborgyakorlat 8. hét Dr. Orosz Péter, Skopkó Tamás 2012. szeptember Domain Name System Mire való? IP címek helyett könnyen megjegyezhető nevek használata. (Pl. a böngésző címsorában)

Részletesebben

Hálózati Technológiák és Alkalmazások. Vida Rolland, BME TMIT október 29. HSNLab SINCE 1992

Hálózati Technológiák és Alkalmazások. Vida Rolland, BME TMIT október 29. HSNLab SINCE 1992 Hálózati Technológiák és Alkalmazások Vida Rolland, BME TMIT 2018. október 29. Link-state protokollok OSPF Open Shortest Path First Első szabvány RFC 1131 ( 89) OSPFv2 RFC 2178 ( 97) OSPFv3 RFC 2740 (

Részletesebben

Kommunikációs rendszerek programozása. Routing Information Protocol (RIP)

Kommunikációs rendszerek programozása. Routing Information Protocol (RIP) Kommunikációs rendszerek programozása Routing Information Protocol (RIP) Távolságvektor alapú útválasztás Routing Information Protocol (RIP) TCP/IP előttről származik (Xerox Network Services) Tovább fejlesztve

Részletesebben

Hálózati Technológiák és Alkalmazások

Hálózati Technológiák és Alkalmazások Hálózati Technológiák és Alkalmazások Vida Rolland BME TMIT 2016. október 28. Internet topológia IGP-EGP hierarchia előnyei Skálázhatóság nagy hálózatokra Kevesebb prefix terjesztése Gyorsabb konvergencia

Részletesebben

FORGALOMIRÁNYÍTÓK. 6. Forgalomirányítás és irányító protokollok CISCO HÁLÓZATI AKADÉMIA PROGRAM IRINYI JÁNOS SZAKKÖZÉPISKOLA

FORGALOMIRÁNYÍTÓK. 6. Forgalomirányítás és irányító protokollok CISCO HÁLÓZATI AKADÉMIA PROGRAM IRINYI JÁNOS SZAKKÖZÉPISKOLA FORGALOMIRÁNYÍTÓK 6. Forgalomirányítás és irányító protokollok 1. Statikus forgalomirányítás 2. Dinamikus forgalomirányítás 3. Irányító protokollok Áttekintés Forgalomirányítás Az a folyamat, amely révén

Részletesebben

Hálózati réteg. WSN topológia. Útvonalválasztás.

Hálózati réteg. WSN topológia. Útvonalválasztás. Hálózati réteg WSN topológia. Útvonalválasztás. Tartalom Hálózati réteg WSN topológia Útvonalválasztás 2015. tavasz Szenzorhálózatok és alkalmazásaik (VITMMA09) - Okos város villamosmérnöki MSc mellékspecializáció,

Részletesebben

V2V - routing. Intelligens közlekedési rendszerek. VITMMA10 Okos város MSc mellékspecializáció. Simon Csaba

V2V - routing. Intelligens közlekedési rendszerek. VITMMA10 Okos város MSc mellékspecializáció. Simon Csaba V2V - routing Intelligens közlekedési rendszerek VITMMA10 Okos város MSc mellékspecializáció Simon Csaba MANET Routing Protokollok Reaktív routing protokoll: AODV Forrás: Nitin H. Vaidya, Mobile Ad Hoc

Részletesebben

Elosztott adatbázis-kezelő formális elemzése

Elosztott adatbázis-kezelő formális elemzése Elosztott adatbázis-kezelő formális elemzése Szárnyas Gábor szarnyas@mit.bme.hu 2014. december 10. Budapesti Műszaki és Gazdaságtudományi Egyetem Hibatűrő Rendszerek Kutatócsoport Budapesti Műszaki és

Részletesebben

Beállítások 1. Töltse be a Planet_NET.pkt állományt a szimulációs programba! A teszthálózat már tartalmazza a vállalat

Beállítások 1. Töltse be a Planet_NET.pkt állományt a szimulációs programba! A teszthálózat már tartalmazza a vállalat Planet-NET Egy terjeszkedés alatt álló vállalat hálózatának tervezésével bízták meg. A vállalat jelenleg három telephellyel rendelkezik. Feladata, hogy a megadott tervek alapján szimulációs programmal

Részletesebben

4: Az IP Prefix Lookup Probléma Bináris keresés hosszosztályok alapján. HálózatokII, 2007

4: Az IP Prefix Lookup Probléma Bináris keresés hosszosztályok alapján. HálózatokII, 2007 Hálózatok II 2007 4: Az IP Prefix Lookup Probléma Bináris keresés hosszosztályok alapján 1 Internet Protocol IP Az adatok a küldőtől a cél-állomásig IP-csomagokban kerülnek átvitelre A csomagok fejléce

Részletesebben

Elosztott rendszerek

Elosztott rendszerek Elosztott rendszerek NGM_IN005_1 Peer-to-peer rendszerek Peer-to-peer Egyenl! funkcionális csomópontokból álló elosztott rendszer nagyméret" er!forrás elosztó rendszerek speciális menedzselés" szerverek

Részletesebben

Titkosítás NetWare környezetben

Titkosítás NetWare környezetben 1 Nyílt kulcsú titkosítás titkos nyilvános nyilvános titkos kulcs kulcs kulcs kulcs Nyilvános, bárki által hozzáférhető csatorna Nyílt szöveg C k (m) Titkosított szöveg Titkosított szöveg D k (M) Nyílt

Részletesebben

Peer-to-peer alapú elosztott fájlrendszerek

Peer-to-peer alapú elosztott fájlrendszerek Peer-to-peer alapú elosztott fájlrendszerek VINCZE GÁBOR, PAP ZOLTÁN, HORVÁTH RÓBERT Budapesti Mûszaki és Gazdaságtudományi Egyetem, Távközlési és Médiainformatikai Tanszék {vincze,pap,horvath.r}@tmit.bme.hu

Részletesebben

Hálózati architektúrák laborgyakorlat

Hálózati architektúrák laborgyakorlat Hálózati architektúrák laborgyakorlat 5. hét Dr. Orosz Péter, Skopkó Tamás 2012. szeptember Hálózati réteg (L3) Kettős címrendszer: ARP Útválasztás: route IP útvonal: traceroute Parancsok: ifconfig, arp,

Részletesebben

Programozás alapjai II. (7. ea) C++ Speciális adatszerkezetek. Tömbök. Kiegészítő anyag: speciális adatszerkezetek

Programozás alapjai II. (7. ea) C++ Speciális adatszerkezetek. Tömbök. Kiegészítő anyag: speciális adatszerkezetek Programozás alapjai II. (7. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT M Ű E G Y E T E M 1 7 8 2 C++ programozási nyelv BME-IIT Sz.I. 2016.04.05. - 1

Részletesebben

Speciális adatszerkezetek. Programozás alapjai II. (8. ea) C++ Tömbök. Tömbök/2. N dimenziós tömb. Nagyméretű ritka tömbök

Speciális adatszerkezetek. Programozás alapjai II. (8. ea) C++ Tömbök. Tömbök/2. N dimenziós tömb. Nagyméretű ritka tömbök Programozás alapjai II. (8. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT Speciális adatszerkezetek A helyes adatábrázolás választása, a helyes adatszerkezet

Részletesebben

Számítógépes Hálózatok

Számítógépes Hálózatok Számítógépes Hálózatok 7a. Előadás: Hálózati réteg ased on slides from Zoltán Ács ELTE and. hoffnes Northeastern U., Philippa Gill from Stonyrook University, Revised Spring 06 by S. Laki Legrövidebb út

Részletesebben

Hálózati réteg. Feladata: a csomag eljusson a célig Több útválasztó Ez a legalacsonyabb rétek, mely a két végpont

Hálózati réteg. Feladata: a csomag eljusson a célig Több útválasztó Ez a legalacsonyabb rétek, mely a két végpont Hálózati réteg Hálózati réteg Feladata: a csomag eljusson a célig Több útválasztó Ez a legalacsonyabb rétek, mely a két végpont közötti átvitellel foglalkozik. Ismernie kell a topológiát Útvonalválasztás,

Részletesebben

Statikus routing. Hoszt kommunikáció. Router működési vázlata. Hálózatok közötti kommunikáció. (A) Partnerek azonos hálózatban

Statikus routing. Hoszt kommunikáció. Router működési vázlata. Hálózatok közötti kommunikáció. (A) Partnerek azonos hálózatban Hoszt kommunikáció Statikus routing Két lehetőség Partnerek azonos hálózatban (A) Partnerek különböző hálózatban (B) Döntéshez AND Címzett IP címe Feladó netmaszk Hálózati cím AND A esetben = B esetben

Részletesebben

Hálózati architektúrák laborgyakorlat

Hálózati architektúrák laborgyakorlat Hálózati architektúrák laborgyakorlat 6. hét Dr. Orosz Péter, Skopkó Tamás 2012. szeptember Szállítási réteg (L4) Szolgáltatások Rétegprotokollok: TCP, UDP Port azonosítók TCP kapcsolatállapotok Alkalmazási

Részletesebben

Programozás alapjai II. (7. ea) C++

Programozás alapjai II. (7. ea) C++ Programozás alapjai II. (7. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT M Ű E G Y E T E M 1 7 8 2 C++ programozási nyelv BME-IIT Sz.I. 2016.04.05. - 1

Részletesebben

Számítógépes Hálózatok 2012

Számítógépes Hálózatok 2012 Számítógépes Hálózatok 2012 12. Felhasználói réteg email, http, P2P 1 Felhasználói réteg Domain Name System Példák a felhasználói rétegre: E-Mail WWW Content Delivery Networks Peer-to-Peer-Networks A forgalom

Részletesebben

Forgalomirányítás, irányító protokollok (segédlet az internet technológiák 1 laborgyakorlathoz) Készítette: Kolluti Tamás RZI3QZ

Forgalomirányítás, irányító protokollok (segédlet az internet technológiák 1 laborgyakorlathoz) Készítette: Kolluti Tamás RZI3QZ Forgalomirányítás, irányító protokollok (segédlet az internet technológiák 1 laborgyakorlathoz) Készítette: Kolluti Tamás RZI3QZ A routerek elsődleges célja a hálózatok közti kapcsolt megteremtése, és

Részletesebben

Autóipari beágyazott rendszerek. Local Interconnection Network

Autóipari beágyazott rendszerek. Local Interconnection Network Autóipari beágyazott rendszerek Local Interconnection Network 1 Áttekintés Motiváció Kis sebességigényű alkalmazások A CAN drága Kvarc oszcillátort igényel Speciális perifériát igényel Két vezetéket igényel

Részletesebben

Windows hálózati adminisztráció segédlet a gyakorlati órákhoz

Windows hálózati adminisztráció segédlet a gyakorlati órákhoz Windows hálózati adminisztráció segédlet a gyakorlati órákhoz Szerver oldal: Kliens oldal: 4. Tartományvezérlő és a DNS 1. A belső hálózat konfigurálása Hozzuk létre a virtuális belső hálózatunkat. INTERNET

Részletesebben

Konfiguráljuk be a TCP/IP protokolt a szerveren: LOAD INETCFG A menüpontokból válasszuk ki a Proctcols menüpontot:

Konfiguráljuk be a TCP/IP protokolt a szerveren: LOAD INETCFG A menüpontokból válasszuk ki a Proctcols menüpontot: A TCP/IP protokolll konfigurálása Konfiguráljuk be a TCP/IP protokolt a szerveren: LOAD INETCFG A menüpontokból válasszuk ki a Proctcols menüpontot: A NetWare-ben beállítható protokolllok jelennek meg

Részletesebben

Network front-end. Horváth Gábor. Kovács Róbert. ELTE Informatikai Igazgatóság

Network front-end. Horváth Gábor. Kovács Róbert. ELTE Informatikai Igazgatóság Network front-end Horváth Gábor Kovács Róbert ELTE Informatikai Igazgatóság Amiről most nem lesz szó... Gerinchálózat, az izgalmas rész... Tartalék külkapcsolat Külkapcsolat Leo Taurus Mira Cygnus Regulus

Részletesebben

Elosztott rendszerek: Alapelvek és paradigmák Distributed Systems: Principles and Paradigms. 5. rész: Elnevezési rendszerek

Elosztott rendszerek: Alapelvek és paradigmák Distributed Systems: Principles and Paradigms. 5. rész: Elnevezési rendszerek Elosztott rendszerek: Alapelvek és paradigmák Distributed Systems: Principles and Paradigms Maarten van Steen 1 Kitlei Róbert 2 1 VU Amsterdam, Dept. Computer Science 2 ELTE Informatikai Kar 5. rész: Elnevezési

Részletesebben

BASH script programozás II. Vezérlési szerkezetek

BASH script programozás II. Vezérlési szerkezetek 06 BASH script programozás II. Vezérlési szerkezetek Emlékeztető Jelölésbeli különbség van parancs végrehajtása és a parancs kimenetére való hivatkozás között PARANCS $(PARANCS) Jelölésbeli különbség van

Részletesebben

Számítógépes Hálózatok 2011

Számítógépes Hálózatok 2011 Számítógépes Hálózatok 2011 10. Hálózati réteg IP címzés, IPv6, ARP, DNS, Circuit Switching, Packet Switching 1 IPv4-Header (RFC 791) Version: 4 = IPv4 IHL: fejléc hossz 32 bites szavakban (>5) Type of

Részletesebben

Teljesen elosztott adatbányászat alprojekt

Teljesen elosztott adatbányászat alprojekt Teljesen elosztott adatbányászat alprojekt Hegedűs István, Ormándi Róbert, Jelasity Márk Big Data jelenség Big Data jelenség Exponenciális növekedés a(z): okos eszközök használatában, és a szenzor- és

Részletesebben

Adatbáziskezelő-szerver. Relációs adatbázis-kezelők SQL. Házi feladat. Relációs adatszerkezet

Adatbáziskezelő-szerver. Relációs adatbázis-kezelők SQL. Házi feladat. Relációs adatszerkezet 1 2 Adatbáziskezelő-szerver Általában dedikált szerver Optimalizált háttértár konfiguráció Csak OS + adatbázis-kezelő szoftver Teljes memória az adatbázisoké Fő funkciók: Adatok rendezett tárolása a háttértárolón

Részletesebben

Hálózati rendszerek adminisztrációja JunOS OS alapokon

Hálózati rendszerek adminisztrációja JunOS OS alapokon Hálózati rendszerek adminisztrációja JunOS OS alapokon - áttekintés és példák - Varga Pál pvarga@tmit.bme.hu Áttekintés Általános laborismeretek Junos OS bevezető Routing - alapok Tűzfalbeállítás alapok

Részletesebben

A számítástechnika gyakorlata WIN 2000 I. Szerver, ügyfél Protokoll NT domain, Peer to Peer Internet o WWW oftp opop3, SMTP. Webmail (levelező)

A számítástechnika gyakorlata WIN 2000 I. Szerver, ügyfél Protokoll NT domain, Peer to Peer Internet o WWW oftp opop3, SMTP. Webmail (levelező) A számítástechnika gyakorlata WIN 2000 I. Szerver, ügyfél Protokoll NT domain, Peer to Peer Internet o WWW oftp opop3, SMTP Bejelentkezés Explorer (böngésző) Webmail (levelező) 2003 wi-3 1 wi-3 2 Hálózatok

Részletesebben

Algoritmusok és adatszerkezetek gyakorlat 06 Adatszerkezetek

Algoritmusok és adatszerkezetek gyakorlat 06 Adatszerkezetek Algoritmusok és adatszerkezetek gyakorlat 06 Adatszerkezetek Tömb Ugyanolyan típusú elemeket tárol A mérete előre definiált kell legyen és nem lehet megváltoztatni futás során Legyen n a tömb mérete. Ekkor:

Részletesebben

Adatszerkezetek 2. Dr. Iványi Péter

Adatszerkezetek 2. Dr. Iványi Péter Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat

Részletesebben

Algoritmusok és adatszerkezetek gyakorlat 07

Algoritmusok és adatszerkezetek gyakorlat 07 Algoritmusok és adatszerkezetek gyakorlat 0 Keresőfák Fák Fa: összefüggő, körmentes gráf, melyre igaz, hogy: - (Általában) egy gyökér csúcsa van, melynek 0 vagy több részfája van - Pontosan egy út vezet

Részletesebben

Adatbázis Rendszerek II. 2. Gyakorló környezet

Adatbázis Rendszerek II. 2. Gyakorló környezet Adatbázis Rendszerek II. 2. Gyakorló környezet 37/1 B IT v: 2017.02.11 MAN Gyakorló környezet Géptermek 37/2 Jelszó váltás 1 2 3 4 37/3 Gyakorló környezet II. apex.oracle.com/en/ 37/4 A regisztrációs folyamat

Részletesebben

Elnevezési rendszerek. A névtér elosztása (2) 4. előadás. A névfeloldás implementálása (1) A névfeloldás implementálása (2)

Elnevezési rendszerek. A névtér elosztása (2) 4. előadás. A névfeloldás implementálása (1) A névfeloldás implementálása (2) 6. előadás A névtér elosztása (1) Elnevezési rendszerek 2. rész A DNS-névtér felosztása (három rétegre), amely az interneten keresztül elérhető állományokat is tartalmaz. A névtér elosztása (2) A névfeloldás

Részletesebben

Windows rendszeradminisztráció és Microsoft szerveralkalmazások támogatása. 3. óra. Kocsis Gergely, Kelenföldi Szilárd

Windows rendszeradminisztráció és Microsoft szerveralkalmazások támogatása. 3. óra. Kocsis Gergely, Kelenföldi Szilárd Windows rendszeradminisztráció és Microsoft szerveralkalmazások támogatása 3. óra Kocsis Gergely, Kelenföldi Szilárd 2015.03.05. Routing Route tábla kiratása: route PRINT Route tábla Illesztéses algoritmus:

Részletesebben

Hálózati beállítások Készítette: Jámbor Zoltán 2016

Hálózati beállítások Készítette: Jámbor Zoltán 2016 Hálózati beállítások Miről lesz szó? Hálózati csatoló(k) IP paramétereinek beállítása, törlése, módosítása. IP paraméterek ellenőrzése. Hálózati szolgáltatások ellenőrzése Aktuális IP paraméterek lekérdezése

Részletesebben

Összefoglalás és gyakorlás

Összefoglalás és gyakorlás Összefoglalás és gyakorlás High Speed Networks Laboratory 1 / 28 Hálózatok jellemző paraméterei High Speed Networks Laboratory 2 / 28 Evolúció alkotta adatbázis Önszerveződő adatbázis = (struktúra, lekérdezés)

Részletesebben

Névfeloldás hosts, nsswitch, DNS

Névfeloldás hosts, nsswitch, DNS Forrás: https://hu.wikipedia.org/wiki/hosts_fájl http://tldp.fsf.hu/howto/nis-howto-hu/nisplus.html https://hu.wikipedia.org/wiki/domain_name_system https://hu.wikipedia.org/wiki/dns-rekordt%c3%adpusok_list%c3%a1ja

Részletesebben

ALAPOK. 0 és 255 közé eső számértékek tárolására. Számértékek, például távolságok, pontszámok, darabszámok.

ALAPOK. 0 és 255 közé eső számértékek tárolására. Számértékek, például távolságok, pontszámok, darabszámok. ADATBÁZIS-KEZELÉS ALAPOK Főbb Adattípusok: Igen/Nem Bájt Ez az adattípus logikai adatok tárolására alkalmas. A logikai adatok mindössze két értéket vehetnek fel. (Igen/Nem, Igaz/Hamis, Férfi/Nő, Fej/Írás

Részletesebben

VIII. Mérés SZÉCHENYI ISTVÁN EGYETEM GYŐR TÁVKÖZLÉSI TANSZÉK

VIII. Mérés SZÉCHENYI ISTVÁN EGYETEM GYŐR TÁVKÖZLÉSI TANSZÉK Mérési utasítás IPv6 A Távközlés-informatika laborban natív IPv6 rendszer áll rendelkezésre. Először az ún. állapotmentes automatikus címhozzárendelést (SLAAC, stateless address autoconfiguration) vizsgáljuk

Részletesebben

Az adatfeldolgozás és adatátvitel biztonsága. Az adatfeldolgozás biztonsága. Adatbiztonság. Automatikus adatazonosítás, adattovábbítás, adatbiztonság

Az adatfeldolgozás és adatátvitel biztonsága. Az adatfeldolgozás biztonsága. Adatbiztonság. Automatikus adatazonosítás, adattovábbítás, adatbiztonság Az adatfeldolgozás és adatátvitel biztonsága Automatikus adatazonosítás, adattovábbítás, adatbiztonság Az adatfeldolgozás biztonsága A védekezés célja Védelem a hamisítás és megszemélyesítés ellen Biztosított

Részletesebben

Mobilitás és MANET Intelligens közlekedési rendszerek

Mobilitás és MANET Intelligens közlekedési rendszerek Mobilitás és MANET Intelligens közlekedési rendszerek VITMMA10 Okos város MSc mellékspecializáció Vida Rolland Áttekintés MANET Mobile Ad Hoc Networks Ad Hoc jelentése Azonnal, ideiglenesen, előkészület

Részletesebben

Hálózatok építése és üzemeltetése

Hálózatok építése és üzemeltetése Hálózatok építése és üzemeltetése OSPF gyakorlat 1 Ismétlés 2 Routing protokollok Feladatuk optimális útvonal (next hop) kiszámítása bármely csomópontok között aktuális állapot információ gyűjtés a hálózatról

Részletesebben

Számítógép hálózatok, osztott rendszerek 2009

Számítógép hálózatok, osztott rendszerek 2009 Számítógép hálózatok, osztott rendszerek 2009 1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok 1 Az előadáshoz Előadás: Hétfő 10:00 12:00 óra Gyakorlat: Hétfő 14:00-16:00 óra Honlap: http://people.inf.elte.hu/lukovszki/courses/0910nwmsc

Részletesebben

Újdonságok Nexus Platformon

Újdonságok Nexus Platformon Újdonságok Nexus Platformon Balla Attila CCIE #7264 balla.attila@synergon.hu Újdonságok Unified Fabric Twin-AX kábel NX-OS L2 Multipathing Fabric Extender Emlékeztető Továbbítás Routing Van bejegyzés ->

Részletesebben

Adatbiztonság PPZH 2011. május 20.

Adatbiztonság PPZH 2011. május 20. Adatbiztonság PPZH 2011. május 20. 1. Mutassa meg, hogy a CBC-MAC kulcsolt hashing nem teljesíti az egyirányúság követelményét egy a k kulcsot ismerő fél számára, azaz tetszőleges MAC ellenőrzőösszeghez

Részletesebben

1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok. HálózatokII, 2007

1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok. HálózatokII, 2007 Hálózatok II 2007 1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok 1 Az előadáshoz Előadás: Szerda 17:00 18:30 Gyakorlat: nincs Vizsga írásbeli Honlap: http://people.inf.elte.hu/lukovszki/courses/g/07nwii

Részletesebben

Hálózatba kapcsolt erőforrás platformok és alkalmazásaik. Simon Csaba, Maliosz Markosz TMIT 2017

Hálózatba kapcsolt erőforrás platformok és alkalmazásaik. Simon Csaba, Maliosz Markosz TMIT 2017 Hálózatba kapcsolt erőforrás platformok és alkalmazásaik Simon Csaba, Maliosz Markosz TMIT 2017 P2P 3 Mi a P2P? P2P - napjaink egyik legforróbb témája Alkalmazások Kazaa minden idők legtöbbször letöltött

Részletesebben

Nyíregyházi Egyetem Matematika és Informatika Intézete. Fájl rendszer

Nyíregyházi Egyetem Matematika és Informatika Intézete. Fájl rendszer 1 Fájl rendszer Terminológia Fájl és könyvtár (mappa) koncepció Elérési módok Fájlattribútumok Fájlműveletek ----------------------------------------- Könyvtár szerkezet -----------------------------------------

Részletesebben

Számítógép hálózatok gyakorlat

Számítógép hálózatok gyakorlat Számítógép hálózatok gyakorlat 5. Gyakorlat Ethernet alapok Ethernet Helyi hálózatokat leíró de facto szabvány A hálózati szabványokat az IEEE bizottságok kezelik Ezekről nevezik el őket Az Ethernet így

Részletesebben

Hálózati Technológiák és Alkalmazások. Vida Rolland, BME TMIT november 5. HSNLab SINCE 1992

Hálózati Technológiák és Alkalmazások. Vida Rolland, BME TMIT november 5. HSNLab SINCE 1992 Hálózati Technológiák és Alkalmazások Vida Rolland, BME TMIT 2018. november 5. Adatátviteli feltételek Pont-pont kommunikáció megbízható vagy best-effort (garanciák nélkül) A cél ellenőrzi a kapott csomagot:

Részletesebben

Fájlszervezés. Adatbázisok tervezése, megvalósítása és menedzselése

Fájlszervezés. Adatbázisok tervezése, megvalósítása és menedzselése Fájlszervezés Adatbázisok tervezése, megvalósítása és menedzselése Célok: gyors lekérdezés, gyors adatmódosítás, minél kisebb tárolási terület. Kezdetek Nincs általánosan legjobb optimalizáció. Az egyik

Részletesebben

2011. május 19., Budapest IP - MIKRO MOBILITÁS

2011. május 19., Budapest IP - MIKRO MOBILITÁS 2011. május 19., Budapest IP - MIKRO MOBILITÁS Miért nem elég a Mobil IP? A nagy körülfordulási idő és a vezérlési overhead miatt kb. 5s-re megszakad a kapcsolat minden IP csatlakozási pont váltáskor.

Részletesebben

Mesterséges intelligencia 2. laborgyakorlat

Mesterséges intelligencia 2. laborgyakorlat Mesterséges intelligencia 2. laborgyakorlat Keresési módszerek A legtöbb feladatot meg lehet határozni keresési feladatként: egy ún. állapottérben, amely tartalmazza az összes lehetséges állapotot fogjuk

Részletesebben

Kérdés Kép Válasz HIBAS Válasz HELYES Válasz HIBAS Válasz HIBAS Kérdés Kép Válasz HIBAS Válasz HELYES Válasz HIBAS Válasz HIBAS Kérdés Kép Válasz

Kérdés Kép Válasz HIBAS Válasz HELYES Válasz HIBAS Válasz HIBAS Kérdés Kép Válasz HIBAS Válasz HELYES Válasz HIBAS Válasz HIBAS Kérdés Kép Válasz Mire kell odafigyelni egy frissítendő/migrálandó Windows esetén? Léteznie kell egy frissítést végző felhasználónak. A frissítendő/migrálandó rendszer naprakész legyen, a legfrissebb javítások és szerviz

Részletesebben

Az internet ökoszisztémája és evolúciója. Gyakorlat 4

Az internet ökoszisztémája és evolúciója. Gyakorlat 4 Az internet ökoszisztémája és evolúciója Gyakorlat 4 Tartományok közti útválasztás konfigurálása: alapok Emlékeztető: interfészkonfiguráció R1 R2 link konfigurációja R1 routeren root@openwrt:/# vtysh OpenWrt#

Részletesebben

Internet Protokoll 6-os verzió. Varga Tamás

Internet Protokoll 6-os verzió. Varga Tamás Internet Protokoll 6-os verzió Motiváció Internet szédületes fejlődése címtartomány kimerül routing táblák mérete nő adatvédelem hiánya a hálózati rétegen gépek konfigurációja bonyolódik A TCP/IPkét évtizede

Részletesebben

Algoritmusok és adatszerkezetek 2.

Algoritmusok és adatszerkezetek 2. Algoritmusok és adatszerkezetek 2. Varga Balázs gyakorlata alapján Készítette: Nagy Krisztián 1. gyakorlat Nyílt címzéses hash-elés A nyílt címzésű hash táblákban a láncolással ellentétben egy indexen

Részletesebben

A kapcsolás alapjai, és haladó szintű forgalomirányítás. 1. Ismerkedés az osztály nélküli forgalomirányítással

A kapcsolás alapjai, és haladó szintű forgalomirányítás. 1. Ismerkedés az osztály nélküli forgalomirányítással A Cisco kapcsolás Networking alapjai Academy Program és haladó szintű forgalomirányítás A kapcsolás alapjai, és haladó szintű forgalomirányítás 1. Ismerkedés az osztály nélküli forgalomirányítással Mártha

Részletesebben

Elosztott rendszerek: Alapelvek és paradigmák Distributed Systems: Principles and Paradigms. 2. rész: Architektúrák

Elosztott rendszerek: Alapelvek és paradigmák Distributed Systems: Principles and Paradigms. 2. rész: Architektúrák Elosztott rendszerek: Alapelvek és paradigmák Distributed Systems: Principles and Paradigms Maarten van Steen 1 Kitlei Róbert 2 1 VU Amsterdam, Dept. Computer Science 2 ELTE Informatikai Kar 2. rész: Architektúrák

Részletesebben

Alternatív megoldások skálázható útválasztásra mobil környezetben

Alternatív megoldások skálázható útválasztásra mobil környezetben Alternatív megoldások skálázható útválasztásra mobil környezetben Biczók Gergely, Égi Norbert, Fodor Péter, Kovács Balázs, Vida Rolland {biczok, egi, fodorp, kovacsb, vida}@tmit.bme.hu Budapesti Muszaki

Részletesebben

Unicast. Broadcast. Multicast. A célállomás egy hoszt. A célállomás az összes hoszt egy adott hálózaton

Unicast. Broadcast. Multicast. A célállomás egy hoszt. A célállomás az összes hoszt egy adott hálózaton lab Broadcasting-multicasting Távközlési és Médiainformatikai Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Unicast A célállomás egy hoszt IP cím típusok Broadcast A célállomás az összes hoszt

Részletesebben

Unicast A célállomás egy hoszt. Broadcast A célállomás az összes hoszt egy adott hálózaton

Unicast A célállomás egy hoszt. Broadcast A célállomás az összes hoszt egy adott hálózaton lab Broadcasting-multicasting Távközlési és Médiainformatikai Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem IP cím típusok Unicast A célállomás egy hoszt Broadcast A célállomás az összes hoszt

Részletesebben

Az Online Számla rendszere Regisztráció

Az Online Számla rendszere Regisztráció NAV online leı ra s Tartalom Az Online Számla rendszere... 2 Regisztráció... 2 WinSzla program beállítása... 3 Winszla számlák kezelése... 3 WsSzámla program beállítása... 5 WsSzámla számlák kezelése...

Részletesebben

Sapientia Egyetem, Matematika-Informatika Tanszék.

Sapientia Egyetem, Matematika-Informatika Tanszék. Kriptográfia és Információbiztonság 11. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018 Miről volt szó az elmúlt előadáson? hash függvények

Részletesebben

Elnevezési rendszerek. 7. előadás

Elnevezési rendszerek. 7. előadás Elnevezési rendszerek 7. előadás Nevek, azonosítók és címek Nevek erőforrások megosztása, entitások egyértelmű azonosítása, helyek megjelölése, stb. Nevek feloldása névszolgáltató rendszer Kapcsolódási

Részletesebben

Adatbázis Rendszerek II. 2. Ea: Gyakorló környezet

Adatbázis Rendszerek II. 2. Ea: Gyakorló környezet Adatbázis Rendszerek II. 2. Ea: Gyakorló környezet 26/1 B IT v: 2018.02.21 MAN Gyakorló környezet apex.oracle.com/en/ 26/2 A regisztrációs folyamat 26/3 26/4 26/5 26/6 26/7 26/8 26/9 26/10 26/11 Feladatok

Részletesebben

III. előadás. Kovács Róbert

III. előadás. Kovács Róbert III. előadás Kovács Róbert VLAN Virtual Local Area Network Virtuális LAN Logikai üzenetszórási tartomány VLAN A VLAN egy logikai üzenetszórási tartomány, mely több fizikai LAN szegmensre is kiterjedhet.

Részletesebben

Hálózati operációs rendszerek II.

Hálózati operációs rendszerek II. Hálózati operációs rendszerek II. Novell Netware 5.1 Web-es felügyelet, DNS/DHCP szerver, mentési alrendszer 1 Web-es felügyelet Netware Web Manager HTTPS protokollon keresztül pl.: https://fs1.xy.hu:2200

Részletesebben

Forgalomirányítás (Routing)

Forgalomirányítás (Routing) Forgalomirányítás (Routing) Tartalom Forgalomirányítás (Routing) Készítette: (BMF) Forgalomirányítás (Routing) Autonóm körzet Irányított - irányító protokollok Irányítóprotokollok mőködési elve Távolságvektor

Részletesebben

Linux kiszolgáló felügyelet: SUSE Manager

Linux kiszolgáló felügyelet: SUSE Manager Linux kiszolgáló felügyelet: SUSE Manager SUSE Expert Days Kovács Lajos Vezető konzultáns kovacs.lajos@npsh.hu Linux kiszolgáló felügyelet problémái SUSE Linux Enterprise workload Private and public cloud

Részletesebben

Ethernet/IP címzés - gyakorlat

Ethernet/IP címzés - gyakorlat Ethernet/IP címzés - gyakorlat Moldován István moldovan@tmit.bme.hu BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM TÁVKÖZLÉSI ÉS MÉDIAINFORMATIKAI TANSZÉK Áttekintés Ethernet Multicast IP címzés (subnet)

Részletesebben

Teszt topológia E1/1 E1/0 SW1 E1/0 E1/0 SW3 SW2. Kuris Ferenc - [HUN] Cisco Blog -

Teszt topológia E1/1 E1/0 SW1 E1/0 E1/0 SW3 SW2. Kuris Ferenc - [HUN] Cisco Blog - VTP Teszt topológia E1/1 E1/0 SW1 E1/0 E1/0 SW2 SW3 2 Alap konfiguráció SW1-2-3 conf t interface e1/0 switchport trunk encapsulation dot1q switchport mode trunk vtp domain CCIE vtp mode transparent vtp

Részletesebben

Dinamikus routing - alapismeretek -

Dinamikus routing - alapismeretek - Router működési vázlata Dinamikus routing - alapismeretek - admin Static vs Dynamic Static vs Dynamic Csoportosítás Csoportosítás Belső átjáró protokollok Interior Gateway Protocol (IGP) Külső átjáró protokollok

Részletesebben

Tartalom Keresés és rendezés. Vektoralgoritmusok. 1. fejezet. Keresés adatvektorban. A programozás alapjai I.

Tartalom Keresés és rendezés. Vektoralgoritmusok. 1. fejezet. Keresés adatvektorban. A programozás alapjai I. Keresés Rendezés Feladat Keresés Rendezés Feladat Tartalom Keresés és rendezés A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán

Részletesebben

21. tétel IP címzés, DOMAIN/URL szerkezete

21. tétel IP címzés, DOMAIN/URL szerkezete 21. tétel 1 / 6 AZ INTERNET FELÉPÍTÉSE, MŰKÖDÉSE A világháló szerver-kliens architektúra szerint működik. A kliens egy olyan számítógép, amely hozzáfér egy (távoli) szolgáltatáshoz, amelyet egy számítógép-hálózathoz

Részletesebben

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31. Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert

Részletesebben

Elosztott rendszerek: Alapelvek és paradigmák Distributed Systems: Principles and Paradigms

Elosztott rendszerek: Alapelvek és paradigmák Distributed Systems: Principles and Paradigms Elosztott rendszerek: Alapelvek és paradigmák Distributed Systems: Principles and Paradigms Maarten van Steen 1 Kitlei Róbert 2 1 VU Amsterdam, Dept. Computer Science 2 ELTE Informatikai Kar 12. rész:

Részletesebben

Tartalom. Router és routing. A 2. réteg és a 3. réteg működése. Forgalomirányító (router) A forgalomirányító összetevői

Tartalom. Router és routing. A 2. réteg és a 3. réteg működése. Forgalomirányító (router) A forgalomirányító összetevői Tartalom Router és routing Forgalomirányító (router) felépítésük működésük távolságvektor elv esetén Irányító protokollok autonóm rendszerek RIP IGRP DHCP 1 2 A 2. réteg és a 3. réteg működése Forgalomirányító

Részletesebben

SQL*Plus. Felhasználók: SYS: rendszergazda SCOTT: demonstrációs adatbázis, táblái: EMP (dolgozó), DEPT (osztály) "közönséges" felhasználók

SQL*Plus. Felhasználók: SYS: rendszergazda SCOTT: demonstrációs adatbázis, táblái: EMP (dolgozó), DEPT (osztály) közönséges felhasználók SQL*Plus Felhasználók: SYS: rendszergazda SCOTT: demonstrációs adatbázis, táblái: EMP dolgozó), DEPT osztály) "közönséges" felhasználók Adatszótár: metaadatokat tartalmazó, csak olvasható táblák táblanév-prefixek:

Részletesebben

Adatbázisok. 8. gyakorlat. SQL: CREATE TABLE, aktualizálás (INSERT, UPDATE, DELETE), SELECT október október 26. Adatbázisok 1 / 17

Adatbázisok. 8. gyakorlat. SQL: CREATE TABLE, aktualizálás (INSERT, UPDATE, DELETE), SELECT október október 26. Adatbázisok 1 / 17 Adatbázisok 8. gyakorlat SQL: CREATE TABLE, aktualizálás (INSERT, UPDATE, DELETE), SELECT 2015. október 26. 2015. október 26. Adatbázisok 1 / 17 SQL nyelv Structured Query Language Struktúrált lekérdez

Részletesebben

E-Freight beállítási segédlet

E-Freight beállítási segédlet E-Freight beállítási segédlet Az E-Freight rendszer működéséhez szükséges programok és beállítások v08 A legújabb verzióért kérjük, olvassa be az alábbi kódot: 1. Támogatott böngészők Az E-Freight az Internet

Részletesebben

Programozható vezérlő rendszerek KOMMUNIKÁCIÓS HÁLÓZATOK 2.

Programozható vezérlő rendszerek KOMMUNIKÁCIÓS HÁLÓZATOK 2. KOMMUNIKÁCIÓS HÁLÓZATOK 2. CAN busz - Autóipari alkalmazásokhoz fejlesztették a 80-as években - Elsőként a BOSCH vállalat fejlesztette - 1993-ban szabvány (ISO 11898: 1993) - Később fokozatosan az iparban

Részletesebben

Hálózati Architektúrák és Protokollok GI BSc. 10. laborgyakorlat

Hálózati Architektúrák és Protokollok GI BSc. 10. laborgyakorlat Hálózati Architektúrák és Protokollok GI BSc. 10. laborgyakorlat Erdős András (demonstrátor) Debreceni Egyetem - Informatikai Kar Informatikai Rendszerek és Hálózatok Tanszék 2016 9/20/2016 9:41 PM 1 Transzport

Részletesebben

A gyakorlat során MySQL adatbázis szerver és a böngészőben futó phpmyadmin használata javasolt. A gyakorlat során a következőket fogjuk gyakorolni:

A gyakorlat során MySQL adatbázis szerver és a böngészőben futó phpmyadmin használata javasolt. A gyakorlat során a következőket fogjuk gyakorolni: 1 Adatbázis kezelés 3. gyakorlat A gyakorlat során MySQL adatbázis szerver és a böngészőben futó phpmyadmin használata javasolt. A gyakorlat során a következőket fogjuk gyakorolni: Tábla kapcsolatok létrehozása,

Részletesebben

Keresés és rendezés. A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán

Keresés és rendezés. A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán Keresés Rendezés Feladat Keresés és rendezés A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán 2016. november 7. Farkas B., Fiala

Részletesebben