9. Változócsillagok ábra Instabilitási sáv a HRD-n

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "9. Változócsillagok ábra Instabilitási sáv a HRD-n"

Átírás

1 9. Változócsillagok A változócsillagok fogalma nehezen határozható meg, hiszen valójában minden csillag változik valamiképpen, ha elég hosszú távon tekintjük, vagy ha elég nagy pontossággal követhetjük az intenzitásváltozását. A fősorozaton egy csillag átmérője és (a Vogt-Russell tétel értelmében) luminozitása és hőmérséklete igen stabilan állandó. A Nap átmérőjének esetleges ingadozásai a mérhetőség határa alá esnek, össz-sugárzásának értékét pedig korábban földfelszíni mérések olyan állandónak mérték, hogy ráragadt a 'napállandó' elnevezés, ami azután sem vakarható le róla, hogy űrbeli mérésekkel maximum néhány ezreléknyi változékonyságot sikerült rajta kimutatni. Változócsillagoknak ezért általában azokat a csillagokat nevezzük, melyeken az emberi élethosszhoz mérhető időtartam alatt detektálható intenzitásváltozás történik. Típusaikat az alábbiak szerint csoportosíthatjuk Pulzáló változók Pulzációnak nevezzük azt a történéssort, melynek során a csillagfelszín egésze, vagy nagyobb összefüggő részei sugárirányban periodikus kifelé-befelé irányuló mozgást végez. Amikor az egész felület gömszimmetrikusan tágul és összehúzódik, akkor beszélünk radiális pulzációról. Vannak azonban olyan esetek is, amelyeknél különböző felületelemek ellenfázisban mozognak, ezeket nemradiális pulzátoroknak nevezzük. Már a Nap oszcillációinál is említettük ezt a különbséget, a 4.3. ábrára utalva a radiális pulzáció az l=0, a nemradiális pedig az l>0 esetnek felel meg. A pulzáció azonban különbözik a Napnál említett oszcillációktól, utóbbinál a konvektív mozgások által keltett nyomáshullámok felszíni interferenciamintázatairól, illetve belső gravitációs hullámokról van szó, előbbinél pedig valami olyan mechanizmusról, ami képes a gravitáció által előidézett összezuhanásra válaszképpen kitágulást okozni. Fősorozati csillagoknál ilyesmi nem figyelhető meg, a Nap l=0 módusának amplitúdója pl centiméteres nagyságrendbe esik és kb évtizedes folyamatos észlelés kell a kimutatásához. Azok a csillagok, melyeknél megfigyelhető periodikus intenzitásváltozások lépnek föl, már elkerültek a főágról, valahol az óriáságak mentén haladnak és a 8. fejezetben említett események során bizonyos körülmények esetén a pulzációhoz szükséges instabilitás lép fel. A pulzáció folyamatos megtörténtéhez a csillag bizonyos rétegeiben olyan feltételeknek kell fennálniuk, melyek biztosítják a visszatérítő hatást. A pulzációelmélet úttörője, Eddington ezt a folyamatot egy gőzgépéhez hasonlította. Amikor egy csillagnak pulzációs instabilitása van, akkor a meghajtó réteg összenyomáskor felmelegszik, kitáguláskor pedig túlhűl. Összenyomáskor a hőmérséklet növekedésével megnövekszik az ionizáltság is, ami a hőkapacitás növekedését jelenti, vagyis adott mennyiségű energia kevésbé emeli a réteg hőmérsékletét, mivel egy része ionizációra fordítódik. Ilyen módon több hőt képes elnyelni, ami a tágulás folyamán felszabadul és hozzájárul a táguláshoz, melynek során viszont csökken az ionizáltság és növekszik az opacitás ábra Instabilitási sáv a HRD-n

2 Radiális pulzálók A legtöbbjük egy majdnem függőleges sávba tartozik a HRD-n (9.1. ábra). Ebben a hőmérsékleti sávban termikusan és mechanikailag instabil külső rétegük van. Az alábbi típusok a legfontosabbak. δ Cephei típusú változók Ezeket nevezik cefeidáknak, melyek a radiális pulzátorok legfontosabb képviselői. Jellemzően I populációs csillagok (a Tejútrendszer fősíkjában találhatók), tömegük 1-2 M Nap, luminozitásuk L Nap, egyetlen pulzációs módusuk van, legtöbbjük periódusa 1 nap és 2 hónap közé esik. Jellegzetes fénygörbéjük a 9.2.a. ábrán vehető szemügyre egyéb jellemzőinek görbéivel. A felső görbe a magnitúdóban kifejezett fényességgörbe, jellemzője gyors felfutása és lassabb lefutása. Ha összehasonlítjuk a sebességgörbével, akkor annak pontosan tükörképe, a felszín látóirányú sebessége (ami a spektrumvonalak Doppler-eltolódása révén mérhető) a gyors felfénylés időszakában gyors kitágulást, tehát felénk irányuló, negatív sebességű mozgást mutat, míg a lassú halványulás időszakában lassú zsugorodást. A szintén spektrális analízis segítségével meghatározható hőmérsékletgörbe pedig ott mutat minimumot, ahol a csak számítással meghatározható sugár maximuma van. 9.2.ábra a) cefeida görbéi b) pulzáló változók periódus-fényesség diagramjai A cefeidák a nagy tömegű csillagok közül kerülnek ki. A csak három naptömegnyi cefeidák a fősorozat utáni óriáság-utazás során egyszer áthaladnak az instabilitási sávon, de a hét naptömeg feletti cefeidák többször is, a maximum 5 áthaladás lehet. Az egymás utáni áthaladások során fényessége egyre nő. A cefeidák nemcsak a pulzáció vizsgálatában kulcsfontosságúak, döntő jelentőségük van az Univerzum szerkezetének vizsgálatában is. A csillagok távolságának meghatározására a legegyértelműbb módszer a parallaxis mérése, tehát az az asztrometriai eljárás, melynek során megállapítják a csillag látszólagos évi mozgásának - egy ellipszisnek - a nagytengelyét, mely annál kisebb, minél távolabb van a csillag. A módszer értelemszerűen csak nem túl nagy távolságokra használható, távolabbra más eljárásokra van szükség. Ehhez nyitotta meg az utat Henriette Leavitt felfedezése a huszadik század elején, aki a Magellán-felhőkben található cefeidák pulzációs periódusa és fényessége között összefüggést talált. Az, hogy mind a Magellán felhők tagja volt azért fontos, mert így gyakorlatilag azonos távolságra vannak tőlünk, ezért a mért fényességek különbségei mind az abszolut fényességek különbözőségének következményei.

3 A felfedezés jelentősége rendkívüli. Ezt Herzsprung ismerte fel, aki közeli cefeidák parallaxismódszerrel történt távolságmeghatározása révén a talált periódus-fényesség reláció segítségével határozta meg a Magellán-felhők távolságát. A módszer további használatához szükség volt még Shapley felismerésére, hogy a cefeida-fénygörbék két különböző alfajtól származhatnak. Ettől kezdve a δ Cep -et első populációs cefeidáknak nevezték, a második populációs (tehát a Tejút halo-tartományába tartozó) cefeidákat prototípusukról W Virginis (W Vir) -típusúaknak nevezték. A két típus periódusfényesség görbéjének nullpontja különböző, ezért megkülönböztetésük lehetővé tette a távolságmeghatározások pontosítását. Hubble érdeme, hogy cefeidák segítségével felismerte, hogy az Androméda-köd nem a Tejút része, hanem egy különálló galaxis. Ez drámaian átalakította az Univerzum szerkezetéről alakított addigi elképzelést. A 9.2.b. ábra mutatja a pulzáló változók periódusfényesség relációit. W Virginis típusú változók Ezek az említett II populációs cefeidák. Tömegük kisebb, általában 0,5-0,8 M Nap, fényességük 0,7-2 magnitúdóval kisebb az ugyanolyan periódusú első populációs cefeidáknál. Periódusidejük általában a 0,5-35 nap tartományba esik. RR Lyrae típusú változók Ezeket először gömbhalmazokban fedezték fel, ezért a halmazváltozó elnevezés is használatos rájuk, bár később kiderült, hogy nemcsak gömbhalmazokban (a Tejút halo populációjának öreg halmazaiban), hanem a Tejút fősíkjában is fellelhetők. Periódusuk a cefeidáknál rövidebb, általában a 0,3-1,2 nap tartományba esik, a változás amplitúdója 0,5-2 magnitúdó. Erre is létezik periódus-fényesség reláció, de a kisebb fényesség miatt használhatósága kisebb hatótávolságú. Mutathat egy igen érdekes sajátságot is, az amplitúdó kb 35 nap körüli modulációját, melyet első leírójáról Blazsko-effektusnak neveztek el. E jelenség elméleti magyarázata egyelőre nem ismert. δ Scuti típusú változók Ezek a legrövidebb periódusú pulzáló változók. A típusú, közepes tömegű csillagok, melyek alig fejlődtek el a fősorozatról. Amplitúdójuk igen kicsiny, mindössze 0,003-0,9 magnitúdó, luminozitásuk L Nap,, periódusuk 0,001-0,2 nap körül van. Maximális tágulási sebességük esik egybe fényességmaximumukkal. Igen nehéz őket észlelni a rövid periódus és kis amplitúdó miatt. Hosszúperiódusú változók o Cet (omikron Ceti) a Legismertebb képviselőjük, melyet 'Mirának' - csodálatosnak is becéznek. A Mira típusú változók többnyire kis- vagy közepes tömegű csillagok közül kerülnek ki, hideg óriások, luminozitásuk 10 3 L Nap körüli, hőmérsékletük 4000 K alatti (egy napfolt is magasabb hőmérsékletű). Periódusuk a nap tartományba esik és jelentős ingadozást mutat, amplitúdójuk viszont a legjelentősebb, elérheti a 11 magnitúdót. SR - vagy szemireguláris változók Azok a csillagok, melyek hónapos-éves időskálán fotometriai és radiális sebesség-változásokat mutatnak, de ezek egyáltalán nem periodikusak, hanem vannak olyan időszakok, amikor bizonyos változékonyság észlelhető rajtuk. Ilyen az egyik legismertebb szuperóriás csillag, az α Orionis (Betelgeuse).

4 S Dor (S Doradus) típusú változók Ezeket fényes kék változóknak is nevezik, mert ezek a galaxisok legfényesebb tagjai, extragalaxisok-ban is jól azonosíthatók, Hubble-Sandage változóknak is nevezik. Luminozitásuk a Napénak kb milliószorosa, tömegük a Napénak kb harmincszorosa. Amplitúdójuk 1-10 magnitúdó közé eshet. Éves változásokat mutathat hőmérsékletük és luminozitásuk, miközben anyaghéjakat dobnak le magukról, ami fotoszféra-szerű alakzatot képez, vagyis a csillag spektrumára elnyelési vonalakat szuperponál. A csoport egyik legismertebb tagja a P Cygni, melyről egy speciális spektrum-jellegzetességet is elneveztek, a PCygni profilt. A 9.3. ábra mutatja a P Cyg csillag spektrumát a H-alfa vonal (656,2nm) környékén. Jól látható hogy a H-alfa vonal erős emissziós vonalként jelentkezik a csillag magas hőmérséklete miatt, de tőle rövidebb hullámhosszon egy kis abszorpciós bemélyedés van, mely már a kidobott, felénk közelítő és jóval alacsonyabb hőmérsékletű gázhéjban keletkezik. A H- alfa vonal mellett egy gyengébb vonal ugyanezt az alakzatot mutatja ábra P Cygni profil Nemradiális pulzálók Mint említettük, ide tartoznak azok a csillagok, melyeknek jelentős (detektálható) változásaik vannak az l>0, módusaikban. Fontosabb eseteik a következők β Cephei-típusú változók Periódusuk 3-6 óra körüli, külön instabilitási sávban helyezkednek el a fősorozattal kb párhuzamosan. Magjuk a hidrogén-égetés utáni állapotban van, a pulzációt Cox szerint időfügő konvektív instabilitás okozhatja. Magas l-számú módusaik vannak, tehát a pulzáció valószínűleg csak egy nem túl vastag rétegre terjed ki. Fehér törpék A degenerált csillagoknak több változótípusa is van. Legforróbbak a GW Virginis (GW Vir) típusúak, hőmérsékletük eléri a 10 5 Kº -ot, periódusuk 500 sec körüli, ami még ilyen kis méret esetén is csak nemradiális módusban lehetséges, a periódus hőméprsékletfüggő, tehát évszázados időskálán a hőmérséklet csökkenésével együtt nő. Több nemradiális módusuk is lehet, a radiális módus nagyságrendekkel gyengébb ezeknél. Több planetáris köd központi csillagáról derült ki, hogy ennek a csoportnak tagja. Egy másik típusuk a ZZ Ceti, kb 0,6 Nap-tömeg, alacsonyabb hőmérséklet, hosszabb periódus. Mindkét típusnak igen kicsiny amplitúdói vannak. Gyors mágneses pulzátorok Kis méretű, gyorsan rotáló, igen erős mágneses terű pulzálók. A mágneses tér az egyenlítőhöz közeli régiók fel-le mozgását akadályozza, a mágneses pólus környékiekét azonban nem. Itt tehát a mágneses tér a nemradialitás oka. Amint a mágneses tereknél említettük, rotáló asztrofizikai objektumok dipól mágneses terének tengelye soha sem esik egybe a forgástengellyel, tehát általános esetben egy bizonyos ideig észleljük a pulzálást, amikor pedig elfordul tőlünk a pulzáló felületrész, akkor nem. A δsc instabilitási sávjába tartoznak, a pulzáció motorja itt is a hidrogén konvekciós zóna instabilitása. Periódusa 5-25 perc körüli.

5 9.2. Foltos csillagok Bizonyos csillagok fénygörbéi igen hasonló jellegzetességeket mutatnak a fedési változókéhoz. Ez utóbbiakkal itt, csillagfizika tárgyban nem foglalkozunk, mert fénygörbéik elemzése inkább csak geometriai problémát jelent, de az analógia segít egy csillagfizikai jelenség vizsgálatában is. E csillagoknál a fényesség bizonyos időszakokban előálló periodikus csökkenését nagyobb felületre kiterjedő sötétebb foltokkal lehet magyarázni, amit a napfoltokhoz hasonlóan képzelünk. A különlegesség az, hogy a Napon a legnagyobb foltok területe sem lehet a 3000 SAU- nál nagyobb (Solar Area Unit - a látható félgömb felszínének egymilliomod része), ezt pedig távoli csillagokon nem lehetne detektálni. A Napon a foltméretet a foltok mágneses nyomása és a konvektív környezet mechanikai nyomása közötti egyensúly határozza meg. Igen nagy méretű foltokhoz a csillagokon gyors rotáció, erős mágneses tér, jelentős konvektív mozgás szükséges. Meg lehet említeni, hogy a Napon is vannak olyan sötét alakzatok, melyek a látható félgömb jelentős részét elfoglalhatják, de ezek a nagyenergiájú tartományban, UV és röntgenfényben észlelhetők, ezek az ún. koronalyukak. Elképzelhető, hogy hasonló alakzatok a foltos csillagokéi is. A jelenség észlelésére és elemzésére többek között egy különleges eljárást is kifejlesztettek, a Zeeman- Doppler imaging technikát. A mágneses terek mérésére alkalmas Zeeman-effektus a Doppler-effektus figyelembevételével alkalmazható arra, hogy a csillag forgása során hozzánk közeledő, majd távolodó intenzív mágneses tér jelenlétét kimutathassuk. A foltos csillagok legismertebb képviselője a BY Draconis Fősorozat előtti változók Amint azt a 2. előadásban említettük, a fősorozat előtti összehúzódás nem kvázistacionárius állapotokon keresztül zajlik, hanem jelentős ingadozások léphetnek fel, melyek azonban nem pulzációs természetűek. Ennek a jelenségnek a legismertebb típusa a T Tauri változóról van elnevezve. Ezek a csillagok kis tömegűek, általában kapcsolatban a szülő molekulafelhővel, de nem feltétlenül beleágyazva. Egy másik típus az FU Orionis, mely jelentős kitöréseket is produkál. Igen érdekes az YY Orionis esete, melynek a fent említett P Cygni profillal ellentétes jellegzetessége van, itt a csillag spektrumvonalától a hosszabb hullámhossz irányában van egy kis abszorpciós bemélyedése, ami tőlünk való távolodást, vagyis gázbeáramlást jelent, ez a formálódó csillag fő folyamata Eruptív és kataklizmikus változók (később...

A változócsillagok. A pulzáló változók.

A változócsillagok. A pulzáló változók. A változócsillagok. Tulajdonképpen minden csillag változik az élete során. Például a kémiai összetétele, a luminozitása, a sugara, az átlagsűrűsége, stb. Ezek a változások a mi emberi élethosszunkhoz képest

Részletesebben

Pulzáló változócsillagok és megfigyelésük I.

Pulzáló változócsillagok és megfigyelésük I. Pulzáló változócsillagok és megfigyelésük I. 6. Vörös óriás (és szuperóriás) változócsillagok Bognár Zsófia Sódor Ádám ELTE MTA CSFK CSI 2017.11.21. 2 Bognár Zsófia, Sódor Ádám Pulzáló váltcsill. és megfigy.

Részletesebben

Pulzáló változócsillagok és megfigyelésük I.

Pulzáló változócsillagok és megfigyelésük I. Pulzáló változócsillagok és megfigyelésük I. 3. Vörös óriás (és szuperóriás) változócsillagok Bognár Zsófia Sódor Ádám ELTE MTA CSFK CSI 2015.11.03. 2 Bognár Zsófia, Sódor Ádám Pulzáló váltcsill. és megfigy.

Részletesebben

Csillagfejlődés és változócsillagok

Csillagfejlődés és változócsillagok Csillagfejlődés és változócsillagok Kiss László MTA CSFK KTM CSI A víz fázisdiagramja Hertzsprung-Russell-diagram ~ kb. a csillagok fázisdiagramja (S. Balm) Változékonyság a HRD-n: minden vörös óriás

Részletesebben

Galaxisfelmérések: az Univerzum térképei. Bevezetés a csillagászatba május 12.

Galaxisfelmérések: az Univerzum térképei. Bevezetés a csillagászatba május 12. Galaxisfelmérések: az Univerzum térképei Bevezetés a csillagászatba 4. 2015. május 12. Miről lesz szó? Hubble vagy nem Hubble? Galaxisok, galaxishalmazok és az Univerzum szerkezete A műszerfejlődés útjai

Részletesebben

Csillagok parallaxisa

Csillagok parallaxisa Csillagok parallaxisa Csillagok megfigyelése elég fényesek, így nem túl nehéz, de por = erős extinkció, ami irányfüggő Parallaxis mérése spektroszkópiailag a mért spektrumra modellt illesztünk (kettőscsillagokra

Részletesebben

Csillagászati földrajz december 13. Kitekintés a Naprendszerből

Csillagászati földrajz december 13. Kitekintés a Naprendszerből Csillagászati földrajz 2018. december 13. Kitekintés a Naprendszerből Csillag: saját fénnyel világító égitest A csillagok tehát nem más fényét veri vissza (mint a bolygók, holdak, stb.) a gravitációs összehúzó

Részletesebben

Csillagászati megfigyelések

Csillagászati megfigyelések Csillagászati megfigyelések Napszűrő Föld Alkalmas szűrő nélkül szigorúan tilos a Napba nézni (még távcső nélkül sem szabad)!!! Solar Screen (műanyag fólia + alumínium) Olcsó, szürkés színezet. Óvatosan

Részletesebben

A Föld helye a Világegyetemben. A Naprendszer

A Föld helye a Világegyetemben. A Naprendszer A Föld helye a Világegyetemben A Naprendszer Mértékegységek: Fényév: az a távolság, amelyet a fény egy év alatt tesz meg. (A fény terjedési sebessége: 300.000 km.s -1.) Egy év alatt: 60.60.24.365.300 000

Részletesebben

Csillagászati észlelés gyakorlat I. 2. óra: Távolságmérés

Csillagászati észlelés gyakorlat I. 2. óra: Távolságmérés Csillagászati észlelés gyakorlat I. 2. óra: Távolságmérés Hajdu Tamás & Császár Anna & Perger Krisztina & Bőgner Rebeka A csillagászok egyik legnagyobb problémája a csillagászati objektumok távolságának

Részletesebben

Mérések a piszkés tetői kis és közepes felbontású spektrográffal

Mérések a piszkés tetői kis és közepes felbontású spektrográffal Mérések a piszkés tetői kis és közepes felbontású spektrográffal MTA CSFK CSI szeminárium 2012. december 13 http://www.konkoly.hu/staff/racz/spectrograph/ Medium resolution.html http://www.konkoly.hu/staff/racz/spectrograph/

Részletesebben

Pulzáló változócsillagok és megfigyelésük I.

Pulzáló változócsillagok és megfigyelésük I. Pulzáló változócsillagok és megfigyelésük I. 7. Cephei és SPB csillagok, megfigyelés Sódor Ádám ELTE MTA CSFK CSI 2015.11.10. 2 Sódor Ádám Pulzáló váltcsill. és megfigy. I. 6. Cep, SPB, megfigyelés 2 /

Részletesebben

Szatmáry Károly Változócsillagok

Szatmáry Károly Változócsillagok Szatmáry Károly Változócsillagok Azokat a csillagokat hívjuk változócsillagoknak, amelyeknek valamilyen jellemzőjük, fizikai paraméterük időben változik. Általában a fényesség változásáról van szó. A megfigyelésekből

Részletesebben

A galaxisok csoportjai.

A galaxisok csoportjai. A galaxisok csoportjai. Hubble ismerte fel és bizonyította, hogy a megfigyelhető ködök jelentős része a Tejútrendszeren kívül található. Mivel több galaxis távolságát határozta meg, ezért úgy gondolta,

Részletesebben

2011 Fizikai Nobel-díj

2011 Fizikai Nobel-díj 2011 Fizikai Nobel-díj MTA WFK SZFKI kollokvium SZFKI kollokvium 1 SZFKI kollokvium 2 SZFKI kollokvium 3 Galaxisunk rekonstruált képe SZFKI kollokvium 4 SZFKI kollokvium 5 SZFKI kollokvium 6 Cefeidák 1784

Részletesebben

Asztrometria egy klasszikus tudományág újjászületése. ELFT Fizikus Vándorgyűlés, Szeged, augusztus 25.

Asztrometria egy klasszikus tudományág újjászületése. ELFT Fizikus Vándorgyűlés, Szeged, augusztus 25. Asztrometria egy klasszikus tudományág újjászületése ELFT Fizikus Vándorgyűlés, Szeged, 2016. augusztus 25. Történeti visszapillantás Asztrometria: az égitestek helyzetének és mozgásának meghatározásával

Részletesebben

TRIGONOMETRIKUS PARALLAXIS. Közeli objektum, hosszú bázisvonal nagyobb elmozdulás.

TRIGONOMETRIKUS PARALLAXIS. Közeli objektum, hosszú bázisvonal nagyobb elmozdulás. TRIGONOMETRIKUS PARALLAXIS Közeli objektum, hosszú bázisvonal nagyobb elmozdulás. Napi parallaxis: a bázisvonal a földfelszín két pontja Évi parallaxis: a bázisvonal a földpálya két átellenes pontja. A

Részletesebben

A II. kategória Fizika OKTV mérési feladatainak megoldása

A II. kategória Fizika OKTV mérési feladatainak megoldása Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett

Részletesebben

Aktív magvú galaxisok és kvazárok

Aktív magvú galaxisok és kvazárok Aktív magvú galaxisok és kvazárok Dobos László Komplex Rendszerek Fizikája Tanszék dobos@complex.elte.hu É 5.60 2015. március 3. Tipikus vörös galaxis spektruma F λ 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 4000

Részletesebben

A csillagközi anyag. Interstellar medium (ISM) Bonyolult dinamika. turbulens áramlások MHD

A csillagközi anyag. Interstellar medium (ISM) Bonyolult dinamika. turbulens áramlások MHD A csillagközi anyag Interstellar medium (ISM) gáz + por Ebből jönnek létre az újabb és újabb csillagok Bonyolult dinamika turbulens áramlások lökéshullámok MHD Speciális kémia porszemcsék képződése, bomlása

Részletesebben

Milyen színűek a csillagok?

Milyen színűek a csillagok? Milyen színűek a csillagok? A fényesebb csillagok színét szabad szemmel is jól láthatjuk. Az egyik vörös, a másik kék, de vannak fehéren villódzók, sárga, narancssárga színűek is. Vajon mi lehet az eltérő

Részletesebben

SZAKDOLGOZAT Az extragalaktikus távolságlétra Takáts Katalin

SZAKDOLGOZAT Az extragalaktikus távolságlétra Takáts Katalin SZEGEDI TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI ÉS INFORMATIKAI KAR OPTIKAI ÉS KVANTUMELEKTRONIKAI TANSZÉK FIZIKA SZAK SZAKDOLGOZAT Az extragalaktikus távolságlétra Takáts Katalin Témavezető: Dr. Vinkó József,

Részletesebben

Változócsillagok. Molnár László

Változócsillagok. Molnár László Változócsillagok Molnár László CSILLAGÁSZATI ALAPTANFOLYAM 2013 Definíció Emberi időskálán mérhető változás a csillag megfigyelt fizikai paramétereiben Fényességben elektromágneses spektrum bármelyik tartományában

Részletesebben

A fémtartalom szerepe a csillagpulzációban

A fémtartalom szerepe a csillagpulzációban Szegedi Tudományegyetem Természettudományi és Informatikai Kar Fizika Doktori Iskola A fémtartalom szerepe a csillagpulzációban PhD értekezés Sziládi Katalin Témavezető: Dr. Vinkó József tudományos főmunkatárs

Részletesebben

BevCsil1 (Petrovay) A Föld alakja. Égbolt elfordul világtengely.

BevCsil1 (Petrovay) A Föld alakja. Égbolt elfordul világtengely. A FÖLD GÖMB ALAKJA, MÉRETE, FORGÁSA A Föld alakja Égbolt elfordul világtengely. Vízszintessel bezárt szöge helyfüggő földfelszín görbült. Dupla távolság - dupla szögváltozás A Föld gömb alakú További bizonyítékok:

Részletesebben

Nemzetközi Csillagászati és Asztrofizikai Diákolimpia Szakkör Távcsövek és kozmológia Megoldások

Nemzetközi Csillagászati és Asztrofizikai Diákolimpia Szakkör Távcsövek és kozmológia Megoldások Nemzetközi Csillagászati és Asztrofizikai Diákolimpia Szakkör 2015-16 7. Távcsövek és kozmológia Megoldások Bécsy Bence, Dálya Gergely 1. Bemelegítő feladatok B1. feladat A nagyítást az objektív és az

Részletesebben

A FÖLD KÖRNYEZETE ÉS A NAPRENDSZER

A FÖLD KÖRNYEZETE ÉS A NAPRENDSZER A FÖLD KÖRNYEZETE ÉS A NAPRENDSZER 1. Mértékegységek: Fényév: az a távolság, amelyet a fény egy év alatt tesz meg. A fény terjedési sebessége: 300.000 km/s, így egy év alatt 60*60*24*365*300 000 km-t,

Részletesebben

Bevezetés a csillagászatba II.

Bevezetés a csillagászatba II. Bevezetés a csillagászatba II. Dobos László dobos@complex.elte.hu É 5.60 2017. április 4. Csillagok fényessége Luminozitás a csillag által egységnyi idő alatt kibocsátott energia jele L, mértékegysége

Részletesebben

A világegyetem szerkezete és fejlődése. Összeállította: Kiss László

A világegyetem szerkezete és fejlődése. Összeállította: Kiss László A világegyetem szerkezete és fejlődése Összeállította: Kiss László Szerkezeti felépítés A világegyetem galaxisokból és galaxis halmazokból áll. A galaxis halmaz, gravitációsan kötött objektumok halmaza.

Részletesebben

Elfedett pulzációk vizsgálata a KIC fedési kettősrendszerben

Elfedett pulzációk vizsgálata a KIC fedési kettősrendszerben Elfedett pulzációk vizsgálata a KIC 3858884 fedési kettősrendszerben Bókon András II. éves Fizikus MSc szakos hallgató Témavezető: Dr. Bíró Imre Barna tudományos munkatárs, 216. 11. 25. Csillagok pulzációja

Részletesebben

Hullámmozgás. Mechanikai hullámok A hang és jellemzői A fény hullámtermészete

Hullámmozgás. Mechanikai hullámok A hang és jellemzői A fény hullámtermészete Hullámmozgás Mechanikai hullámok A hang és jellemzői A fény hullámtermészete A hullámmozgás fogalma A rezgési energia térbeli továbbterjedését hullámmozgásnak nevezzük. Hullámmozgáskor a közeg, vagy mező

Részletesebben

A csillagok kialakulása és fejlődése; a csillagok felépítése

A csillagok kialakulása és fejlődése; a csillagok felépítése A csillagok kialakulása és fejlődése; a csillagok felépítése Készítette: Szalai Tamás (csillagász, PhD-hallgató, SZTE) Lektorálta: Dr. Szatmáry Károly (egy. docens, SZTE Kísérleti Fizikai Tsz.) 2011. március

Részletesebben

Félszabályos változócsillagok fénygörbe-analízise

Félszabályos változócsillagok fénygörbe-analízise Szegedi Tudományegyetem Természettudományi és Informatikai Kar Kísérleti Fizikai Tanszék SZAKDOLGOZAT Félszabályos változócsillagok fénygörbe-analízise Készítette: Onozó Ervin Fizika BSc szakos hallgató

Részletesebben

A csillag- és bolygórendszerek.

A csillag- és bolygórendszerek. A csillag- és bolygórendszerek. A csillagok tömegének meghatározásánál már szó esett a kettőscsillagoknál. Most részletesebben foglalkozunk velük. Régóta tudjuk, hogy a csillagok jelentős részének van

Részletesebben

RV Tauri-típusú pulzáló változócsillagok vizsgálata az űrtávcsövek korszakában

RV Tauri-típusú pulzáló változócsillagok vizsgálata az űrtávcsövek korszakában SZEGEDI TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI ÉS INFORMATIKAI KAR FIZIKA DOKTORI ISKOLA RV Tauri-típusú pulzáló változócsillagok vizsgálata az űrtávcsövek korszakában Doktori értekezés tézisei Bódi Attila

Részletesebben

Nemzetközi Csillagászati és Asztrofizikai Diákolimpia Szakkör Asztrofizika II. és Műszerismeret Megoldások

Nemzetközi Csillagászati és Asztrofizikai Diákolimpia Szakkör Asztrofizika II. és Műszerismeret Megoldások Nemzetközi Csillagászati és Asztrofizikai Diákolimpia Szakkör 2015-16 4. Asztrofizika II. és Műszerismeret Megoldások Dálya Gergely, Bécsy Bence 1. Bemelegítő feladatok B.1. feladat Írjuk fel a Pogson-képletet:

Részletesebben

Válaszok Szatmáry Károly kérdéseire

Válaszok Szatmáry Károly kérdéseire Válaszok Szatmáry Károly kérdéseire Szabó Róbert: Pulzáló változócsillagok és exobolygók kutatásai a precíziós űrfotometria korában című akadémiai doktori értekezésével kapcsolatban 1.1 A kappa-mechanizmus

Részletesebben

Az Univerzum szerkezete

Az Univerzum szerkezete Az Univerzum szerkezete Készítette: Szalai Tamás (csillagász, PhD-hallgató, SZTE) Lektorálta: Dr. Szatmáry Károly (egy. docens, SZTE Kísérleti Fizikai Tsz.) 2011. március Kifelé a Naprendszerből: A Kuiper(-Edgeworth)-öv

Részletesebben

Pulzáló és kataklizmikus változócsillagok

Pulzáló és kataklizmikus változócsillagok SZEGEDI TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI ÉS INFORMATIKAI KAR KÍSÉRLETI FIZIKA TANSZÉK Szakdolgozat Pulzáló és kataklizmikus változócsillagok Y Lyncis és SN 1961V Készítette: Témavezető: SZÁLDOBÁGYI Csaba

Részletesebben

ŰRCSILLAGÁSZAT VÁLTOZÓCSILLAGOK A HST SZEMÉVEL. MSc kurzus Szegedi Tudományegyetem

ŰRCSILLAGÁSZAT VÁLTOZÓCSILLAGOK A HST SZEMÉVEL. MSc kurzus Szegedi Tudományegyetem ŰRCSILLAGÁSZAT VÁLTOZÓCSILLAGOK A HST SZEMÉVEL MSc kurzus Szegedi Tudományegyetem Miért éppen a változócsillagok? Hogyan alkalmazható erre a HST? GSC: Guide Star Catalogue 1989 ben 15m ig, 2001: GSC II

Részletesebben

A légköri sugárzás. Sugárzási törvények, légköri veszteségek, energiaháztartás

A légköri sugárzás. Sugárzási törvények, légköri veszteségek, energiaháztartás A légköri sugárzás Sugárzási törvények, légköri veszteségek, energiaháztartás Sugárzási törvények I. 0. Minden T>0 K hőmérsékletű test sugároz 1. Planck törvény: minden testre megadható egy hőmérséklettől

Részletesebben

11.3. Az Achilles- ín egy olyan rugónak tekinthető, amelynek rugóállandója 3 10 5 N/m. Mekkora erő szükséges az ín 2 mm- rel történő megnyújtásához?

11.3. Az Achilles- ín egy olyan rugónak tekinthető, amelynek rugóállandója 3 10 5 N/m. Mekkora erő szükséges az ín 2 mm- rel történő megnyújtásához? Fényemisszió 2.45. Az elektromágneses spektrum látható tartománya a 400 és 800 nm- es hullámhosszak között található. Mely energiatartomány (ev- ban) felel meg ennek a hullámhossztartománynak? 2.56. A

Részletesebben

Hőmérsékleti sugárzás

Hőmérsékleti sugárzás Ideális fekete test sugárzása Hőmérsékleti sugárzás Elméleti háttér Egy ideális fekete test leírható egy egyenletes hőmérsékletű falú üreggel. A fala nemcsak kibocsát, hanem el is nyel energiát, és spektrális

Részletesebben

Antipin mérések III. 2003 szeptember 2005 december. Kapcsolódó eredmények a Blazhko csillagok általános tulajdonságainak vizsgálatában

Antipin mérések III. 2003 szeptember 2005 december. Kapcsolódó eredmények a Blazhko csillagok általános tulajdonságainak vizsgálatában Antipin mérések III 2003 szeptember 2005 december Kapcsolódó eredmények a Blazhko csillagok általános tulajdonságainak vizsgálatában 2005. december 08. A sváb-hegyi 60cm-es távcső korszerűsítése 9000eFt

Részletesebben

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:

Részletesebben

Válasz Dr. Jurcsik Johanna opponens kérdéseire

Válasz Dr. Jurcsik Johanna opponens kérdéseire Válasz Dr. Jurcsik Johanna opponens kérdéseire Köszönöm Dr. Jurcsik Johannának az értekezésem gondos átolvasását, a véleményét, valamint a megjegyzéseket és kérdéseket, melyeket az alábbiakban válaszolok

Részletesebben

Pósfay Péter. ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G.

Pósfay Péter. ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G. Pósfay Péter ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G. A Naphoz hasonló tömegű csillagok A Napnál 4-8-szor nagyobb tömegű csillagok 8 naptömegnél nagyobb csillagok Vörös óriás Szupernóva

Részletesebben

Termodinamika (Hőtan)

Termodinamika (Hőtan) Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi

Részletesebben

Hangintenzitás, hangnyomás

Hangintenzitás, hangnyomás Hangintenzitás, hangnyomás Rezgés mozgás energia A hanghullámoknak van energiája (E) [J] A detektor (fül, mikrofon, stb.) kisiny felületű. A felületegységen áthaladó teljesítmény=intenzitás (I) [W/m ]

Részletesebben

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István OPTIKA Fénykibocsátás mechanizmusa Dr. Seres István Bohr modell Niels Bohr (19) Rutherford felfedezte az atommagot, és igazolta, hogy negatív töltésű elektronok keringenek körülötte. Niels Bohr Bohr ezt

Részletesebben

SZEGEDI TUDOMÁNYEGYETEM Természettudományi és Informatikai Kar Kísérleti Fizikai Tanszék. Doktori/Ph.D. értekezés tézisfüzet

SZEGEDI TUDOMÁNYEGYETEM Természettudományi és Informatikai Kar Kísérleti Fizikai Tanszék. Doktori/Ph.D. értekezés tézisfüzet SZEGEDI TUDOMÁNYEGYETEM Természettudományi és Informatikai Kar Kísérleti Fizikai Tanszék Doktori/Ph.D. értekezés tézisfüzet Csillagok, csillaghalmazok és kisbolygók fizikai paramétereinek meghatározása

Részletesebben

Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 4. (e) Kvantummechanika Utolsó módosítás: 2014. december 3. 1 A Klein-Gordon-egyenlet (1) A relativisztikus dinamikából a tömegnövekedésre és impulzusra vonatkozó

Részletesebben

A világegyetem elképzelt kialakulása.

A világegyetem elképzelt kialakulása. A világegyetem elképzelt kialakulása. Régi-régi kérdés: Mi volt előbb? A tyúk vagy a tojás? Talán ez a gondolat járhatott Georges Lamaitre (1894-1966) belga abbénak és fizikusnak a fejében, amikor kijelentette,

Részletesebben

ahol m-schmid vagy geometriai tényező. A terhelőerő növekedésével a csúszó síkban fellép az un. kritikus csúsztató feszültség τ

ahol m-schmid vagy geometriai tényező. A terhelőerő növekedésével a csúszó síkban fellép az un. kritikus csúsztató feszültség τ Egykristály és polikristály képlékeny alakváltozása A Frenkel féle modell, hibátlan anyagot feltételezve, nagyon nagy folyáshatárt eredményez. A rácshibák, különösen a diszlokációk jelenléte miatt a tényleges

Részletesebben

A TételWiki wikiből. A Big Bang modell a kozmológia Standard modellje. Elsősorban megfigyelésekre és az általános relativitáselméletre épül.

A TételWiki wikiből. A Big Bang modell a kozmológia Standard modellje. Elsősorban megfigyelésekre és az általános relativitáselméletre épül. 1 / 5 A TételWiki wikiből 1 Newton-féle gravitációs erőtörvény 2 Az ősrobbanás elmélet alapvető feltevései 3 Friedmann-egyenletek szemléletes értelme 4 Galaxisok kialakulása, morfológiája, Hubble törvény

Részletesebben

Hogyan lehet meghatározni az égitestek távolságát?

Hogyan lehet meghatározni az égitestek távolságát? Hogyan lehet meghatározni az égitestek távolságát? Először egy régóta használt, praktikus módszerről lesz szó, amelyet a térképészetben is alkalmaznak. Ez a geometriai háromszögelésen alapul, trigonometriai

Részletesebben

Kettőscsillagok. Molnár László

Kettőscsillagok. Molnár László Kettőscsillagok Molnár László CSILLAGÁSZATI ALAPTANFOLYAM 2013 Mi a kettőscsillag? dinamikailag összetartozó rendszerek: közös tömegközéppont körül keringenek kialakulásuktól fogva együtt fejlődnek elnevezés:

Részletesebben

Mechanikai hullámok. Hullámhegyek és hullámvölgyek alakulnak ki.

Mechanikai hullámok. Hullámhegyek és hullámvölgyek alakulnak ki. Mechanikai hullámok Mechanikai hullámnak nevezzük, ha egy anyagban az anyag részecskéinek rezgésállapota továbbterjed. A mechanikai hullám terjedéséhez tehát szükség van valamilyen anyagra (légüres térben

Részletesebben

Galaxishalmazok. Komplex Rendszerek Fizikája Tanszék március 17.

Galaxishalmazok. Komplex Rendszerek Fizikája Tanszék március 17. Galaxishalmazok Dobos László Komplex Rendszerek Fizikája Tanszék dobos@complex.elte.hu É 5.60 2017. március 17. Szatellitgalaxisok Nagy galaxisok körül keringő törpegalaxisok a Tejút körül 14-16 szatellit,

Részletesebben

Trócsányi Zoltán. Kozmológia alapfokon

Trócsányi Zoltán. Kozmológia alapfokon Magyar fizikatanárok a CERN-ben 2015. augusztus 16-22. Trócsányi Zoltán Kozmológia alapfokon Részecskefizikai vonatkozásokkal Hogy kerül a csizma az asztalra? Az elmúlt negyedszázad a kozmológia forradalmát,

Részletesebben

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg

Részletesebben

Gaia a következő évtized nagy űrcsillagászati projektje

Gaia a következő évtized nagy űrcsillagászati projektje Bevezetés Gaia a következő évtized nagy űrcsillagászati projektje Szabados László MTA Konkoly Thege Miklós Csillagászati Kutatóintézete Az ESA 1989 1993 között működött Hipparcos asztrometriai űrmissziójának

Részletesebben

ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK. Kalocsai Angéla, Kozma Enikő

ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK. Kalocsai Angéla, Kozma Enikő ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK Kalocsai Angéla, Kozma Enikő RUTHERFORD-FÉLE ATOMMODELL HIBÁI Elektromágneses sugárzáselmélettel ellentmondásban van Mivel: a keringő elektronok gyorsulnak Energiamegmaradás

Részletesebben

Csillagászat (csillagok és csillaghalmazok)

Csillagászat (csillagok és csillaghalmazok) Fizika és csillagászat tagozatok. Hétfő 16:00 Gróh-terem 1. Ács Barbara Klagyivik Péter (ELTE TTK) 2. Csorba Katalin (ELTE TTK) 3. Gáspár András Makai Zoltán (SZTE TTK) 4. Juhász Attila (ELTE TTK) 5. Jurkovity

Részletesebben

A hordófelület síkmetszeteiről

A hordófelület síkmetszeteiről 1 A hordófelület síkmetszeteiről Előző dolgozatunkban melynek címe: Ismét egy érdekes mechanizmusról azon hiányérzetünknek adtunk hangot, hogy a hordószerű test görbe felülete nem kapott nevet. Itt elneveztük

Részletesebben

A fémtartalom szerepe a csillagpulzációban

A fémtartalom szerepe a csillagpulzációban Szegedi Tudományegyetem Természettudományi és Informatikai Kar Fizika Doktori Iskola A fémtartalom szerepe a csillagpulzációban Doktori (PhD) értekezés tézisei Sziládi Katalin Témavezető: Dr. Vinkó József

Részletesebben

Sugárzásos hőtranszport

Sugárzásos hőtranszport Sugárzásos hőtranszport Minden test bocsát ki sugárzást. Ennek hullámhossz szerinti megoszlása a felület hőmérsékletétől függ (spektrum, spektrális eloszlás). Jelen esetben kérdés a Nap és a földi felszínek

Részletesebben

Rezgőmozgás, lengőmozgás

Rezgőmozgás, lengőmozgás Rezgőmozgás, lengőmozgás A rezgőmozgás időben ismétlődő, periodikus mozgás. A rezgő test áthalad azon a helyen, ahol egyensúlyban volt a kitérítés előtt, és két szélső helyzet között periodikus mozgást

Részletesebben

Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez

Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez A Név... Válassza ki a helyes mértékegységeket! állandó intenzitás abszorbancia moláris extinkciós A) J s -1 - l mol -1 cm B) W g/cm 3 - C) J s -1 m -2 - l mol -1 cm -1 D) J m -2 cm - A Wien-féle eltolódási

Részletesebben

Sódorné Bognár Zsófia

Sódorné Bognár Zsófia Doktori értekezés Pulzáló fehér törpecsillagok asztroszeizmológiai vizsgálata Sódorné Bognár Zsófia Témavezető: Dr. Paparó Margit az MTA doktora, tudományos tanácsadó MTA Konkoly Thege Miklós Csillagászati

Részletesebben

A KEPLER-ÛRTÁVCSÔ EGY SZÁZÉVES REJTÉLY NYOMÁBAN

A KEPLER-ÛRTÁVCSÔ EGY SZÁZÉVES REJTÉLY NYOMÁBAN A KEPLER-ÛRTÁVCSÔ EGY SZÁZÉVES REJTÉLY NYOMÁBAN Benkő József MTA CSFK Konkoly Thege Miklós Csillagászati Intézet A címben szereplô rejtély az RR Lyrae csillagok Blazskó-effektusa. A Kepler-ûrtávcsôrôl

Részletesebben

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői Rezgés, oszcilláció Rezgés, Hullámok Fogorvos képzés 2016/17 Szatmári Dávid (david.szatmari@aok.pte.hu) 2016.09.26. Bármilyen azonos időközönként ismétlődő mozgást, periodikus mozgásnak nevezünk. A rezgési

Részletesebben

Hullámok, hanghullámok

Hullámok, hanghullámok Hullámok, hanghullámok Hullámokra jellemző mennyiségek: Amplitúdó: a legnagyobb, maximális kitérés nagysága jele: A, mértékegysége: m (egyéb mértékegységek: dm, cm, mm, ) Hullámhossz: két azonos rezgési

Részletesebben

Fekete lyukak, gravitációs hullámok és az Einstein-teleszkóp

Fekete lyukak, gravitációs hullámok és az Einstein-teleszkóp Fekete lyukak, gravitációs hullámok és az Einstein-teleszkóp GERGELY Árpád László Fizikai Intézet, Szegedi Tudományegyetem 10. Bolyai-Gauss-Lobachevsky Konferencia, 2017, Eszterházy Károly Egyetem, Gyöngyös

Részletesebben

Forró szubtörpe csillagok és szubtörpe-fősorozati kettőscsillagok vizsgálatai

Forró szubtörpe csillagok és szubtörpe-fősorozati kettőscsillagok vizsgálatai SZEGEDI TUDOMÁNYEGYETEM KÍSÉRLETI FIZIKAI TANSZÉK Forró szubtörpe csillagok és szubtörpe-fősorozati kettőscsillagok vizsgálatai Diplomamunka Készítette: Németh Péter, V. csillagász hallgató Témavezetők:

Részletesebben

Amit megnéztünk a nyári égbolton

Amit megnéztünk a nyári égbolton Amit megnéztünk a nyári égbolton Szabadszemes észlelés Tejút Csillagszőnyeg és az abban látható porfelhők Küllős spirálgalaxis. Mai becslések alapján 100-400 milliárd csillag található benne, átmérője

Részletesebben

Biofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése

Biofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése Mi a biofizika tárgya? Biofizika Csik Gabriella Biológiai jelenségek fizikai leírása/értelmezése Pl. szívműködés, membránok szerkezete és működése, érzékelés stb. csik.gabriella@med.semmelweis-univ.hu

Részletesebben

Sódorné Bognár Zsófia. Pulzáló fehér törpecsillagok asztroszeizmológiai vizsgálata

Sódorné Bognár Zsófia. Pulzáló fehér törpecsillagok asztroszeizmológiai vizsgálata Sódorné Bognár Zsófia Pulzáló fehér törpecsillagok asztroszeizmológiai vizsgálata doktori értekezés tézisei Témavezető: Dr. Paparó Margit az MTA doktora, tudományos tanácsadó MTA Konkoly Thege Miklós Csillagászati

Részletesebben

Asztroszeizmológia űreszközökkel

Asztroszeizmológia űreszközökkel Asztroszeizmológia űreszközökkel Paparó Margit MTA Konkoly Thege Miklós Csillagászati Kutatóintézete A csillagászat a legősibb tudományok egyike. Persze a tudomány kifejezésen mindig az adott kor ismereteinek

Részletesebben

2016. április 5. Balogh Gáspár Sámuel Kvazárok április 5. 1 / 28

2016. április 5. Balogh Gáspár Sámuel Kvazárok április 5. 1 / 28 Kvazárok Balogh Gáspár Sámuel 2016. április 5. Balogh Gáspár Sámuel Kvazárok 2016. április 5. 1 / 28 Jellemző sűrűségadatok ρ universe 10 27 kg Balogh Gáspár Sámuel Kvazárok 2016. április 5. 2 / 28 Jellemző

Részletesebben

FELADATOK A DINAMIKUS METEOROLÓGIÁBÓL 1. A 2 m-es szinten végzett standard meteorológiai mérések szerint a Földön valaha mért második legmagasabb hőmérséklet 57,8 C. Ezt San Luis-ban (Mexikó) 1933 augusztus

Részletesebben

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás 3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás 15. Digitális Alakzatrekonstrukció Méréstechnológia, Ponthalmazok regisztrációja http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiiav54

Részletesebben

6. A FÖLD TENGELYKÖRÜLI FORGÁSA.

6. A FÖLD TENGELYKÖRÜLI FORGÁSA. 6. A FÖLD TENGELYKÖRÜLI FORGÁSA. A Föld saját tengelye körüli forgását az w r forgási szögsebességvektor jellemzi, ezért a Föld forgásának leírásához ismernünk kell a szögsebességvektor térbeli irányát

Részletesebben

Fejezetek az asztrofizika történetéből. A csillagászat története 2., május 3.

Fejezetek az asztrofizika történetéből. A csillagászat története 2., május 3. Fejezetek az asztrofizika történetéből A csillagászat története 2., 2018. május 3. Csillagászat és fizika Arisztotelész, Ptolemaiosz: a fizika (változó anyagi világ) és a csillagászat (változatlan, szabályos

Részletesebben

óra 1 3 5 7 9 11 13 15 17 19 21 23 24 C 6 5 3 3 9 14 12 11 10 8 7 6 6

óra 1 3 5 7 9 11 13 15 17 19 21 23 24 C 6 5 3 3 9 14 12 11 10 8 7 6 6 Időjárási-éghajlati elemek: a hőmérséklet, a szél, a nedvességtartalom, a csapadék 2010.12.14. FÖLDRAJZ 1 Az időjárás és éghajlat elemei: hőmérséklet légnyomás szél vízgőztartalom (nedvességtartalom) csapadék

Részletesebben

Új aspektusok a klasszikus cefeidák

Új aspektusok a klasszikus cefeidák Szabados László Új aspektusok a klasszikus cefeidák időbeli változásainak vizsgálatában Értekezés az MTA doktora cím megszerzéséért Budapest, 1997 Szüleim emlékének Tartalomjegyzék 1. Bevezetés... 1 2.

Részletesebben

Kiss L. László Pulzáló vörös óriáscsillagok

Kiss L. László Pulzáló vörös óriáscsillagok Kiss L. László Pulzáló vörös óriáscsillagok Értekezés az MTA doktora cím megszerzéséért Sydney, 2006 Tartalomjegyzék 1. Bevezetés 5 2. Vörös óriás változócsillagok 7 2.1. Út a vörös óriásokig...............................

Részletesebben

Abszorpció, emlékeztetõ

Abszorpció, emlékeztetõ Hogyan készültek ezek a képek? PÉCI TUDMÁNYEGYETEM ÁLTALÁN RVTUDMÁNYI KAR Fluoreszcencia spektroszkópia (Nyitrai Miklós; február.) Lumineszcencia - elemi lépések Abszorpció, emlékeztetõ Energia elnyelése

Részletesebben

A teljes elektromágneses spektrum

A teljes elektromágneses spektrum A teljes elektromágneses spektrum Fizika 11. Rezgések és hullámok 2019. március 9. Fizika 11. (Rezgések és hullámok) A teljes elektromágneses spektrum 2019. március 9. 1 / 18 Tartalomjegyzék 1 A Maxwell-egyenletek

Részletesebben

Abszorpciós spektrumvonalak alakja. Vonalak eredete (ld. előző óra)

Abszorpciós spektrumvonalak alakja. Vonalak eredete (ld. előző óra) Abszorpciós spektrumvonalak alakja Vonalak eredete (ld. előző óra) Nagysága Kiszélesedése Elem mennyiségének becslése a vonalerősségből Elemi statfiz Boltzmann-faktor: Megadja egy állapot súlyát a sokaságban

Részletesebben

Az ultrahangos mérőeszközök elterjedése a vízrajzi szolgálatban

Az ultrahangos mérőeszközök elterjedése a vízrajzi szolgálatban Országos Vízügyi Főigazgatóság General Directorate of Water Management 42. Meteorológiai Tudományos Napok 2016. Az ultrahangos mérőeszközök elterjedése a vízrajzi szolgálatban Lábdy Jenő főosztályvezető

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

Az északi pólus környéke 2. A csillagképek története és látnivalói, március 14.

Az északi pólus környéke 2. A csillagképek története és látnivalói, március 14. Az északi pólus környéke 2. A csillagképek története és látnivalói, 2018. március 14. Sárkány 2 m 3 m 4 m 5 m 6 m 1 5 10 57 144 Latin: Draco, birtokos: Draconis, rövidítés: Dra Méretbeli rangsor: 8. (1083

Részletesebben

Aktivitás csillagokon és iskolában

Aktivitás csillagokon és iskolában SZEGEDI TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI ÉS INFORMATIKAI KAR KÍSÉRLETI FIZIKAI TANSZÉK Aktivitás csillagokon és iskolában Szakdolgozat Készítette: Témavezető: Csorvási Róbert, V. éves fizika hallgató

Részletesebben

Bevezetés a kozmológiába 1: a Világegyetem tágulása

Bevezetés a kozmológiába 1: a Világegyetem tágulása Horváth Dezső: Kozmológia-1 HTP-2011, CERN, 2011.08.17. p. 1/24 Bevezetés a kozmológiába 1: a Világegyetem tágulása HTP-2011, CERN, 2011 augusztus 17. Horváth Dezső horvath@rmki.kfki.hu MTA KFKI Részecske

Részletesebben

N I. 02 B. Mágneses anyagvizsgálat G ép. 118 2011.11.30. A mérés dátuma: A mérés eszközei: A mérés menetének leírása:

N I. 02 B. Mágneses anyagvizsgálat G ép. 118 2011.11.30. A mérés dátuma: A mérés eszközei: A mérés menetének leírása: N I. 02 B A mérés eszközei: Számítógép Gerjesztésszabályzó toroid transzformátor Minták Mágneses anyagvizsgálat G ép. 118 A mérés menetének leírása: Beindítottuk a számtógépet, Behelyeztük a mintát a ferrotestbe.

Részletesebben

A 35 éves Voyager őrszondák a napszél és a csillagközi szél határán

A 35 éves Voyager őrszondák a napszél és a csillagközi szél határán A 35 éves Voyager őrszondák a napszél és a csillagközi szél határán Király Péter MTA Wigner Fizikai Kutatóközpont RMKI KFFO İsrégi kérdés: meddig terjedhet Napisten birodalma? Napunk felszíne, koronája,

Részletesebben

Földünk a világegyetemben

Földünk a világegyetemben Földünk a világegyetemben A Tejútrendszer a Lokális Galaxiscsoport egyik küllős spirálgalaxisa, melyben a Naprendszer és ezen belül Földünk található. 200-400 milliárd csillag található benne, átmérője

Részletesebben

Sugárzáson, és infravörös sugárzáson alapuló hőmérséklet mérés.

Sugárzáson, és infravörös sugárzáson alapuló hőmérséklet mérés. Sugárzáson, és infravörös sugárzáson alapuló hőmérséklet mérés. A sugárzáson alapuló hőmérsékletmérés (termográfia),azt a fizikai jelenséget használja fel, hogy az abszolút nulla K hőmérséklet (273,16

Részletesebben

DIPLOMAMUNKA. maximumidőpontjainak O-C vizsgálata SZEGEDI TUDOMÁNYEGYETEM. Témavezető: Dr. Szabó M. Gyula TERMÉSZETTUDOMÁNYI ÉS INFORMATIKAI KAR 2009.

DIPLOMAMUNKA. maximumidőpontjainak O-C vizsgálata SZEGEDI TUDOMÁNYEGYETEM. Témavezető: Dr. Szabó M. Gyula TERMÉSZETTUDOMÁNYI ÉS INFORMATIKAI KAR 2009. SZEGEDI TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI ÉS INFORMATIKAI KAR KÍSÉRLETI FIZIKAI TANSZÉK CSILLAGÁSZ SZAK DIPLOMAMUNKA Nagy amplitúdójú Delta Scuti változócsillagok maximumidőpontjainak O-C vizsgálata Szakáts

Részletesebben