Digitális Technika II.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Digitális Technika II."

Átírás

1 Pannon Egyetem Villamosmérnöki és Információs Tanszék Digitális Technika II. (VEMIVI2112D) 1. hét Digitális tervezés: Kombinációs hálózatok építőelemei Előadó: Dr. Vassányi István

2 Kapcsolódó jegyzet, segédanyag: Oktatás Tantárgyak Digitális Technika II. (VEMIVI2112D) Fóliák, óravázlatok (.ppt) Feltöltésük folyamatosan 2

3 Digitális tervezés építőelemei Az alacsonyabb absztrakciós szintről (kapuk) feljebb kell lépni a magasabb hierarchia szintek felé (összetett digitális építőelemek). Itt helyezkednek el a következő alapvető építőelemeink, pl.: Összeadók (adder), Regiszterek, memóriák Multiplexerek stb. 3

4 Biztosítani kell a tervezőnek: Adatmozgatás egyik elemtől a másikig (jelvezetékek, buszok) Több forrásból származó adat kiválasztása (multiplexálás) Forrásadat irányítása (routing) a cél felé (demultiplexálás) Adattranszformálás (ha szükséges): kódolás-dekódolás Adatok aritmetikai összehasonlítása (komparálás) Logikai, aritmetikai műveletvégzés adatokon (ALU) 4

5 Logikai (Kombinációs) hálózatok építőelemei 5

6 Logikai hálózatok legfontosabb építőelemei Multiplexer (MUX) Demultiplexer (DEMUX) Dekódoló (decoder) áramkör Kódoló (encoder) áramkör Komparátor (comparator, CMP) Univerzális logikai áramkör Bináris műveletvégző egységek: Összeadók, kivonók, ALU stb. 6

7 Multiplexer/Demultiplexer ( útvonalválasztó ) Cél, az eszköz vagy eszközben lévő komponensek (K.H-ok) kivezetéseinek illetve bemeneteinek számának korlátozása Alkalmazás: Pl. memóriák címzése, indexelése esetén Buszok jeleinek multiplexálása, demultiplexálása Adatlapok letöltése (ingyenes helyről): pl: 7

8 1. Multiplexer ( útvonalválasztó ) Olyan áramköri elem, amely több lehetséges bemenet (A,B) közül választ ki egyet, az S selector jel(ek) hatására, és a kiválasztott bemenetet a kimenettel köti össze. Működése hasonló a mechanikus kapcsolókéhoz. Például: S=0 S=1 Két-állapotú mechanikus kapcsoló 5:1 MUX: Sztereo erősítő kapcsolója Y = A S + B S 8

9 Példa 1: Két-állapotú kapcsoló Legyen Y: kimenet, A, B: bemenetek, amik közül S választ. Ekkor: Y = A S + B S A két-állapotú kapcsolót leíró mixed-logic hálózat is lehet (ha A.H, B.H, S.H és Y.H): Log NOT! 9

10 Példa 2: Két-állapotú, engedélyező bemenettel rendelkező kapcsoló EN (Enable vagy STROBE jel): engedélyező jel S: selector (kapcsoló állása) A, B: bemenetek, Y: kimenet Y = EN ( A S + B S) Mixed-logic kapcsolási rajza (ha A.H, B.H, Y.H, de EN.L): Kereskedelmi forgalomban kapható! (példa: 2:1 MUX) EN.L 10

11 TTL 74LS157-2:1 MUXok alkalmazása Quad (4 db) 2-bemenetű 2:1 MUX-ból áll. Közös S, EN jelek. 4 db Y(1,2,3,4) kimenet EN.L 2:1 MUX szimbóluma 2:1 MUX áramköri kivezetések jelöléseivel Y = EN ( A S + B S) 11

12 Példa: 4:1 Multiplexer N kiválasztó jel -> 2^N bemenet, 1 kimenet Példa: 4:1 MUX B e m e n e t x1 MUX So S1 Y Kiválasztás 2^N számú bemenet közül választ egyet (Y), mint egy kapcsoló. Rendelkezhet EN bemenettel is. 12

13 Multiplexer: általános szabályok 2^n bemenet esetén n db selector jelet kell definiálni (bináris kódban megadva) Pl. 4:1 Mux igazságtáblázata: S1 S0, S1: selector jelek Input 1 4: 4 db bemenet S0 Kiválasztott input pozíció 0 0 Input Input Input Input 4 Kereskedelmi forgalomban ált. 2-,4-,8-,16-, 32-bites MUX-ok is kaphatóak. 13

14 MUX: Look-Up-Table (LUT) Táblázatban keresés input kiválasztás MUX selector (S) jeleinek bináris kódjai (mintázatai), mint a bemenetek címe (address vagy index) jelennek meg Az adatbemenetek (inputok) táblázatos vagy vektoros formában adottak. A MUX tehát egy 1-bites hardveres megvalósítása a szoftveres LUT táblázat kiolvasásnak. Fontos! Memóriákkal való műveletvégzés (címzésük, indexelés stb.) mindig a MUX-ok segítségével történik, nem LUT-val. 14

15 LUT megvalósítások: Szoftveres Look-up-Table bites bejegyzések a memóriában index n 1-bites bejegyzések a LUT-ban n N:1 MUX táblázatban keresés eredménye (érték) n táblázatban keresés eredménye (érték) index n Hardveres Look-up-Table: MUX-ból felépítve (1 bites táblázat keresés) 15

16 2. Demultiplexer Olyan áramköri elem, amely több kimenet közül választ ki egyet, a selector jel(ek) hatására, és a kiválasztott kimenetet a bemenettel köti össze. (Multiplexerrel ellentétes funkciót tölt be.) Működése hasonló a mechanikus elosztó (distributor) kapcsolókéhoz. Például: S=0 S=1 Sztereo kimeneti erősítő Front sp. = OUT S Rear sp. = OUT S 16

17 Példa - 1:4 Demultiplexer TTL 74 LS139 duál 1:4 demultiplexer Kereskedelmi forgalomban kapható G: egyetlen demultiplexálandó bemenet A,B: routing control/selector jelek (bináris kód) 4-kimenetből 3 lehet False/Hamis (0), egyet kivéve, amelyik a kiválasztott (annak az értéke a bemenettől függően lehet T/F) Mixed logika T=L! (~0V) 17

18 Példa - 1:4 Demultiplexer (folyt) Kanonikus táblázat Demultiplexer logika G B A Y0 Y1 Y2 Y3 0 x x T=L! Feszültség-logikai tábla 74'LS139 feszültség-logika G.L B.H A.H Y0.L Y1.L Y2.L Y3.L H x x H H H H L H H L H H H L H L H L H H L L H H H L H L L L H H H L Demultiplexer logikai egyenletei: Y 0 = B A G Y1 = B A G Y 2 Y3 = B A G = B A G 18

19 Példa :8 Demultiplexer TTL 74 LS42-1:8 demultiplexer ( dekódoló ) Kereskedelmi forgalomban kapható D: egyetlen demultiplexálandó bemenete A,B,C: routing control jelek (bináris kód) 8-kimenet (Y0, Y7)mindegyike False, egyet kivéve, amelyik a kiválasztott (annak az értéke a bemenettől függően lehet T/F) (További két kimenettel dekódoló áramkör készíthető belőle:) Y8 = C B A D Y9 = C B A D T=L! 19

20 3. Dekódoló (decoder) áramkör Kódolt információ dekódolása (konverzió) Egy időben, egyszerre csak egyetlen logikai kimeneti változó (tehát a dekódolt) lehet igaz, a többi hamis! 2^N kimenet dekódolásához N bemenet szükséges! Gyakran alkalmazott eszköz Pl. numerikus memória-cím dekódolásával azonosíthatunk egy adott memóriacellát! Pl: opcode=műveleti kóddal azonosítunk egy kívánt funkciót (adott utasítást) pl. PDP-8-as számítógép Kapható tetszőleges 2-,3-,4- bemenetű IC-k formájában 20

21 Példa: DEC PDP-8 (egycímű gép) dekódoló logikája 12-bites szóhossz: 3-bites opcode (=8 művelet) + 9-bit utasítás cím (speciális operandus címzési módokat tett lehetővé) And, ADD, IncSkipZero, DepositClearAcc Jump Egyidőben csak egy utasítás teljesülhet! 21

22 TTL 74LS42 dekóder áramkör 3 8 dekóder áramkör (kibővíthető BCD-to- DECIMAL dekóderré, ha +1 bemenet van): (A,B,C) 3 bemenet, (1 7) 8 kimenet EN: engedélyező jel, (T=L) alacsony aktív A B C EN 'LS42 3x8 decoder Mixed logic szimbólum T=L! 22

23 Példa: 3x8 Dekódoló áramkör kapcsolási rajza ABC EN: engedélyező jel nélkül N bemenet esetén 2^N kimenete van Példa: 3x8 dekóder áramkör Példa: Hamming-kódú hibajavító áramkör Példa: egyszerű számítógép architektúra 23

24 Példa: 2x4 Dekódoló áramkör kapcsolási rajza (engedélyező bemenettel) AB EN: alacsony aktív állapotban működik 2 bemenő bit (A,B) 4 kimenő (dekódolt) bit (D0 D3) 24

25 Példa: BCD dekóder 74LS42 áramkör felhasználásával TTL 74LS42-ból 4-bemenet / max 16-kimenet Decimális számjegyeket dekódolja (0..9) //(10)1010 (15)1111 dont care nem definiált Így csak 10 kimenete van EN-lábat, mint a D legnagyobb helyiértékű bit-ként használjuk, False-nak definiáljuk!! A B C D 'LS42 BCD decoder Mixed logic szimbólum T=L!

26 4. Kódoló (encoder) áramkör A dekódoló áramkör ellentéte: bemenetek kódolt ábrázolásának egy formáját képzi Hagyományos encoder: csak egy bemenete lehet igaz egyszerre Priority encoder: több bemenete is igaz lehet egyszerre, de azok közül a legnagyobb bináris értékű, azaz prioritású bemenethez generál kódot! (kód: address, index stb. lehet) I/O, vagy IRQ jelek generálásánál használják leggyakrabban 26

27 Probléma: Priority encoder esetén Mi van akkor, ha még sincs igaz bemenete (mindegyik hamis)? Két megoldás van: 1.) módszer: Input vonalak megszámozása 1-től (D1) kezdődően, és a 0 kimeneti kód (itt: B;A = F;F) jelenti, hogy mind hamis volt. (X don t care) 2.) módszer: input vonalak megszámozása 0-tól (D0) kezdődően, és egy külön vezérlőjelet (W = T ) biztosítani arra, hogyha nincs igaz bemenete (F F F F) 27

28 TTL 74LS147 Priority encoder - kódoló áramkör 10-input, 4-output encoder 0 nincs bejelölve: amikor az összes bemenet False (lefoglalt) Alkalmazás: Memória Cím, indexgenerálás LUT választás 'LS147 encoder A B C D Mixed logic szimbólum T=L! 28

29 5. Komparátor Katalógus: TTL 74LS86 Logikai kifejezés referencia kifejezés (bináris számok) aritmetikai kapcsolatának megállapítására szolgáló eszköz. Pl: Kettő n-bites szám összehasonlítása compare = összehasonlítás! Az azonosság eldöntéséhez a EQ/XNOR/Coincidence operátort használjuk. Jele: A. EQ. B = A B n-bites minták esetén: A. EQ. B = ( A0 B0) ( A1 B1)... ( An Bn) 29

30 Ismétlés: EQ/XNOR/Coincidence operátor Logikai egyenlet: A. EQ. B = A B = A B + A B Referenciabit szerinti megkülönböztetés: ha a referencia bit (B), amihez hasonlítunk konstans ha a referencia bit (B) egy változó mennyiség Példa: ha B referencia konstans -> egyszerűsítése A-nak A. EQ. B = A if B = T A. EQ. B = A if B = F Példa: legyen B egy 4-bites konstans mennyiség (B=TFFT), és A tetszőleges, akkor: A. EQ. B = A0 A1 A2 A3 30

31 Példa: 4-bites komparátor Mixed-logic kapcsolási rajza, és log. egyenlete: A. EQ. B = ( A0 B0) ( A1 B1) ( A2 B2) ( A3 B3) 31

32 74LS85 4-bit Magnitude Comparator Magnitude comparing (~nagyságrend összehasonlítás): két kifejezés nagyságának összehasonlítása (A<B; A=B; A>B stb.) egyszerre 3 állapot (státusz) bemenet Összehasonlítás eredménye, mint kimenet Ha B.IN=H: egyenlőség van A és B-re? 32

33 Példa: 8-bites Magnitude Comparator egyenlőség esetén Kettő 4-bites 74LS85 Magnitude komparátor sorbakötéséből ( cascading ) kapjuk a 8-bites (P,Q) értékek összehasonlítását MSB LSB 3 állapot (státusz) bemenet Ha B.IN=H: egyenlőség? eredmény 33

34 6. Univerzális logikai áramkör Ritkán használt áramköri elem 2-bemenő bit (A,B) 16-kimenet (Z0-Z15) Lásd: Arató könyv I. fejezet black box modell 4:1 MUX 34

35 7. Bináris műveletvégző egységek a.) Full Adder (FA) Teljes összeadó b.) Ripple Carry Adder (RCA) Átvitelkezelő összeadó c.) Look-Ahead-Carry Adder (LACA) d.) Full Subtractor (FS) Teljes kivonó e.) Komplexebb blokk: Arithmetic Logic Unit (ALU) 35

36 a.) Teljes összeadó Full Adder FA: 1-bites Full Adder igazságtáblázat szimbólum A i B i Cin Sum i Cout A i B i C in A B Egy lehetséges CMOS kapcsolási rajza: XOR1 XOR FA (Full Adder) Cin NAND1 NAND2 NAND3 S Cout S i C out Karnaugh táblái: Kimeneti fgv-ei: C out : BC A A C B Cout = A B+ A Cin + B Cin S i : C BC B A A Si = Ai Bi Cin S A B C 1,3 (,, ) 36

37 b.) Átvitelkezelő összeadó Ripple Carry Adder (RCA) Pl. 6-bites RCA: [0..5] (LSB Cin = GND!) A5B5 Cin A4 B4 Cin A3 B3 Cin A2B2 Cin A1B1 Cin A0 B0 Cin GND FA5 FA4 FA3 FA2 FA1 FA0 Cout S5 Cout S4 Cout S3 Cout S2 Cout S1 Cout S0 MSB Számítási időszükséglet (RCA): T (RCA) = N*T (FA) = N*(2*G) = 12 G (6-bites RCA esetén) ahol a 2G az 1-bites FA kapukésleltetése LSB Példa: TTL 74LS283: 4-bites RCA áramkör 37

38 Példa: 3-bites RCA áramkör RCA: 3 db 1-bites FA-ból épül fel FA FA FA A+B= =

39 Példa: 12-bites RCA áramkör 3 db 4-bites RCA-ból ( 74LS283) épül fel 2 s komplemens összeadó: előjeles aritmetika 12 biten: 1-előjelbit + 11 bit (MSB: előjel) 39

40 c.) LACA: Look-Ahead Carry Adder: RCA soros (ripple carry) működésének felgyorsítása Képlet (FA) átírásából kapjuk: C = A B + A C + B C out i i i in i in A B + C ( A + B ) = C + C C { i i in i i G in P CarryGenerate Carry Pr opagate S = A B C i i i in A i B i C in LACA (Look Ahead Carry Adder) S i C g C p LACG: Look Ahead Carry Generator áll egy b bites ALU-ból, minden egyes állapotban a Carry generálásáért felel a CP és CG vonalakon érkező jeleknek megfelelően. 40

41 Példa: 4-bites LACA+LACG Legyen b=4, és N=16. Áramkör felépítése, és időszükséglete: A hierarchikus megvalósításban az si kiszámításához szükséges: 1(LACA)+2(LACG)+2(super- LACG)+2(LACG)+1(LACA)=8 kapuidő, szemben a 32 kapuidővel a carry-ripple-through esetén A 4 LACA-t lehetséges egy 74LS181 ALU-ba integrálni! 41

42 Példa: 12 bites ALU LACG áramkörök felhasználásával 74LS181: 4-bites ALU LACG: Block Carry Look Ahead áramkör LACG C8 = CG7 + CP7 CC3 + CP7 CP3 C0 C4 = CG3 + P3 C0 42

43 d.) Teljes kivonó - Full Subtractor (FS) FS: 1-bites Full Subtractor igazságtáblázat szimbólum Logikai kapcsolási rajz (Fi esetén) X i Y i Bin F i Bout X i Y i B in X FS (Full Substracter) Y B out B in F i B out Karnaugh táblái: B out : Y B in X B in 11 1 Y F i : Y B in X B in Y Kimeneti fgv-ei: X Bout = Xi Yi + Xi Bin + Yi Bin X Fi = Xi Y i Bin S X Y Z 1,3 (,, ) 43

44 e.) Komplexebb blokk = ALU: Aritmetikai Logikai Egység Utasítások hatására a (Sn-S0) vezérlőjelek kijelölik a végrehajtandó aritmetikai / logikai műveletet. További adatvonalak kapcsolódhatnak közvetlenül a státusz regiszterhez, amely fontos információkat tárol el: pl. carryin, carry-out átviteleket, előjel bitet (sign), túlcsordulást (overflow), vagy alulcsordulást (underflow) jelző biteket. Műveleti Utasítások (S n -S o ) Operandus A (A n -A 0 ) Operandus B (B n -B 0 ) ALU Aritmetikai / Logikai Egység Eredmény (F n -F 0 ) 44

45 ALU: Státusz- (flag) jelzőbitek Az aritmetikai műveletek eredményétől függően hibajelzésre használatos jelzőbitek. Ezek megváltozása az utasításkészletben előre definiált utasítások végrehajtásától függ. a.) Előjelbit (sign): 2 s komplemens (MSB) b.) Átvitel kezelő bit (carry in/out): helyiértékes átvitel c.) Alul / Túlcsordulás jelzőbit (underflow / overflow) d.) Zero bit: kimeneti eredmény 0-e? 45

46 Példa: 4-bites ALU felépítése és működése (TTL 74LS181) Két 4-bites operandus (A, B) 4 bites eredmény (F) Átvitel: Carry In/ Out S2: Aritmetikai/ logikai mód választó (MUX) S0, S1: művelet kiválasztó (S2 értékétől függően) Operandus A (A n -A 0 ) Oper randus B (B n -B 0 ) Carry In Aritmetikai / logikai mód választó S2 Művelet kiválasztó S0, S1 4-bites ALU Eredmény (F n -F 0 ) Carry Out ALU: LSI méretű bit-slice építő blokk 4-bites ALU szimbolikus rajza 46

47 ALU működését leíró függvénytáblázat: (Néhány lehetséges aritmetikai / logikai művelet ) Művelet kiválasztás: Művelet: Megvalósított függvény: S2 S1 S0 Cin F=A A átvitele F=A+1 A értékének növelése 1-el (increment) F=A+B Összeadás F=A+B+1 Összeadás carry figyelembevételével F = A + B A + 1 s komplemens B F = A + B +1 Kivonás F=A-1 A értékének csökkentése 1-el (decrement) F=A A átvitele F = A B AND F = A B OR F = A B XOR F = A A negáltja (NOT A) * L.Howard Pollard: Computer Desing and Architecture c. könyv függeléke (appendix) 47

48 ALU felépítése Carry In Ai Bi Aritmetikai Egység (+,*,-,/) Carry Out 0 1 MUX Eredmény (F i ) Művelet kiválasztó S0 S1 Logikai Egység S2 Arit/Log mód kiválasztó 48

DIGITÁLIS TECHNIKA I

DIGITÁLIS TECHNIKA I DIGITÁLIS TECHNIKA I Dr. Kovács Balázs Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 11. ELŐADÁS 1 PÉLDA: 3 A 8 KÖZÜL DEKÓDÓLÓ A B C E 1 E 2 3/8 O 0 O 1

Részletesebben

Digitális Áramkörök. Pannon Egyetem Villamosmérnöki és Információs Tanszék. (Villamosmérnök BSc / Mechatronikai mérnök MSc)

Digitális Áramkörök. Pannon Egyetem Villamosmérnöki és Információs Tanszék. (Villamosmérnök BSc / Mechatronikai mérnök MSc) Pannon Egyetem Villamosmérnöki és Információs Tanszék Digitális Áramkörök (Villamosmérnök BSc / Mechatronikai mérnök MSc) 12. hét Kombinációs hálózatok építőelemei MSI megvalósításban. Egyszerű aritmetikai

Részletesebben

Dr. Oniga István DIGITÁLIS TECHNIKA 4

Dr. Oniga István DIGITÁLIS TECHNIKA 4 Dr. Oniga István DIGITÁLIS TECHNIKA 4 Kombinációs logikai hálózatok Logikai hálózat = olyan hálózat, melynek bemenetei és kimenetei logikai állapotokkal jellemezhetők Kombinációs logikai hálózat: olyan

Részletesebben

Bevezetés az informatikába

Bevezetés az informatikába Bevezetés az informatikába 4. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.

Részletesebben

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Bevezetés A laborgyakorlatok alapvető célja a tárgy későbbi laborgyakorlataihoz szükséges ismeretek átadása, az azokban szereplő

Részletesebben

1. Kombinációs hálózatok mérési gyakorlatai

1. Kombinációs hálózatok mérési gyakorlatai 1. Kombinációs hálózatok mérési gyakorlatai 1.1 Logikai alapkapuk vizsgálata A XILINX ISE DESIGN SUITE 14.7 WebPack fejlesztőrendszer segítségével és töltse be a rendelkezésére álló SPARTAN 3E FPGA ba:

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák Bit: egy bináris számjegy, vagy olyan áramkör, amely egy bináris számjegy ábrázolására alkalmas. Bájt (Byte): 8 bites egység, 8 bites szám. Előjeles fixpontok számok: 2 8 = 256 különböző 8 bites szám lehetséges.

Részletesebben

LOGIKAI TERVEZÉS HARDVERLEÍRÓ NYELVEN. Dr. Oniga István

LOGIKAI TERVEZÉS HARDVERLEÍRÓ NYELVEN. Dr. Oniga István LOGIKI TERVEZÉS HRDVERLEÍRÓ NYELVEN Dr. Oniga István Digitális komparátorok Két szám között relációt jelzi, (egyenlő, kisebb, nagyobb). három közül csak egy igaz Egy bites komparátor B Komb. hál. fi

Részletesebben

Kombinációs áramkörök modelezése Laborgyakorlat. Dr. Oniga István

Kombinációs áramkörök modelezése Laborgyakorlat. Dr. Oniga István Kombinációs áramkörök modelezése Laborgyakorlat Dr. Oniga István Funkcionális kombinációs egységek A következő funkcionális egységek logikai felépítésével, és működésével foglalkozunk: kódolók, dekódolók,

Részletesebben

LOGIKAI TERVEZÉS PROGRAMOZHATÓ. Elő Előadó: Dr. Oniga István

LOGIKAI TERVEZÉS PROGRAMOZHATÓ. Elő Előadó: Dr. Oniga István LOGIKI TERVEZÉS PROGRMOZHTÓ ÁRMKÖRÖKKEL Elő Előadó: Dr. Oniga István Funkcionális kombinációs ió egységek következő funkcionális egységek logikai felépítésével, és működésével foglalkozunk: kódolók, dekódolók,

Részletesebben

Digitális Rendszerek és Számítógép Architektúrák (Levelező BSc)

Digitális Rendszerek és Számítógép Architektúrák (Levelező BSc) PANNON EGYETEM, Veszprém Villamosmérnöki és Információs Rendszerek Tanszék Digitális Rendszerek és Számítógép Architektúrák (Levelező BSc) 3. előadás: Aritmetikai egységek - adatkezelés Előadó: Dr. Vörösházi

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák Fixpontos számok Pl.: előjeles kétjegyű decimális számok : Ábrázolási tartomány: [-99, +99]. Pontosság (két szomszédos szám különbsége): 1. Maximális hiba: (az ábrázolási tartományba eső) tetszőleges valós

Részletesebben

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Összeadó áramkör A legegyszerűbb összeadó két bitet ad össze, és az egy bites eredményt és az átvitelt adja ki a kimenetén, ez a

Részletesebben

Digitális Rendszerek és Számítógép Architektúrák

Digitális Rendszerek és Számítógép Architektúrák Pannon Egyetem Képfeldolgozás és Neuroszámítógépek Tanszék Digitális Rendszerek és Számítógép Architektúrák 4. előadás: Aritmetikai egységek - adatkezelés Előadó: Dr. Szolgay Péter Vörösházi Zsolt Jegyzetek,

Részletesebben

Hobbi Elektronika. A digitális elektronika alapjai: Kombinációs logikai hálózatok 2. rész

Hobbi Elektronika. A digitális elektronika alapjai: Kombinációs logikai hálózatok 2. rész Hobbi Elektronika A digitális elektronika alapjai: Kombinációs logikai hálózatok 2. rész 1 Felhasznált anyagok M. Morris Mano and Michael D. Ciletti: Digital Design - With an Introduction to the Verilog

Részletesebben

DIGITÁLIS TECHNIKA I BINÁRIS SZÁMRENDSZER BEVEZETŐ ÁTTEKINTÉS BINÁRIS SZÁMRENDSZER HELYÉRTÉK. Dr. Lovassy Rita Dr.

DIGITÁLIS TECHNIKA I BINÁRIS SZÁMRENDSZER BEVEZETŐ ÁTTEKINTÉS BINÁRIS SZÁMRENDSZER HELYÉRTÉK. Dr. Lovassy Rita Dr. 26..5. DIGITÁLIS TEHNIK I Dr. Lovassy Rita Dr. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet INÁRIS SZÁMRENDSZER 5. ELŐDÁS 2 EVEZETŐ ÁTTEKINTÉS 6. előadás témája a digitális rendszerekben

Részletesebben

5. KOMBINÁCIÓS HÁLÓZATOK LEÍRÁSÁNAK SZABÁLYAI

5. KOMBINÁCIÓS HÁLÓZATOK LEÍRÁSÁNAK SZABÁLYAI 5. KOMBINÁCIÓS HÁLÓZATOK LEÍRÁSÁNAK SZABÁLYAI 1 Kombinációs hálózatok leírását végezhetjük mind adatfolyam-, mind viselkedési szinten. Az adatfolyam szintű leírásokhoz az assign kulcsszót használjuk, a

Részletesebben

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Bevezetés A laborgyakorlatok alapvető célja a tárgy későbbi laborgyakorlataihoz szükséges ismeretek átadása, az azokban szereplő

Részletesebben

4. hét: Ideális és valódi építőelemek. Steiner Henriette Egészségügyi mérnök

4. hét: Ideális és valódi építőelemek. Steiner Henriette Egészségügyi mérnök 4. hét: Ideális és valódi építőelemek Steiner Henriette Egészségügyi mérnök Digitális technika 2015/2016 Digitális technika 2015/2016 Bevezetés Az ideális és valódi építőelemek Digitális technika 2015/2016

Részletesebben

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Multiplexer (MPX) A multiplexer egy olyan áramkör, amely több bemeneti adat közül a megcímzett bemeneti adatot továbbítja a kimenetére.

Részletesebben

Hobbi Elektronika. A digitális elektronika alapjai: Kombinációs logikai hálózatok 1. rész

Hobbi Elektronika. A digitális elektronika alapjai: Kombinációs logikai hálózatok 1. rész Hobbi Elektronika A digitális elektronika alapjai: Kombinációs logikai hálózatok 1. rész 1 Felhasznált anyagok M. Morris Mano and Michael D. Ciletti: Digital Design - With an Introduction to the Verilog

Részletesebben

DIGITÁLIS TECHNIKA I

DIGITÁLIS TECHNIKA I DIGITÁLIS TECHNIKA I Dr. Kovács Balázs Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 6. ELŐADÁS Arató Péter: Logikai rendszerek tervezése, Tankönyvkiadó,

Részletesebben

Összeadás BCD számokkal

Összeadás BCD számokkal Összeadás BCD számokkal Ugyanúgy adjuk össze a BCD számokat is, mint a binárisakat, csak - fel kell ismernünk az érvénytelen tetrádokat és - ezeknél korrekciót kell végrehajtani. A, Az érvénytelen tetrádok

Részletesebben

Kombinációs hálózatok Adatszelektorok, multiplexer

Kombinációs hálózatok Adatszelektorok, multiplexer Adatszelektorok, multiplexer Jellemző példa multiplexer és demultiplexer alkalmazására: adó egyutas adatátvitel vevő adatvezeték cím címvezeték (opcionális) A multiplexer az adóoldali jelvezetékeken jelenlévő

Részletesebben

Digitális technika II. (vimia111) 5. gyakorlat: Tervezés adatstruktúra-vezérlés szétválasztással, vezérlőegység generációk

Digitális technika II. (vimia111) 5. gyakorlat: Tervezés adatstruktúra-vezérlés szétválasztással, vezérlőegység generációk Digitális technika II. (vimia111) 5. gyakorlat: Tervezés adatstruktúra-vezérlés szétválasztással, vezérlőegység generációk Elméleti anyag: Processzoros vezérlés általános tulajdonságai o z induló készletben

Részletesebben

DIGITÁLIS TECHNIKA I PÉLDA: 3 A 8 KÖZÜL DEKÓDÓLÓ HOGYAN HASZNÁLHATÓ EGY 4/16-OS DEKÓDER 3/8-AS DEKÓDERKÉNT? D 2 3 DEKÓDER BŐVÍTÉS

DIGITÁLIS TECHNIKA I PÉLDA: 3 A 8 KÖZÜL DEKÓDÓLÓ HOGYAN HASZNÁLHATÓ EGY 4/16-OS DEKÓDER 3/8-AS DEKÓDERKÉNT? D 2 3 DEKÓDER BŐVÍTÉS DIGITÁLIS THNIK I Dr. Lovassy Rita Dr. Pődör álint Óbudai gyetem KVK Mikroelektronikai és Technológia Intézet. LŐDÁS PÉLD: KÖZÜL DKÓDÓLÓ / O O O Háromból nyolcvonalas dekódoló engedélyező bemenettel. kimeneti

Részletesebben

The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003

The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 . Fejezet : Számrendszerek The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach. kiadás, Irv Englander John Wiley and Sons Wilson Wong, Bentley College Linda Senne,

Részletesebben

DIGITÁLIS TECHNIKA I

DIGITÁLIS TECHNIKA I DIGITÁLIS TECHNIKA I Dr. Kovács Balázs Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 10. ELŐADÁS 1 PÉLDA A LEGEGYSZERŰBB KONJUNKTÍV ALAK KÉPZÉSÉRE A 1 1

Részletesebben

1. Kombinációs hálózatok mérési gyakorlatai

1. Kombinációs hálózatok mérési gyakorlatai 1. Kombinációs hálózatok mérési gyakorlatai 1.1 Logikai alapkapuk vizsgálata A XILINX ISE DESIGN SUITE 14.7 WebPack fejlesztőrendszer segítségével és töltse be a rendelkezésére álló SPARTAN 3E FPGA ba:

Részletesebben

Bevezetés az informatikába

Bevezetés az informatikába Bevezetés az informatikába 3. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.

Részletesebben

Aritmetikai utasítások I.

Aritmetikai utasítások I. Aritmetikai utasítások I. Az értékadó és aritmetikai utasítások során a címzési módok különböző típusaira látunk példákat. A 8086/8088-as mikroprocesszor memóriája és regiszterei a little endian tárolást

Részletesebben

Digitális technika (VIMIAA02) Laboratórium 3

Digitális technika (VIMIAA02) Laboratórium 3 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 3 Fehér Béla Raikovich Tamás,

Részletesebben

2. Fejezet : Számrendszerek

2. Fejezet : Számrendszerek 2. Fejezet : Számrendszerek The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley College

Részletesebben

Digitális technika (VIMIAA02) Laboratórium 3

Digitális technika (VIMIAA02) Laboratórium 3 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 3 Fehér Béla Raikovich Tamás,

Részletesebben

4. Fejezet : Az egész számok (integer) ábrázolása

4. Fejezet : Az egész számok (integer) ábrázolása 4. Fejezet : Az egész számok (integer) ábrázolása The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson

Részletesebben

Szekvenciális hálózatok és automaták

Szekvenciális hálózatok és automaták Szekvenciális hálózatok a kombinációs hálózatokból jöhetnek létre tárolási tulajdonságok hozzáadásával. A tárolás megvalósítása történhet a kapcsolás logikáját képező kombinációs hálózat kimeneteinek visszacsatolásával

Részletesebben

Digitális technika (VIMIAA02) Laboratórium 1

Digitális technika (VIMIAA02) Laboratórium 1 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 1 Fehér Béla Raikovich Tamás,

Részletesebben

DIGITÁLIS TECHNIKA feladatgyűjtemény

DIGITÁLIS TECHNIKA feladatgyűjtemény IGITÁLIS TEHNIK feladatgyűjtemény Írta: r. Sárosi József álint Ádám János Szegedi Tudományegyetem Mérnöki Kar Műszaki Intézet Szerkesztette: r. Sárosi József Lektorálta: r. Gogolák László Szabadkai Műszaki

Részletesebben

DIGITAL TECHNICS I. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute 12. LECTURE: FUNCTIONAL BUILDING BLOCKS III

DIGITAL TECHNICS I. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute 12. LECTURE: FUNCTIONAL BUILDING BLOCKS III 22.2.7. DIGITL TECHNICS I Dr. álint Pődör Óbuda University, Microelectronics and Technology Institute 2. LECTURE: FUNCTIONL UILDING LOCKS III st year Sc course st (utumn) term 22/23 (Temporary, not-edited

Részletesebben

Digitális technika (VIMIAA02) Laboratórium 1

Digitális technika (VIMIAA02) Laboratórium 1 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 1 Fehér Béla Raikovich Tamás,

Részletesebben

Digitális Rendszerek és Számítógép Architektúrák

Digitális Rendszerek és Számítógép Architektúrák Pannon Egyetem Képfeldolgozás és Neuroszámítógépek Tanszék Digitális Rendszerek és Számítógép Architektúrák 5. előadás: Utasítás végrehajtás folyamata: címzési módok, RISC-CISC processzorok Előadó: Vörösházi

Részletesebben

Digitális rendszerek. Utasításarchitektúra szintje

Digitális rendszerek. Utasításarchitektúra szintje Digitális rendszerek Utasításarchitektúra szintje Utasításarchitektúra Jellemzők Mikroarchitektúra és az operációs rendszer közötti réteg Eredetileg ez jelent meg először Sokszor az assembly nyelvvel keverik

Részletesebben

Számítógépek felépítése, alapfogalmak

Számítógépek felépítése, alapfogalmak 2. előadás Számítógépek felépítése, alapfogalmak Lovas Szilárd, Krankovits Melinda SZE MTK MSZT kmelinda@sze.hu B607 szoba Nem reprezentatív felmérés kinek van ilyen számítógépe? 2 Nem reprezentatív felmérés

Részletesebben

Az INTEL D-2920 analóg mikroprocesszor alkalmazása

Az INTEL D-2920 analóg mikroprocesszor alkalmazása Az INTEL D-2920 analóg mikroprocesszor alkalmazása FAZEKAS DÉNES Távközlési Kutató Intézet ÖSSZEFOGLALÁS Az INTEL D 2920-at kifejezetten analóg feladatok megoldására fejlesztették ki. Segítségével olyan

Részletesebben

SZÁMÍTÓGÉPES ARCHITEKTÚRÁK

SZÁMÍTÓGÉPES ARCHITEKTÚRÁK Misák Sándor SZÁMÍTÓGÉPES ARCHITEKTÚRÁK Nanoelektronikai és Nanotechnológiai Részleg 4. előadás A DIGITÁLIS LOGIKA SZINTJE I. DE TTK v.0.1 (2007.03.13.) 4. előadás 1. Kapuk és Boole-algebra: Kapuk; Boole-algebra;

Részletesebben

SZÁMÍTÓGÉPES ARCHITEKTÚRÁK

SZÁMÍTÓGÉPES ARCHITEKTÚRÁK Misák Sándor SZÁMÍTÓGÉPES ARCHITEKTÚRÁK Nanoelektronikai és Nanotechnológiai Részleg DE TTK v.0.1 (2007.03.13.) 4. előadás A DIGITÁLIS LOGIKA SZINTJE I. 4. előadás 1. Kapuk és Boole-algebra: Kapuk; Boole-algebra;

Részletesebben

Megoldás Digitális technika I. (vimia102) 2. gyakorlat: Boole algebra, logikai függvények, kombinációs hálózatok alapjai

Megoldás Digitális technika I. (vimia102) 2. gyakorlat: Boole algebra, logikai függvények, kombinációs hálózatok alapjai Megoldás Digitális technika I. (vimia102) 2. gyakorlat: Boole algebra, logikai függvények, kombinációs hálózatok alapjai Elméleti anyag: Az általános digitális gép: memória + kombinációs hálózat A Boole

Részletesebben

A mikroprocesszor felépítése és működése

A mikroprocesszor felépítése és működése A mikroprocesszor felépítése és működése + az egyes részegységek feladata! Információtartalom vázlata A mikroprocesszor feladatai A mikroprocesszor részegységei A mikroprocesszor működése A mikroprocesszor

Részletesebben

Előadó: Nagy István (A65)

Előadó: Nagy István (A65) Programozható logikai áramkörök FPGA eszközök Előadó: Nagy István (A65) Ajánlott irodalom: Ajtonyi I.: Digitális rendszerek, Miskolci Egyetem, 2002. Ajtonyi I.: Vezérléstechnika II., Tankönyvkiadó, Budapest,

Részletesebben

Logikai áramkörök. Informatika alapjai-5 Logikai áramkörök 1/6

Logikai áramkörök. Informatika alapjai-5 Logikai áramkörök 1/6 Informatika alapjai-5 Logikai áramkörök 1/6 Logikai áramkörök Az analóg rendszerekben például hangerősítő, TV, rádió analóg áramkörök, a digitális rendszerekben digitális vagy logikai áramkörök működnek.

Részletesebben

Informatika 1 2. el adás: Absztrakt számítógépek

Informatika 1 2. el adás: Absztrakt számítógépek Informatika 1 2. el adás: Budapesti M szaki és Gazdaságtudományi Egyetem 2015-09-08 1 2 3 A egy M = Q, Γ, b, Σ, δ, q 0, F hetes, ahol Q az 'állapotok' nem üres halmaza, Γ a 'szalag ábécé' véges, nem üres

Részletesebben

TARTALOMJEGYZÉK. 1. BEVEZETÉS A logikai hálózatok csoportosítása Logikai rendszerek... 6

TARTALOMJEGYZÉK. 1. BEVEZETÉS A logikai hálózatok csoportosítása Logikai rendszerek... 6 TARTALOMJEGYZÉK ELŐSZÓ... 3 1. BEVEZETÉS... 4 1.1. A logikai hálózatok csoportosítása... 5 1.2. Logikai rendszerek... 6 2. SZÁMRENDSZEREK ÉS KÓDRENDSZEREK... 7 2.1. Számrendszerek... 7 2.1.1. Számok felírása

Részletesebben

Digitális Rendszerek és Számítógép Architektúrák

Digitális Rendszerek és Számítógép Architektúrák PANNON EGYETEM, Veszprém Villamosmérnöki és Információs Rendszerek Tanszék Digitális Rendszerek és Számítógép Architektúrák 4. előadás: Utasítás végrehajtás folyamata: címzési módok, RISC-CISC processzorok

Részletesebben

Digitális Technika. Dr. Oniga István Debreceni Egyetem, Informatikai Kar

Digitális Technika. Dr. Oniga István Debreceni Egyetem, Informatikai Kar Digitális Technika Dr. Oniga István Debreceni Egyetem, Informatikai Kar 5. Laboratóriumi gyakorlat Kombinációs logikai hálózatok 2. Komparátorok Paritásvizsgáló áramkörök Összeadok Lab5_: Két bites komparátor

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák Kívánalom: sok kapu kevés láb Kombinációs áramkörök efiníció: kimeneteket egyértelműen meghatározzák a pillanatnyi bemenetek Multiplexer: n vezérlő bemenet, 2 n adatbemenet, kimenet z egyik adatbemenet

Részletesebben

EB134 Komplex digitális áramkörök vizsgálata

EB134 Komplex digitális áramkörök vizsgálata EB34 Komplex digitális áramkörök vizsgálata BINÁRIS ASZINKRON SZÁMLÁLÓK A méréshez szükséges műszerek, eszközök: - EB34 oktatókártya - db oszcilloszkóp (6 csatornás) - db függvénygenerátor Célkitűzés A

Részletesebben

DIGITÁLIS TECHNIKA A FÉLÉV TEMATIKAI VÁZLATA ÉS ISMERETANYAGA (1) ÁLTALÁNOS BEVEZETÉS A FÉLÉV TEMATIKAI VÁZLATA ÉS ISMERETANYAGA (3)

DIGITÁLIS TECHNIKA A FÉLÉV TEMATIKAI VÁZLATA ÉS ISMERETANYAGA (1) ÁLTALÁNOS BEVEZETÉS A FÉLÉV TEMATIKAI VÁZLATA ÉS ISMERETANYAGA (3) DIGITÁLIS TECHNIKA Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 1. ELŐADÁS: BEVEZETÉS A DIGITÁLIS TECHNIKÁBA 1. Általános bevezetés. 1. ELŐADÁS 2. Bevezetés

Részletesebben

Digitális technika VIMIAA01 6. hét Fehér Béla BME MIT

Digitális technika VIMIAA01 6. hét Fehér Béla BME MIT BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 6. hét Fehér Béla BME MIT Kiegészítés az eddigi

Részletesebben

A mikroprocesszor egy RISC felépítésű (LOAD/STORE), Neumann architektúrájú 32 bites soft processzor, amelyet FPGA val valósítunk meg.

A mikroprocesszor egy RISC felépítésű (LOAD/STORE), Neumann architektúrájú 32 bites soft processzor, amelyet FPGA val valósítunk meg. Mikroprocesszor A mikroprocesszor egy RISC felépítésű (LOAD/STORE), Neumann architektúrájú 32 bites soft processzor, amelyet FPGA val valósítunk meg. A mikroprocesszor részei A mikroprocesszor a szokásos

Részletesebben

10-es számrendszer, 2-es számrendszer, 8-as számrendszer, 16-os számr. Számjegyek, alapműveletek.

10-es számrendszer, 2-es számrendszer, 8-as számrendszer, 16-os számr. Számjegyek, alapműveletek. Számrendszerek: 10-es számrendszer, 2-es számrendszer, 8-as számrendszer, 16-os számr. Számjegyek, alapműveletek. ritmetikai műveletek egész számokkal 1. Összeadás, kivonás (egész számokkal) 2. Negatív

Részletesebben

Digitális Rendszerek és Számítógép Architektúrák (Levelező BSc)

Digitális Rendszerek és Számítógép Architektúrák (Levelező BSc) PANNON EGYETEM, Veszprém Villamosmérnöki és Információs Rendszerek Tanszék Digitális Rendszerek és Számítógép Architektúrák (Levelező BSc) 3. előadás: Utasítás végrehajtás folyamata: címzési módok, RISC-CISC

Részletesebben

1. Az utasítás beolvasása a processzorba

1. Az utasítás beolvasása a processzorba A MIKROPROCESSZOR A mikroprocesszor olyan nagy bonyolultságú félvezető eszköz, amely a digitális számítógép központi egységének a feladatait végzi el. Dekódolja az uatasításokat, vezérli a műveletek elvégzéséhez

Részletesebben

Megoldás Digitális technika I. (vimia102) 4. gyakorlat: Sorrendi hálózatok alapjai, állapot gráf, állapottábla

Megoldás Digitális technika I. (vimia102) 4. gyakorlat: Sorrendi hálózatok alapjai, állapot gráf, állapottábla Megoldás Digitális technika I. (vimia102) 4. gyakorlat: Sorrendi hálózatok alapjai, állapot gráf, állapottábla Elméleti anyag: Amikor a hazárd jó: élekből impulzus előállítás Sorrendi hálózatok alapjai,

Részletesebben

Digitális technika VIMIAA hét

Digitális technika VIMIAA hét BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 14. hét Fehér Béla BME MIT Digitális technika

Részletesebben

Assembly Utasítások, programok. Iványi Péter

Assembly Utasítások, programok. Iványi Péter Assembly Utasítások, programok Iványi Péter Assembly programozás Egyszerű logikán alapul Egy utasítás CSAK egy dolgot csinál Magas szintű nyelven: x = 5 * z + y; /* 3 darab művelet */ Assembly: Szorozzuk

Részletesebben

Digitális Rendszerek (BSc)

Digitális Rendszerek (BSc) Pannon Egyetem Képfeldolgozás és Neuroszámítógépek Tanszék Digitális Rendszerek (BSc) 2. előadás: Logikai egyenletek leírása II: Függvény-egyszerűsítési eljárások Előadó: Vörösházi Zsolt voroshazi@vision.vein.hu

Részletesebben

Digitális technika VIMIAA hét

Digitális technika VIMIAA hét BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK VIMIAA02 14. hét Fehér Béla BME MIT Rövid visszatekintés, összefoglaló

Részletesebben

Programozás és digitális technika II. Logikai áramkörök. Pógár István Debrecen, 2016

Programozás és digitális technika II. Logikai áramkörök. Pógár István Debrecen, 2016 Programozás és digitális technika II. Logikai áramkörök Pógár István pogari@eng.unideb.hu Debrecen, 2016 Gyakorlatok célja 1. Digitális tervezés alapfogalmainak megismerése 2. A legelterjedtebb FPGA-k

Részletesebben

Bevezetés a számítástechnikába

Bevezetés a számítástechnikába Bevezetés a számítástechnikába Beadandó feladat, kódrendszerek Fodor Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék foa@almos.vein.hu 2010 október 12.

Részletesebben

Hardver leíró nyelvek (HDL)

Hardver leíró nyelvek (HDL) Hardver leíró nyelvek (HDL) Benesóczky Zoltán 2004 A jegyzetet a szerzıi jog védi. Azt a BME hallgatói használhatják, nyomtathatják tanulás céljából. Minden egyéb felhasználáshoz a szerzı belegyezése szükséges.

Részletesebben

Digitális technika VIMIAA02 1. EA Fehér Béla BME MIT

Digitális technika VIMIAA02 1. EA Fehér Béla BME MIT BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK VIMIAA02 1. EA Fehér Béla BME MIT Digitális Rendszerek Számítógépek Számítógép

Részletesebben

Verilog HDL ismertető 2. hét : 1. hét dia

Verilog HDL ismertető 2. hét : 1. hét dia BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Verilog HDL ismertető 2. hét : 1. hét + 15 25 dia Fehér Béla, Raikovich

Részletesebben

Számítógépek felépítése, alapfogalmak

Számítógépek felépítése, alapfogalmak 2. előadás Számítógépek felépítése, alapfogalmak Lovas Szilárd SZE MTK MSZT lovas.szilard@sze.hu B607 szoba Nem reprezentatív felmérés kinek van ilyen számítógépe? Nem reprezentatív felmérés kinek van

Részletesebben

Digitális technika VIMIAA02 1. EA

Digitális technika VIMIAA02 1. EA BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 1. EA Fehér Béla BME MIT Digitális Rendszerek

Részletesebben

Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez

Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez Sándor Tamás, sandor.tamas@kvk.bmf.hu Takács Gergely, takacs.gergo@kvk.bmf.hu Lektorálta: dr. Schuster György PhD, hal@k2.jozsef.kando.hu

Részletesebben

funkcionális elemek regiszter latch számláló shiftregiszter multiplexer dekóder komparátor összeadó ALU BCD/7szegmenses dekóder stb...

funkcionális elemek regiszter latch számláló shiftregiszter multiplexer dekóder komparátor összeadó ALU BCD/7szegmenses dekóder stb... Funkcionális elemek Benesóczky Zoltán 24 A jegyzetet a szerzői jog védi. Azt a BM hallgatói használhatják, nyomtathatják tanulás céljából. Minden egyéb felhasználáshoz a szerző belegyezése szükséges. funkcionális

Részletesebben

SZÁMÍTÓGÉPEK BELSŐ FELÉPÍTÉSE - 1

SZÁMÍTÓGÉPEK BELSŐ FELÉPÍTÉSE - 1 INFORMATIKAI RENDSZEREK ALAPJAI (INFORMATIKA I.) 1 NEUMANN ARCHITEKTÚRÁJÚ GÉPEK MŰKÖDÉSE SZÁMÍTÓGÉPEK BELSŐ FELÉPÍTÉSE - 1 Ebben a feladatban a következőket fogjuk áttekinteni: Neumann rendszerű számítógép

Részletesebben

Integrált áramkörök/4 Digitális áramkörök/3 CMOS megvalósítások Rencz Márta

Integrált áramkörök/4 Digitális áramkörök/3 CMOS megvalósítások Rencz Márta Integrált áramkörök/4 Digitális áramkörök/3 CMOS megvalósítások Rencz Márta Elektronikus Eszközök Tanszék Mai témák Transzfer kapu Kombinációs logikai elemek különböző CMOS megvalósításokkal Meghajtó áramkörök

Részletesebben

Dr. Oniga István DIGITÁLIS TECHNIKA 8

Dr. Oniga István DIGITÁLIS TECHNIKA 8 Dr. Oniga István DIGITÁLIS TECHNIA 8 Szekvenciális (sorrendi) hálózatok Szekvenciális hálózatok fogalma Tárolók RS tárolók tárolók T és D típusú tárolók Számlálók Szinkron számlálók Aszinkron számlálók

Részletesebben

Digitális technika VIMIAA02 6. EA

Digitális technika VIMIAA02 6. EA BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 6. EA Fehér Béla BME MIT Kiegészítés az eddigi

Részletesebben

Digitális technika VIMIAA02 6. EA Fehér Béla BME MIT

Digitális technika VIMIAA02 6. EA Fehér Béla BME MIT BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 6. EA Fehér Béla BME MIT Kiegészítés az eddigi

Részletesebben

Összetett feladatok megoldása

Összetett feladatok megoldása Összetett feladatok megoldása F1. A laboratóriumi feladat a legnagyobb közös osztó kiszámító algoritmusának realizálása digitális hardver eszközökkel. Az Euklideszi algoritmus alapja a maradékos osztás,

Részletesebben

3. gyakorlat. Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F}

3. gyakorlat. Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F} 3. gyakorlat Számrendszerek: Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F} Alaki érték: 0, 1, 2,..., 9,... Helyi

Részletesebben

Véges állapotú gépek (FSM) tervezése

Véges állapotú gépek (FSM) tervezése Véges állapotú gépek (FSM) tervezése F1. A 2. gyakorlaton foglalkoztunk a 3-mal vagy 5-tel osztható 4 bites számok felismerésével. Abban a feladatban a bemenet bitpárhuzamosan, azaz egy időben minden adatbit

Részletesebben

A MiniRISC processzor

A MiniRISC processzor BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK A MiniRISC processzor Fehér Béla, Raikovich Tamás, Fejér Attila BME MIT

Részletesebben

Digitális jelfeldolgozás

Digitális jelfeldolgozás Digitális jelfeldolgozás Kvantálás Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2010. szeptember 15. Áttekintés

Részletesebben

Alapkapuk és alkalmazásaik

Alapkapuk és alkalmazásaik Alapkapuk és alkalmazásaik Bevezetés az analóg és digitális elektronikába Szabadon választható tárgy Összeállította: Farkas Viktor Irányítás, irányítástechnika Az irányítás esetünkben műszaki folyamatok

Részletesebben

DIGITÁLIS TECHNIKA I. BINÁRIS/GRAY ÁTALAKÍTÁS b3b2b1b0 g3g2g1g0 BINÁRIS/GRAY KONVERZIÓ BINÁRIS/GRAY KÓDÁTALAKÍTÓ BIN/GRAY KONVERZIÓ: G2

DIGITÁLIS TECHNIKA I. BINÁRIS/GRAY ÁTALAKÍTÁS b3b2b1b0 g3g2g1g0 BINÁRIS/GRAY KONVERZIÓ BINÁRIS/GRAY KÓDÁTALAKÍTÓ BIN/GRAY KONVERZIÓ: G2 DIGITÁLIS THNIK I Dr. Pıdör álint MF KVK Mikroelektronikai és Technológia Intézet. LİDÁS. LİDÁS. Kódátalakítások: bináris/gray, bináris/d. Multiplexerek és demultiplexerek. Komparátorok. Kódok: hibajelzés

Részletesebben

Hobbi Elektronika. A digitális elektronika alapjai: További logikai műveletek

Hobbi Elektronika. A digitális elektronika alapjai: További logikai műveletek Hobbi Elektronika A digitális elektronika alapjai: További logikai műveletek 1 Felhasznált anyagok M. Morris Mano and Michael D. Ciletti: Digital Design - With an Introduction to the Verilog HDL, 5th.

Részletesebben

A gyakorlatokhoz kidolgozott DW példák a gyakorlathoz tartozó Segédlet könyvtárban találhatók.

A gyakorlatokhoz kidolgozott DW példák a gyakorlathoz tartozó Segédlet könyvtárban találhatók. Megoldás Digitális technika II. (vimia111) 1. gyakorlat: Digit alkatrészek tulajdonságai, funkcionális elemek (MSI) szerepe, multiplexer, demultiplexer/dekóder Elméleti anyag: Digitális alkatrészcsaládok

Részletesebben

Véges állapotú gépek. Steiner Henriette

Véges állapotú gépek. Steiner Henriette Véges állapotú gépek Steiner Henriette Logikai hálózat Logikai hálózatnak nevezzük azokat a rendszereket, melyeknek bemeneti illetve kimeneti jelei logikai jelek, a kimeneti jeleket a bemeneti jelek függvényében

Részletesebben

Dinamikus modellek szerkezete, SDG modellek

Dinamikus modellek szerkezete, SDG modellek Diagnosztika - 3. p. 1/2 Modell Alapú Diagnosztika Diszkrét Módszerekkel Dinamikus modellek szerkezete, SDG modellek Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék Diagnosztika - 3.

Részletesebben

4. hét Az ideális és a valódi építőelemek

4. hét Az ideális és a valódi építőelemek 4. hét Az ideális és a valódi építőelemek 4.1. Az ideális és valódi építőelemek Most ismerkedjünk meg a rendszereket felépítő építőelemekkel. Előtte azonban célszerű néhány alapfogalmat tisztázni. 4.1.1.

Részletesebben

1. Az adott kapcsolást rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben. MEGOLDÁS:

1. Az adott kapcsolást rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben. MEGOLDÁS: 1. Az adott kapcsolást rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben. MEGOLDÁS: A legegyszerűbb alak megtalálása valamilyen egyszerűsítéssel lehetséges (algebrai, Karnaugh, Quine stb.). Célszerű

Részletesebben

Digitális technika VIMIAA02 3. EA

Digitális technika VIMIAA02 3. EA BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 3. EA Fehér Béla BME MIT Minimalizálási algoritmusok

Részletesebben

Példa:

Példa: Digitális információ ábrázolása A digitális technika feladata: információ ábrázolása és feldolgozása a digitális technika eszközeivel Szakterület Jelkészlet Digitális technika "0" és "1" Fizika Logika

Részletesebben

Hobbi Elektronika. A digitális elektronika alapjai: Sorrendi logikai áramkörök 3. rész

Hobbi Elektronika. A digitális elektronika alapjai: Sorrendi logikai áramkörök 3. rész Hobbi Elektronika A digitális elektronika alapjai: Sorrendi logikai áramkörök 3. rész 1 Felhasznált anyagok M. Morris Mano and Michael D. Ciletti: Digital Design - With an Introduction to the Verilog HDL,

Részletesebben

Digitális technika 1. Tantárgykód: VIIIA105 Villamosmérnöki szak, Bsc. képzés. Készítette: Dudás Márton

Digitális technika 1. Tantárgykód: VIIIA105 Villamosmérnöki szak, Bsc. képzés. Készítette: Dudás Márton Digitális technika 1 Tantárgykód: VIIIA105 Villamosmérnöki szak, Bsc. képzés Készítette: Dudás Márton 1 Bevezető: A jegyzet a BME VIK első éves villamosmérnök hallgatóinak készült a Digitális technika

Részletesebben

Digitális technika VIMIAA01 5. hét

Digitális technika VIMIAA01 5. hét BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 5. hét Fehér Béla BME MIT Sorrendi logikák

Részletesebben

DIGITÁLIS TECHNIKA GYAKORLÓ FELADATOK 2. Megoldások

DIGITÁLIS TECHNIKA GYAKORLÓ FELADATOK 2. Megoldások DIGITÁLIS TECHNIKA GYAKORLÓ FELADATOK 2. Megoldások III. Kombinációs hálózatok 1. Tervezzen kétbemenetű programozható kaput! A hálózatnak két adatbenemete (a, b) és két funkcióbemenete (f, g) van. A kapu

Részletesebben