A szállítási szolgálat

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A szállítási szolgálat"

Átírás

1 A szállítási réteg

2 A szállítási szolgálat Elrejti az alsóbb rétegbeli hibákat Egységes felületet ad az alkalmazásoknak Programozok egy szabványos primitív készletre írhatják az alkalmazásokat» Összekötetés alapú» Összekötetés nélküli

3 A felső rétegnek nyújtott szolgáltatások

4 Szállítási szolgálat primitívjei

5 Szállítási szolgálat primitívjei (2)

6 Hibakezelés Forgalomszabályozás Sorszámozás Szállítási protokoll

7 Címzés

8 Címzés (2)

9 Kapcsolat felépítés

10 Kapcsolat felépítés (2)

11 Összekötetés bontása aszimmetrikus

12 Összekötetés bontása szimmetrikus A kék hadsereg problémája

13 Összekötetés bontása szimmetrikus(2)

14 Forgalomszabályozás és pufferelés (a) Egyforma láncolt pufferek. (b) Változó hosszúságú láncolt pufferek. (c) Egy kör puffer. (d) Dinamikus puffer meghatározás

15 Nyalábolás (a) Feltöltési multiplexelés. (b) Letöltési multiplexelés.

16 Összeomlás utáni helyreállítás

17 UDP User Datagramm Protocol Felhasználói Datagramm Protokoll a) User Datagram Protocol [RFC-768] b) 1980 c) Az UDP sokkal gyorsabb protokoll, mint a TCP protokoll d) Nem megbízható adatátvitel e) Multimédiás alkalmazások esetén jól alkalmazható, ahol a késleltetés a kritikus f) A TCP-vel ellentétben nem ellenőrzi az adatok sértetlen átvitelét ezért nem képes az elveszett vagy sérült csomagok pótlására g) Ezen kívül a fogadás sorrendjét sem garantálja a vételi oldalon. 17

18 UDP/IP fejléc 18

19 UDP/IP fejléc a) Source Port A forrásportot azonosítja Válaszolni erre a portra lehet b) Destination Port Célportot azonosítja c) Length A datagram mérete bájtokban A fejléc és a felhasználói adat együtt d) Checksum 16-bit ellenőrzőösszeg A fejléc és a felhasználói adatokra együtt számolandó

20 UDP ellenőrzőösszeg (checksum) a) Cél: A hibák (pl. sérült bitek) detektálása a továbbított szegmensben b) Küldő: A szegmens tartalmát 16 bites egészek sorozatának tekinti Checksum: a szegmens tartalmának összeadása (1-eskomplemensösszeg) A küldőbeteszi a checksum értékét az UDP checksum mezőjébe c) Fogadó: Kiszámítja a kapott szegmens checksum-ját Ellenőrzi, hogy az megegyezik-e a checksum mező értékével: NO hibát detektál YES nem detektál hibát 20

21 Ellenőrzőösszeg számítása a) Példa: Ellenőrzőösszeg számítása adjunk össze két 16-bites egészt amikor összeadunk számokat, legnagyobb helyiértékű bitként egy átvitelt kell hozzáadni az eredményhez 21

22 UDP jellemzők a) Nem kapcsolat orientált b) Nincs hibajavítás c) Nincs nyugtázás d) Tulajdonképpen az IP szint által biztosított szolgáltatásokat nyújtja felfelé e) Használata: ha az adatátvitel sebessége a legfontosabb, minden többi feladatot a felette elhelyezkedő réteg lát el. UDP-t olyan esetekben alkalmazzák, ahol a küldött adatok viszonylag kis részének elvesztése nem okoz működési problémát sőt, esetleg kívánatos is (pl. torlódás esetén), mint pl. a műsorszórás vagy ahol ezen hibák korrigálásáról egy magasabb szintű protokoll gondoskodik 22

23 UDP jellemzők a) Tipikusan a DNS-ek (Domain Name Server) b) Real-time alkalmazások c) Játékok d) Egy játékban vagy real-time mozgókép/hang átvitel esetén, ha egy csomag rossz, akkor ott legfeljebb döccen egyet, de ez még mindig kisebb baj, mintha az adott pontnál megállna és onnantól elkezdené újra adni a csomagokat e) A szegényesebb szolgáltatásból adódóan sokkal egyszerűbb az UDP fejléc. 23

24 UDP jellemzők a) Az UDP esetében is felmerül a mobilitásból adódó változó hibaarány Ami időnként a kapcsolat teljes megszakadásához vezet Az forrásnak nincs információja az eldobott és sérült csomagokról b) A nyugtázásra ugyan nem kell várni, de a változó csatornaminőség és a cellaváltások itt is komoly gondot okoznak c) Csomag megsérülésére az ellenőrzőösszeg újraszámításából lehet következtetni, amely az egész csomagot lefedi Egyetlen bithiba a teljes csomag eldobásához vezet 24

25 TCP Transport Control Protocol Átvitel Vezérlési Protokoll a) Transmission Control Protocol [RFC-793] b) 1981 c) Az egyik leggyakrabban használt transzport protokoll d) szabványt vezetékes hálózatra dolgozták ki, azonban a ma egyre szélesebb körben használt vezeték nélküli hálózatok karakterisztikái jelentősen különböznek vezetékes hálózatok adatátviteli tulajdonságaitól. e) olyan vezetékes összeköttetésekre dolgozták melyeknek a jellemzőik a következők: nagy sávszélesség kis késleltetés kis hibavalószínűség.

26 TCP jellemzői a) Újraküldés a TCP feladata, hogy adott esetben (pl. egy bizonyos idő lejártával) az egyes csomagokat újra elküldje, mivel lehet, hogy az előző példány elveszett valahol b) Sorrendhelyes átvitel A célállomáson a megérkezett csomagok sorrendje nem biztos, hogy az elküldés sorrendjével megegyezik, ezért a TCP feladata ennek a rendezése is (ha szükséges) c) Csomagduplázódás A TCP a csomagduplázás ellen is védelmet nyújt 26

27 TCP jellemzői a) Megbízhatóság az ún. PAR (Positive Acknowledgement with Retransmission) technikával biztosítja. Ez azt jelenti, hogy a célállomás TCP-t megvalósító szoftvere nyugtázza a csomag kézbesítését, miután a hálózati szinttől (az IP-től) megkapta. b) Megbízhatóság és késleltetés A TCP esetében a megbízhatóság azt jelenti, hogy az elküldött csomagok biztosan megérkeznek, de az esetleges újraküldések miatti késleltetésre nincs garancia Valós idejű szolgáltatások esetén ezért nem javasolt a TCP használata 27

28 TCP jellemzői a) Kapcsolatorientált Kapcsolatkiépítés három-utas kézfogással (sorszám meghatározása) b) Több kapcsolat Egy hoston egyszerre több TCP kapcsolat is élhet, és itt is, mint az UDP-nél, az egyes kapcsolatok külön-külön TCP-porton (TSAPon) vannak c) Full-duplex adatfolyam A TCP-kapcsolatok full-duplexek, vagyis kétirányúak, és az elküldött adatokat a TCP strukturálatlan bytefolyamnak tekinti. MSS: maximálisszegmens méret (maximum segment size) a) Forgalomszabályozás (flow control) A küldő nem terheli túl a fogadót b) Torlódáskezelés (congestion control) 28

29 TCP fejléc a) Portszám (Source Port, Destination Port) A fontosabb, szélesebb körben használt protokollok egy "mindenki által ismert" sorszámú port-on várnak kapcsolatokra: HTTP: 80 FTP: 20, 21 SSH: 22 SMTP: 25 Telnet: 32 29

30 TCP fejléc a) Sorszám (Sequence Number) a vevő oldalt arról biztosítja, hogy minden adatot helyes sorrendben kapjon meg, és ne veszítsen el egyet se a datagrammok közül. A TCP nem a datagrammokat, hanem az szegmenseket sorszámozza 3-utas kézfogás b) Nyugta sorszám (Acknowledgement Number) a rendeltetési helyre való megérkezést a vevő egy nyugtával hozza a küldő oldal tudomására Például egy olyan csomag elküldése, amelynek nyugtamezőjében 1500 szerepel, azt jelenti, hogy az 1500-as oktetig bezárólag minden datagramm eljutott a rendeltetési helyre 30

31 TCP fejléc a) Egybites változók URG: sürgősségi mutató használatát engedélyezi ACK: a nyugta érvényességét jelezi, 0 esetén a szegmens nem tartalmaz nyugtát, figyelmen kívül hagyható a mezeje PSH: késedelem nélküli továbbítás kérése- pufferelés nélkül RST: hoszt összeomlását vagy az összekötés helyreállításának igényét jelzi. SYN: összekötés létesítésére irányul kérés (CR): SYN=1 & ACK=0 elfogadás (CA): SYN=1 & ACK=1 FIN: összeköttetés bontását jelzi a küldőknek nincs több továbbítani való adata 31

32 TCP fejléc a) Ablak (Window) az összeköttetés alatt forgalomban lévő adatok mennyiségét határozza meg, vagyis a vevő éppen mekkora adatmennyiséget képes még befogadni b) Ellenőrzőösszeg (Checksum) Az adó és a vevő is kiszámolja egy meghatározott algoritmus alapján ha nem egyezik, akkor a datagrammal az átvitel közben valahol valami baj történt és azt a protokoll eldobja. 32

33 TCP összeköttetés felépítése - A háromfázisú kézfogás A állomás SYN(seq=x) küldése B állomás SYN(seq=y,ack=x+1) fogadása SYN (seq=x) fogadása SYN (seq=y,ack=x+1) küldése ACK(ack=y+1) küldése ACK (ack=y+1) fogadása SYN szinkronjel, ACK Nyugtázás Az x az A, az y pedig a B állomás sorszáma 33

34 TCP összeköttetés felépítése

35 TCP összeköttetés-kezelés modellje Állapot Leírás CLOSED LISTEN SYN RCVD SYN SENT ESTABLISHED FIN WAIT 1 FIN WAIT 2 TIMED WAIT CLOSING CLOSE WAUT LAST ACK Nincs aktív vagy függő összeköttetés A szerver egy hívás érkezésére vár Összeköttetés-kérés érkezett, Ack-ra vár Az alkalmazás összeköttetés-létesítést kezdeményezett Normális adatátviteli állapot Az alkalmazás bejelentette, hogy végzett a teendőivel A másik fél beleegyezett az összekötetés bontásába Vár, míg az összes csomag ki nem hal Mind két fél egyszerre próbálta bontani az összeköttetést A másik fél bontást kezdeményezett Vár, míg az összes csomag ki nem hal.

36 TCP összeköttetés-kezelés modellje (2)

37 TCP forgalomszabályozás a) Cél, hogy a küldő ne terhelje túl a fogadót A küldő nem akarja túltölteni a vevő-puffert azzal, hogy túl sokat, túl gyorsan küld b) Átviteli sebesség korlátjai A vevő kapacitása A hálózat kapacitása c) Adó oldali csomagok típusai Elküldött nyugtázott Elküldött még nem nyugtázott Még nem elküldött elküldhető Még nem elküldött még nem küldhető el 37

38 TCP forgalomszabályozás a) Vevő oldali csomagok típusai Megérkezett (nyugtázott) Nem érkezett meg, de megérkezhet (képes fogadni) Nem érkezhet meg (nem képes fogadni) a) A küldő ne árassza el a vevőt Visszacsatolás (nyugtázás, window) Működése a) A fogadó megadja a szegmensben a puffer szabad helyének nagyságát(vagyis a RcvWindow méretét) b) A küldő korlátozza a nem nyugtázott adatok mennyiségét a RcvWindow-ra Biztosítja, hogy a fogadó puffer nem csordulhat túl 38

39 TCP átviteli politika

40 TCP átviteli politika(2)

41 TCP - Torlódásszabályozás Torlódás: Ha egyes hálózatrészek túltelítődnek akkor a csomagok mozgatása lehetetlenné válhat. A várakozási sorok, amelyeknek ezeket a csomagokat be kellene fogadniuk, állandóan tele vannak. A torlódás a csomaghálózatokban olyan állapot, amelyben a hálózat teljesítménye valamilyen módon lecsökken, mert a hálózatban az áthaladó csomagok száma túlságosan nagy. A teljesítménycsökkenés jelentkezhet oly módon hogy a hálózat átbocsátóképessége (throughput) lecsökkent, anélkül, hogy a hálózat terhelését csökkentenénk a hálózaton áthaladó csomagok késleltetése megnőtt. 41

42 A torlódás okai és következményei Példa a) Két küldő, két fogadó b) Egy router, végtelen puffer c) Nincs újraküldés d) Torlódáskor nagy késleltetés e) Maximális elérhetőátvitel 42

43 TCP torlódás kezelése

44 Torlódásvezérlési megközelítések End-end torlódásvezérlés a) Nincs egyértelmű (explicit) visszacsatolás a hálózatból b) A torlódás a végberendezésben érzékelt veszteségben, késleltetésben jelenik meg c) Ezt a megközelítést használja a TCP Hálózat által támogatott torlódásvezérlés a) A routerek nyújtanak visszacsatolást a végberendezéseknek b) Egyetlen bit jelzi a torlódást(sna, DEC bit, TCP/IP ECN, ATM) c) Egyértelmű sebesség megadás a küldőnek, amellyel küldhet 44

45 TCP - Torlódásszabályozás a) Megközelítés:növeljük addig az átviteli sebességet (ablakméretet), a használható sávszélesség kipróbálásával, amíg veszteség nem történik b) Csomagvesztés után a TCP megfelezi a hálózatba küldött csomagjainak számát c) Majd ismét növeli a küldési sebességét a következő ütközésig, vagyis csomagvesztésig d) Ennek megvalósítására az algoritmus használ egy torlódási ablak változót (congestion window - cwnd) 45

46 TCP - Torlódásszabályozás a) A csomagvesztés után a TCP óvatosabbá válik Additívnövelés (AI) növeljük a cwnd-t 1MSS-sel minden RTT alatt, amíg csomagvesztést nem detektálunk Multiplikatív csökkentés (MD) csökkentsük a cwnd-t a felére csomagveszteség detektálásakor 46

47 TCP - Torlódásszabályozás Slow Start a) Amikor az összeköttetés létrejön, növeljük a sebességet exponenciálisan az első csomagvesztési eseményig cwnd duplázása minden RTT-ben cwnd növelése által minden kapott ACK-re a) Amikor a cwnd értéke elérte a timeout előtti értékének a felét (threshold) az exponenciális sebességnövelés helyett lineáris növelés 47

48 TCP torlódás kezelése lassú kezdés

49 TCP Időzítés kezelése

50 TCP variánsok a) Változtatás a protokoll torlódásszabályozási mechanizmusában TCP Tahoe TCP Reno későbbi változatok alapját képezik TCP New Reno TCP SACK (Selective Acknowledgement) TCP Vegas TCP BIC (Binary Increase Congestion Control) TCP CUBIC TCP Westwood TCP Hybla Scalable TCP HighSpeed TCP H-TCP TCP Veno TCP-LP (Low Priority) 50

51 TCP vezeték nélküli környezetben a) A TCP nem képes különbséget tenni a csomag sérülése miatti csomagvesztés és a torlódás miatti vesztés között. b) Így minden csomagvesztés ugyanazt az adó részéről történő torlódás elkerülési választ vonja maga után, ami az adó átküldési sebességének a csökkenését okozza még akkor is, ha a hálózatban nincs torlódás c) A vezeték nélküli átvitel miatt bithibák jelentkeznek, amik csomagvesztésben nyilvánulnak meg. d) A TCP vezetékes környezetre optimalizált, így a csomagvesztést torlódásként értelmezi és csökkenti az átviteli sebességet. 51

52 TCP vezeték nélküli környezetben a) A TCP zajos csatornán indokolatlanul csökkentheti az adatátviteli sebességét b) Cellaváltás (az RTT hirtelen megnő), adatforgalom leáll Gyors lassú cella: megfelelő működés Lassú gyors cella: lassan növeli a sebességet 52

53 TCP vezeték nélküli környezetben a) A handoverek gyakoriságának növekedésével, erősen csökken az átviteli sebesség. a) Percenkénti négy handover esetén szinte használhatatlanok az alkalmazások b) Az RTT (Round Trip Time) jelentősen ingadozhat Felesleges újraküldés történhet 53

54 TCP vezeték nélküli környezetben a) Kapcsolat megszakadásának okai: Cellaváltás esetén a kapcsolat megszakad, új kapcsolat felépítésére van szükség A jelerősség lecsökken (fading hatások) b) Változó sebességű csatorna A felhasználók száma változik a cellán belül c) Multimédiás és késleltetésre érzékeny alkalmazások esetén a TCP nem ajánlott 54

55 TCP vezeték nélküli környezetben a) A TCP hibáinak kiküszöbölésére nehézkes, hiszen minden Internethez csatlakoztatott gépen van egy példány Ezeknek együtt kell működniük Lényegi változtatás így nem oldható meg b) A módosított TCP változatoknak kompatibilisnek kell maradniuk c) Megoldási javaslatok: Indirect TCP (I-TCP) Snooping TCP Mobile TCP (M-TCP) egyéb 55

56 Indirect TCP (I-TCP) a) Az I-TCP részekre bontja a kapcsolatot A kapcsolat vezetékes részében nincs változtatás A vezeték nélküli szakaszon a mobil terminálokra optimalizált TCP A TCP kapcsolatot két szakaszra bontja (pl. a távoli domain gateway-énél, vagy az idegen ügynöknél Mobile IPv4) Nincs többé valódi end-to-end kommunikáció A vezetékes részen található hoszt nem vesz észre semmit mobile host MSR (Mobility Source Router/ Base Station) wired Internet wireless TCP standard TCP 56

57 Indirect TCP (I-TCP) a) Előnyök A fix hálózati részben nincs szükség változtatásra A vezeték nélküli csatorna átviteli hibái nem terjednek tovább a vezetékes hálózatba Hatékonyabb alkalmazkodás a mobil szakaszhoz, különböző MTU, mobil csatornára optimalizált TCP változat alkalmazása Az elveszett csomagok nagyon gyors újraküldése a mobil szakaszon b) Hátrányok Elveszítjük az end-to-end koncepciót A Mobility Source Router/ Base Station a legérzékenyebb pont a hálózatban Nagyobb késleltetés a csomagok bufferelése és továbbküldése miatt az MSRnél 57

58 Snoop TCP a) A TCP transzparens kiegészítése a Snoop Agent-ben b) A Snoop Agent az access point-ban vagy a távoli ügynökben van telepítve c) A mobil hosztnak szánt üzenetek bufferelése d) Local retransmission: a vezeték nélküli szakaszon történt csomagvesztés esetén azonnali újraküldés (mindkét irányban) e) A Snoop Agent a rajta áthaladó ACK üzeneteket figyeli, és szűri a duplikált nyugtákat f) A módosított TCP-re (Snoop TCP) az ügynökben, valamint a mobil hosztnál van szükség local retransmission Snoop Agent wired Internet correspondent host mobile host snooping of ACKs buffering of data end-to-end TCP connection 58

59 Snoop TCP Adatátvitel a mobil hoszt irányban A Snoop Agent addig buffereli az adatokat, amíg a mobil hoszt nyugtáját nem érkezik meg, vagy csomagvesztés történik (duplikált ACK-ot érzékel, vagy lejár az időzítő) Nyugta esetén törli a buffert Újraküld, ha csomagvesztést detektál Gyors újraküldés, ami a fix hálózat számára nem látható Adatátvitel a fix hoszt irányban A Snoop Agent csomagvesztést észlel a sorszámok alapján, miután azonnal NACK üzenetet küld a mobil hosztnak A mobil hoszt így relatív kis késleltetéssel újra tudja küldeni az elveszett csomagot 59

60 Snoop TCP a) Előnyök: Megmarad az end-to-end koncepció Nincs szükség a TCP változtatására a a fix hoszt-nál A mobil hoszt is képes eredeti TCP változattal működni, de a hatékonyság, miatt érdemes módosított TCP-t használni Handover esetén nem változik a Snoop Agent, ezért csomagvesztés sincs ez miatt b) Hátrányok A csatornahibák miatti csomagvesztés nincs eléggé megkülönböztetve TCP változtatásra van szükség a mobil hosztnál is, hogy kezelje a NACK-t Titkosított adatátvitel esetén a Snoop TCP nem működik Nem tud monitorozni 60

61 Mobile TCP (M-TCP) a) A kapcsolat gyakori megszakadásának kezelése a cél b) Az I-TCP-hez hasonlóan az M-TCP is kettéosztja a kapcsolatot (Supervisory Host, SH) Nem kell módosítani a TCP-t a fix hoszt és az SH között Az SH és a mobil hoszt között optimalizált TCP c) Supervisory Host Nincs bufferelés és újraküldés Az összes csomagot figyeli, és ha kapcsolatbontást érzékel: A küldő ablakot 0-r állítja A küldő sürgősségi módba kapcsol A régi vagy az új SH újra növelni kezdi az ablakméretet d) Előnyök Kezeli a kapcsolatbontást Nincs bufferelés késleltetés e) Hátrányok A vezeték nélküli csatornahiba továbbterjed a vezetékes hálózatba Vezeték nélküli linkhez idomított TCP 61

62 Fast retransmit/fast recovery Gyors újraküldés/helyreállítás a) A handover gyakran csomagvesztést okoz A TCP ezt rosszul kezeli, mivel a slow-start mechanizmust indítja b) Kényszerített gyors újraküldés Amint a mobil hoszt regisztrálta magát az új hálózatban, duplikált nyugtát küld Ezzel kényszeríti a másik hosztot a fast retransmit (gyors újraküldés) módra Ráadásul a TCP az eredeti ablakmérettel folytatja a kommunikációt, nem pedig a slow-start mechanizmus indításával c) Előnyök Kis módosításokra van szükség Jelentős hatékonyságnövekedés d) Hátrányok Az IP és a TCP együttműködésére van szükség (új regisztráció történt) 62

63 Transmission/time-out freezing Küldés/időzítő zárolás a) A kapcsolat hosszabb időre is megszakadhat A csomagtovábbítás nem lehetséges Az időzítő lejárta után a TCP bontja a kapcsolatot b) TCP zárolás A MAC réteg gyakran előre tudja jelezni a szakadásokat a kommunikációban A MAC réteg így információt nyújthat a TCP-nek a várható kapcsolatvesztésről A TCP leállítja a küldést, de nem tekinti túlterheltnek a hálózatot A MAC réteg jelzi, ha ismét van kapcsolat Ismét az eredeti sebességgel folytathatja a küldést c) Előnyök A módszer független a csomagtípusoktól, és a TCP mechanizmusoktól (ACK, sorszámok) IPSec esetén is működik d) Hátrányok TCP módosításra van szükség A módszer a MAC réteg információira alapoz 63

64 SCTP Stream Control Transmission Protocol RFC A Linux kernel része a 2.6.x verziókban Megbízható Hibamentes Duplikáció-mentes Nem sorrendhelyes/vagy sorrendhelyes (beállítható) Több folyam kezelése egy kapcsolaton belül Multihoming Több IP-cím Torlódásszabályozás Slow start MTU (Maximum Transfer Unit) felderítés 64

65 SCTP motivációk a) A TCP, UDP nem elégíti ki az összes alkalmazás igényeit b) Fejlődését leginkább az IP telefónia és az ott alkalmazott jelzésrendszer indította c) A TCP-hez hasonlóan megbízható és full-duplex kapcsolatot alkalmaz d) A TCP-vel és UDP-vel ellentétben olyan opciókat is nyújt, amelyek a multimédiás alkalmazások esetén jelent előnyt e) TCP-hez hasonló torlódáskezelő algoritmust használ f) Azonos hosztok közötti folyamok összefogása g) Kapcsolatfelépítés: 4-utas kézfogás h) Kapcsolatbontás: 3-utas kézfogás 65

66 SCTP fejléc 66

67 SCTP fejléc a) Csomag formátum A TCP-vel ellentétben, az SCTP üzenet-orientált adattovábbítást nyújt b) Common header forrás és cél portszám ellenörző rész Checksum c) Chunk header Chunk hossz Típus (14 különböző chunk típus) speciális flag-ek DATA chunk INIT chunk INIT ACK chunk SACK chunk HEARTBEAT chunk HEARTBEAT ACK chunk ABORT chunk SHUTDOWN chunk SHUTDOWN ACK chunk ERROR chunk COOKIE ECHO chunk COOKIE ACK chunk ECNE chunk CWR chunk SHUTDOWN COMPLETE chunk 67

68 SCTP kapcsolatfelépítés SCTP Host A Host B Host A Host B SYN FIN SYN, ACK ACK of FIN ACK FIN ACK of FIN TCP Mobil Internet előadás BME-HIT 68

69 SCTP adatátvitel a) Selective Acknowledgement kumulatív nyugta nyugta az utolsó hibátlanul fogadott TSN-re (Transmission Sequence Number) max. 500 ms időközönként (állítható) 69

70 Multistreaming a) Rendkívül fontos tulajdonsága az SCTP-nek, hogy egy kapcsolaton belül képes több adatfolyamot továbbítani b) Míg a TCP-ben ehhez külön kapcsolatokra van szükség c) A független adatfolyamok külön chunk-okban kerülnek továbbításra, de egy csomagon belül d) Jó felhasználási lehetőség pl. a vezérlő és felhasználói adatok szétválasztása TCP esetében meg kell várni, hogy a felhasználói adat továbbítódjon és csak utána érkezik a nagyobb prioritású vezérlő adat e) Az SCTP párhuzamossá teszi a folyamok továbbítását, így csökkentve a késleltetést is f) A független folyamokra, különböző tulajdonságokat állíthatunk be, mint pl. a sorrendhelyesség 70

71 Multistreaming 71

72 Multihoming a) Egy multihome hoszt azzal a tulajdonsággal rendelkezik, hogy több interfészen érhető el, azaz több IP címe is van b) Az SCTP képest tehát egy összeköttetés adatait több interfészen küldeni és fogadni c) Jelenleg ez az egyetlen transzport protokoll, amely erre képes Ha az elsődleges címen nem lehet elérni, akkor átvált a másik címre 72

73 SCTP összehasonlítás A szolgáltatások és jellemző tulajdonságok áttekintése SCTP TCP UDP Full-duplex adatátvitel igen igen igen Kapcsolat orientált igen igen nem Megbízható adatátvitel igen igen nem Megbízhatatlan adatátvitel igen nem igen Részlegesen megbízható adatátvitel igen nem nem Sorrendhelyes átvitel igen igen nem Nem sorrendhelyes átvitel igen nem igen Flow- és Congestion Control igen igen nem ECN támogatás igen igen nem Szelektív nyugtázás igen igen nem Üzenethatárok védelme igen nem igen Fragmentálás igen igen nem Multistreaming igen nem nem Multihoming igen nem nem SYN flooding támadás elleni védelem igen nem n/a Half-closed kapcsolat nem igen n/a 73

74 Mobile SCTP (msctp) a) Az SCTP protokollt arra tervezték, hogy a TCP-t és esetleg még az UDP-t is leváltsa b) Hasonlít a TCP-re, de jóval többre képes annál, például multi-streaming és multihoming támogatása c) A multi-homing az az új tulajdonság, ami miatt az SCTP alkalmas lehet mobilitás kezelésére, méghozzá úgy, hogy nincs szükség agent-re d) A mobilitás úgy van megvalósítva, hogy a végpont úgy változtassa meg az IP címét, hogy közben a végpont-végpont kapcsolat nem szakad meg ennek dinamikusan kell történnie e) Egy asszociáció felépítése során a kommunikáló felek kicserélik egymással a lehetséges transzport címeiket (IP és port párosok) 74

75 Mobile SCTP (msctp) a) Az ADDIP-vel kiegészített SCTP-t mobile SCTP-nek (msctp) nevezik b) ADDIP (Dynamic Address Reconfiguration) kiegészítés az SCTP-hez lehetővé teszi, hogy hozzáadjunk, elvegyünk és megváltoztassunk IP címeket (MN Mobile Node) egy aktív kapcsolat alatt Események: ADD; DELETE; CHANGE A CN-t (Correspondent Node) is értesíteni kell a változásról SCTP ASCONF (Address Configuration Change) chunk (MN CN) SCTP ASCONF-ACK chunk (CN MN) 75

76 msctp handover Cellaváltás (Access Router A Access Router B ) a) Új IP cím kérése a B router-től DHCPv6 vagy IPv6 Stateless auto-configuration b) A MN hozzáadja az új IP címet az SCTP kapcsolathoz a CN-nek küldött SCTP ASCONF Chunk üzenet segítségével a CN ASCONF-ACK chunk üzenettel nyugtázza az új IP cím hozzáadását c) A MN elsődleges IP címét az új IP címre állítja Az IP cím változtatás függhet pl. a rádiós jel erősségétől d) A MN törli a régi IP címet SCTP ASCONF Chunk üzenet küldésével a CN-nek e) A fenti lépések ismétlődnek, akárhányszor cellaváltás történik 76

77 msctp handover a) Az IP cím megváltoztatása azonban újabb problémákhoz vezethet: A MN egy SCTP kapcsolatot kezdeményez a CN-dal. Egy kis idő elteltével MN úgy dönt, hogy átmegy A hálózatból B hálózatba. Az új hálózatban a MN új IP címet kap. Ezt az új IP-t a MN hozzáfőzi a már meglévő asszociációhoz és erről a CN t is értesíti. MN ezek után az új IP címet jelöli meg elsődleges IP címnek és a régi IP címet törli az asszociációból. Ha fordítva történik az egész és a CN akar kapcsolatot kiépíteni a MN-al, akkor nem működik az eljárás, hiszen a CN-nek nincsen tudomása arról, hogy a MN-nak mi az aktuális elérhetősége. Ezért szükség van valamiféle Home Agentre. Az asszociáció felépülése után azonban már az msctp veszi át az irányítást. 77

78 msctp/mipv6: kapcsolatfelépítés 78

I. Házi Feladat. internet. Határidő: 2011. V. 30.

I. Házi Feladat. internet. Határidő: 2011. V. 30. I. Házi Feladat Határidő: 2011. V. 30. Feladat 1. (1 pont) Tegyük fel, hogy az A és B hosztok az interneten keresztül vannak összekapcsolva. A internet B 1. ábra. a 1-hez tartozó ábra 1. Ha a legtöbb Internetes

Részletesebben

Számítógépes Hálózatok és Internet Eszközök

Számítógépes Hálózatok és Internet Eszközök Számítógépes Hálózatok és Internet Eszközök 2008 20. Hálózati réteg Congestion Control Szállítói réteg szolgáltatások, multiplexálás, TCP 1 Torlódás felügyelet (Congestion Control) Minden hálózatnak korlátos

Részletesebben

Alternatív TCP variánsok vizsgálata nagy sávszélességű, magas késleltetésű kapcsolatokon

Alternatív TCP variánsok vizsgálata nagy sávszélességű, magas késleltetésű kapcsolatokon Alternatív TCP variánsok vizsgálata nagy sávszélességű, magas késleltetésű kapcsolatokon Orosz Péter, Sztrik János, Che Soong Kim** Debreceni Egyetem Informatikai Kar oroszp@unideb.hu, jsztrik@inf.unideb.hu

Részletesebben

Az adott eszköz IP címét viszont az adott hálózat üzemeltetői határozzákmeg.

Az adott eszköz IP címét viszont az adott hálózat üzemeltetői határozzákmeg. IPV4, IPV6 IP CÍMZÉS Egy IP alapú hálózat minden aktív elemének, (hálózati kártya, router, gateway, nyomtató, stb) egyedi azonosítóval kell rendelkeznie! Ez az IP cím Egy IP cím 32 bitből, azaz 4 byte-ból

Részletesebben

Tartalomjegyzék. Mobil Internet választható tárgy. 4. mérés: Transzport protokollok

Tartalomjegyzék. Mobil Internet választható tárgy. 4. mérés: Transzport protokollok Mobil Internet választható tárgy 4. mérés: Transzport protokollok A mérést kidolgozta: Huszák Árpád Utolsó módosítás: 2009. április 2. Tartalomjegyzék Bevezető...2 Transzport protokollok...2 TCP (Transmission

Részletesebben

Mérési útmutató a Mobil Kommunikáció és Kvantumtechnológiák Laboratórium méréseihez

Mérési útmutató a Mobil Kommunikáció és Kvantumtechnológiák Laboratórium méréseihez Mérési útmutató a Mobil Kommunikáció és Kvantumtechnológiák Laboratórium méréseihez Transzport protokollok vizsgálata Ns2 szimulációs környezetben Mérés helye: Híradástechnikai Tanszék Mobil Kommunikáció

Részletesebben

Tűzfalak működése és összehasonlításuk

Tűzfalak működése és összehasonlításuk Tűzfalak működése és összehasonlításuk Készítette Sári Zoltán YF5D3E Óbudai Egyetem Neumann János Informatikai Kar 1 1. Bevezetés A tűzfalak fejlődése a számítógépes hálózatok evolúciójával párhuzamosan,

Részletesebben

SZÁLLÍTÁSI (TRANSPORT, HOST- TO-HOST) PROTOKOLLOK

SZÁLLÍTÁSI (TRANSPORT, HOST- TO-HOST) PROTOKOLLOK SZÁLLÍTÁSI (TRANSPORT, HOST- TO-HOST) PROTOKOLLOK UDP és TCP 2014.Április 15. Dr. Simon Vilmos docens BME Hálózati Rendszerek és Szolgáltatások Tanszék svilmos@hit.bme.hu A TCP/IP architektúra és az ISO/OSI

Részletesebben

Nagy sebességű TCP. TCP Protokollok

Nagy sebességű TCP. TCP Protokollok Nagysebességű TCP Protokollok Telbisz Ferenc Matáv PKI-FI és KFKI RMKI Számítógép Hálózati Központ Németh Vilmos Egyetemközi Távközlési és Informatikai Központ Dr. Molnár Sándor, Dr. Szabó Róbert BME Távközlési

Részletesebben

Tartalom. Hálózati kapcsolatok felépítése és tesztelése. Rétegek használata az adatok továbbításának leírására. OSI modell. Az OSI modell rétegei

Tartalom. Hálózati kapcsolatok felépítése és tesztelése. Rétegek használata az adatok továbbításának leírására. OSI modell. Az OSI modell rétegei Tartalom Hálózati kapcsolatok felépítése és tesztelése Bevezetés: az OSI és a Általános tájékoztató parancs: 7. réteg: DNS, telnet 4. réteg: TCP, UDP 3. réteg: IP, ICMP, ping, tracert 2. réteg: ARP Rétegek

Részletesebben

Számítógép-hálózatok. Gyakorló feladatok a 2. ZH témakörének egyes részeihez

Számítógép-hálózatok. Gyakorló feladatok a 2. ZH témakörének egyes részeihez Számítógép-hálózatok Gyakorló feladatok a 2. ZH témakörének egyes részeihez IPV4 FELADATOK Dr. Lencse Gábor, SZE Távközlési Tanszék 2 IP címekkel kapcsolatos feladatok 1. Milyen osztályba tartoznak a következő

Részletesebben

Sávszélesség szabályozás kezdőknek és haladóknak. Mátó Péter

Sávszélesség szabályozás kezdőknek és haladóknak. Mátó Péter <atya@fsf.hu> Sávszélesség szabályozás kezdőknek és haladóknak Mátó Péter Az előadás témái A hálózati kapcsolatok jellemzői A hálózati protokollok jellemzői A Linux felkészítése a sávszélesség szabályzásra

Részletesebben

Kommunikáció. 3. előadás

Kommunikáció. 3. előadás Kommunikáció 3. előadás Kommunikáció A és B folyamatnak meg kell egyeznie a bitek jelentésében Szabályok protokollok ISO OSI Többrétegű protokollok előnyei Kapcsolat-orientált / kapcsolat nélküli Protokollrétegek

Részletesebben

Hálózatterhelés-függő újraküldés DCCP/IP hálózatokban

Hálózatterhelés-függő újraküldés DCCP/IP hálózatokban Hálózatterhelés-függő újraküldés DCCP/IP hálózatokban Huszák Árpád, Imre Sándor huszak@hit.bme.hu, imre@hit.bme.hu Budapesti Műszaki és Gazdaságtudományi Egyetem Híradástechnikai Tanszék Mobil Távközlési

Részletesebben

Dr. Wührl Tibor Ph.D. MsC 04 Ea. IP kapcsolás hálózati réteg

Dr. Wührl Tibor Ph.D. MsC 04 Ea. IP kapcsolás hálózati réteg Dr. Wührl Tibor Ph.D. MsC 04 Ea IP kapcsolás hálózati réteg IP kapcsolás Az IP címek kezelése, valamint a csomagok IP cím alapján történő irányítása az OSI rétegmodell szerint a 3. rétegben (hálózati network

Részletesebben

Hálózatok Rétegei. Számítógépes Hálózatok és Internet Eszközök. TCP/IP-Rétegmodell. Az Internet rétegei - TCP/IP-rétegek

Hálózatok Rétegei. Számítógépes Hálózatok és Internet Eszközök. TCP/IP-Rétegmodell. Az Internet rétegei - TCP/IP-rétegek Hálózatok Rétegei Számítógépes Hálózatok és Internet Eszközök WEB FTP Email Telnet Telefon 2008 2. Rétegmodell, Hálózat tipusok Közbenenső réteg(ek) Tw. Pair Koax. Optikai WiFi Satellit 1 2 Az Internet

Részletesebben

Internet Protokoll 6-os verzió. Varga Tamás

Internet Protokoll 6-os verzió. Varga Tamás Internet Protokoll 6-os verzió Motiváció Internet szédületes fejlődése címtartomány kimerül routing táblák mérete nő adatvédelem hiánya a hálózati rétegen gépek konfigurációja bonyolódik A TCP/IPkét évtizede

Részletesebben

Számítógép-hálózatok A felsőbb rétegek

Számítógép-hálózatok A felsőbb rétegek Számítógép-hálózatok A felsőbb rétegek 2013/2014. tanév, I. félév Dr. Kovács Szilveszter E-mail: szkovacs@iit.uni-miskolc.hu Informatikai Intézet 106. sz. szoba Tel: (46) 565-111 / 21-06 Dr. Kovács Szilveszter

Részletesebben

20. Tétel 1.0 Internet felépítése, OSI modell, TCP/IP modell szintjenek bemutatása, protokollok Pozsonyi ; Szemenyei

20. Tétel 1.0 Internet felépítése, OSI modell, TCP/IP modell szintjenek bemutatása, protokollok Pozsonyi ; Szemenyei Internet felépítése, OSI modell, TCP/IP modell szintjenek bemutatása, protokollok 28.Tétel Az Internet Felépítése: Megjegyzés [M1]: Ábra Az Internet egy világméretű számítógép-hálózat, amely kisebb hálózatok

Részletesebben

Hálózati sávszélesség-menedzsment Linux rendszeren. Mátó Péter Zámbó Marcell

Hálózati sávszélesség-menedzsment Linux rendszeren. Mátó Péter <atya@fsf.hu> Zámbó Marcell <lilo@andrews.hu> Hálózati sávszélesség-menedzsment Linux rendszeren Mátó Péter Zámbó Marcell A hálózati kapcsolatok jellemzői Tipikus hálózati kapcsolatok ISDN, analóg modem ADSL, *DSL Kábelnet,

Részletesebben

AGSMHÁLÓZATA TOVÁBBFEJLESZTÉSE A NAGYOBB

AGSMHÁLÓZATA TOVÁBBFEJLESZTÉSE A NAGYOBB AGSMHÁLÓZATA TOVÁBBFEJLESZTÉSE A NAGYOBB ADATSEBESSÉG ÉS CSOMAGKAPCSOLÁS FELÉ 2011. május 19., Budapest HSCSD - (High Speed Circuit-Switched Data) A rendszer négy 14,4 kbit/s-os átviteli időrés összekapcsolásával

Részletesebben

TRANSMISSION CONTROL PROTOCOL (TCP) bevezetés1

TRANSMISSION CONTROL PROTOCOL (TCP) bevezetés1 HÁLÓZATOK SZÁLLÍTÁSI RÉTEG TCP és UDP TRANSMISSION CONTROL PROTOCOL (TCP) bevezetés1 Az áttekintő térkép eligazított minket arról, hogy hol járunk, majd nézzük meg külön az aktuális részeket: Alkalmazás

Részletesebben

Routing IPv4 és IPv6 környezetben. Professzionális hálózati feladatok RouterOS-el

Routing IPv4 és IPv6 környezetben. Professzionális hálózati feladatok RouterOS-el Routing IPv4 és IPv6 környezetben Professzionális hálózati feladatok RouterOS-el Tartalom 1. Hálózatok osztályozása Collosion/Broadcast domain Switchelt hálózat Routolt hálózat 1. Útválasztási eljárások

Részletesebben

Hálózatbiztonság 1 TCP/IP architektúra és az ISO/OSI rétegmodell ISO/OSI TCP/IP Gyakorlatias IP: Internet Protocol TCP: Transmission Control Protocol UDP: User Datagram Protocol LLC: Logical Link Control

Részletesebben

Alhálózatok. Bevezetés. IP protokoll. IP címek. IP címre egy gyakorlati példa. Rétegek kommunikáció a hálózatban

Alhálózatok. Bevezetés. IP protokoll. IP címek. IP címre egy gyakorlati példa. Rétegek kommunikáció a hálózatban Rétegek kommunikáció a hálózatban Alhálózatok kommunikációs alhálózat Alk Sz H Ak F Hol? PDU? Bevezetés IP protokoll Internet hálózati rétege IP (Internet Protocol) Feladat: csomagok (datagramok) forrásgéptől

Részletesebben

Statikus routing. Hoszt kommunikáció. Router működési vázlata. Hálózatok közötti kommunikáció. (A) Partnerek azonos hálózatban

Statikus routing. Hoszt kommunikáció. Router működési vázlata. Hálózatok közötti kommunikáció. (A) Partnerek azonos hálózatban Hoszt kommunikáció Statikus routing Két lehetőség Partnerek azonos hálózatban (A) Partnerek különböző hálózatban (B) Döntéshez AND Címzett IP címe Feladó netmaszk Hálózati cím AND A esetben = B esetben

Részletesebben

Hálózatok. Alapismeretek. A hálózatok célja, építőelemei, alapfogalmak

Hálózatok. Alapismeretek. A hálózatok célja, építőelemei, alapfogalmak Hálózatok Alapismeretek A hálózatok célja, építőelemei, alapfogalmak A hálózatok célja A korai időkben terminálokat akartak használni a szabad gépidők lekötésére, erre jó lehetőség volt a megbízható és

Részletesebben

Az Ethernet példája. Számítógépes Hálózatok 2012. Az Ethernet fizikai rétege. Ethernet Vezetékek

Az Ethernet példája. Számítógépes Hálózatok 2012. Az Ethernet fizikai rétege. Ethernet Vezetékek Az Ethernet példája Számítógépes Hálózatok 2012 7. Adatkapcsolati réteg, MAC Ethernet; LAN-ok összekapcsolása; Hálózati réteg Packet Forwarding, Routing Gyakorlati példa: Ethernet IEEE 802.3 standard A

Részletesebben

Tartalom. Router és routing. A 2. réteg és a 3. réteg működése. Forgalomirányító (router) A forgalomirányító összetevői

Tartalom. Router és routing. A 2. réteg és a 3. réteg működése. Forgalomirányító (router) A forgalomirányító összetevői Tartalom Router és routing Forgalomirányító (router) felépítésük működésük távolságvektor elv esetén Irányító protokollok autonóm rendszerek RIP IGRP DHCP 1 2 A 2. réteg és a 3. réteg működése Forgalomirányító

Részletesebben

Rohonczy János: Hálózatok

Rohonczy János: Hálózatok Rohonczy János: Hálózatok Rohonczy János (ELTE) 2005 v.1.0 1 Topológia fa csillag gyűrű busz busz / gerinc Rohonczy János (ELTE) 2005 v.1.0 2 Kiterjedés LAN MAN WAN Rohonczy János (ELTE) 2005 v.1.0 3 Fizikai

Részletesebben

GSM azonosítók, hitelesítés és titkosítás a GSM rendszerben, a kommunikáció rétegei, mobil hálózatok fejlődése

GSM azonosítók, hitelesítés és titkosítás a GSM rendszerben, a kommunikáció rétegei, mobil hálózatok fejlődése Mobil Informatika Dr. Kutor László GSM azonosítók, hitelesítés és titkosítás a GSM rendszerben, a kommunikáció rétegei, mobil hálózatok fejlődése http://uni-obuda.hu/users/kutor/ Bejelentkezés a hálózatba

Részletesebben

Miért tanulunk a számítógép hálózatokról? Számítógép hálózatok. Mennyit tudunk már róluk? Internet: Példa. Internet: Az erıforrás megkeresése

Miért tanulunk a számítógép hálózatokról? Számítógép hálózatok. Mennyit tudunk már róluk? Internet: Példa. Internet: Az erıforrás megkeresése Számítógép hálózatok Bevezetés és áttekintés Miért tanulunk a számítógép hálózatokról? Ezek mérnöki csodák! Skálázhatók, réteges protokollok, rengeteg alcím elég lesz majd megtanulni Ott vannak mindenütt

Részletesebben

Az IP hálózati protokoll

Az IP hálózati protokoll Az IP hálózati protokoll IP (Internet Protocol) RFC 791 A TCP/IP referenciamodell hálózati réteg protokollja. Széles körben használt, az Internet alapeleme. Legfontosabb jellemzői: IP fejrész szerkezete.

Részletesebben

Számítógép-hálózatok zárthelyi feladat. Mik az ISO-OSI hálózati referenciamodell hálózati rétegének főbb feladatai? (1 pont)

Számítógép-hálózatok zárthelyi feladat. Mik az ISO-OSI hálózati referenciamodell hálózati rétegének főbb feladatai? (1 pont) A verzió Név, tankör: 2005. május 11. Neptun kód: Számítógép-hálózatok zárthelyi feladat 1a. Feladat: Mik az ISO-OSI hálózati referenciamodell hálózati rétegének főbb feladatai? (1 pont) 2a. Feladat: Lehet-e

Részletesebben

Számítógépes Hálózatok 2012

Számítógépes Hálózatok 2012 Számítógépes Hálózatok 22 4. Adatkapcsolati réteg CRC, utólagos hibajavítás Hálózatok, 22 Hibafelismerés: CRC Hatékony hibafelismerés: Cyclic Redundancy Check (CRC) A gyakorlatban gyakran használt kód

Részletesebben

IP alapú távközlés. Virtuális magánhálózatok (VPN)

IP alapú távközlés. Virtuális magánhálózatok (VPN) IP alapú távközlés Virtuális magánhálózatok (VPN) Jellemzők Virtual Private Network VPN Publikus hálózatokon is használható Több telephelyes cégek hálózatai biztonságosan összeköthetők Olcsóbb megoldás,

Részletesebben

MOBILITÁS TÁMOGATÁS MAGASABB

MOBILITÁS TÁMOGATÁS MAGASABB MOBILITÁS TÁMOGATÁS MAGASABB RÉTEGEKBEN Mobil és vezeték nélküli hálózatok (BMEVIHIMA07) 4. előadás 2015. március 3., Budapest Dr. Jeney Gábor Dr. Bokor László BME Hálózati Rendszerek és Szolgáltatások

Részletesebben

Hálózati alapismeretek

Hálózati alapismeretek Hálózati alapismeretek Tartalom Hálózat fogalma Előnyei Csoportosítási lehetőségek, topológiák Hálózati eszközök: kártya; switch; router; AP; modem Az Internet története, legfontosabb jellemzői Internet

Részletesebben

állomás két címmel rendelkezik

állomás két címmel rendelkezik IP - Mobil IP Hogyan érnek utol a csomagok? 1 Probléma Gyakori a mozgó vagy nomád Internetfelhasználás Az IP-címét a felhasználó meg kívánja tartani, viszont az IP-cím fizikailag kötött ennek alapján történik

Részletesebben

Hálózati réteg, Internet

Hálózati réteg, Internet álózati réteg, Internet álózati réteg, Internet Készítette: (BM) Tartalom z összekapcsolt LN-ok felépítése. z Ethernet LN-okban használt eszközök hogyan viszonyulnak az OSI rétegekhez? Mik a kapcsolt hálózatok

Részletesebben

Számítógépes Hálózatok 2011

Számítógépes Hálózatok 2011 Számítógépes Hálózatok 2011 10. Hálózati réteg IP címzés, IPv6, ARP, DNS, Circuit Switching, Packet Switching 1 IPv4-Header (RFC 791) Version: 4 = IPv4 IHL: fejléc hossz 32 bites szavakban (>5) Type of

Részletesebben

IP - Mobil IP. Hogyan érnek utol a csomagok? Dr. Simon Vilmos. adjunktus BME Hálózati Rendszerek és Szolgáltatások Tanszék svilmos@hit.bme.

IP - Mobil IP. Hogyan érnek utol a csomagok? Dr. Simon Vilmos. adjunktus BME Hálózati Rendszerek és Szolgáltatások Tanszék svilmos@hit.bme. IP - Hogyan érnek utol a csomagok? 2013.Április 11. Dr. Simon Vilmos adjunktus BME Hálózati Rendszerek és svilmos@hit.bme.hu 2 Probléma Gyakori a mozgó vagy nomád Internet-felhasználás Az IP-címét a felhasználó

Részletesebben

Számítógépes Hálózatok. 5. gyakorlat

Számítógépes Hálózatok. 5. gyakorlat Számítógépes Hálózatok 5. gyakorlat Feladat 0 Számolja ki a CRC kontrollösszeget az 11011011001101000111 üzenetre, ha a generátor polinom x 4 +x 3 +x+1! Mi lesz a 4 bites kontrollösszeg? A fenti üzenet

Részletesebben

Kiszolgálók üzemeltetése. Iványi Péter

Kiszolgálók üzemeltetése. Iványi Péter Kiszolgálók üzemeltetése Iványi Péter Hálózatok N gép esetén a legegyszerűbb ha mindegyiket mindegyikkel összekötjük N-1 kártya és kábel kell Megosztott (shared) kábel Egyszerre több gép is csatlakozik

Részletesebben

[SZÁMÍTÓGÉP-HÁLÓZATOK]

[SZÁMÍTÓGÉP-HÁLÓZATOK] Mérési utasítás Wireshark megismerésének folytatása, TCP működésének vizsgálata Az előző mérésen részben már megismert Wireshark programot fogjuk mai is használni. Ha valakinek szüksége van rá, akkor használhatja

Részletesebben

Hálózat Dynamic Host Configuration Protocol

Hálózat Dynamic Host Configuration Protocol IBM Systems - iseries Hálózat Dynamic Host Configuration Protocol V5R4 IBM Systems - iseries Hálózat Dynamic Host Configuration Protocol V5R4 Megjegyzés Mielőtt a jelen leírást és a vonatkozó terméket

Részletesebben

IPv6 Biztonság: Ipv6 tűzfalak tesztelése és vizsgálata

IPv6 Biztonság: Ipv6 tűzfalak tesztelése és vizsgálata IPv6 Biztonság: Ipv6 tűzfalak tesztelése és vizsgálata Mohácsi János Networkshop 2005 Mohácsi János, NIIF Iroda Tartalom Bevezetés IPv6 tűzfal követelmény analízis IPv6 tűzfal architektúra IPv6 tűzfalak

Részletesebben

Torlódásvezérlés nélküli transzport protokoll teljesítményelemzése Emulab hálózatemulációs környezetben

Torlódásvezérlés nélküli transzport protokoll teljesítményelemzése Emulab hálózatemulációs környezetben Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Távközlési és Médiainformatikai Tanszék Torlódásvezérlés nélküli transzport protokoll teljesítményelemzése Emulab hálózatemulációs

Részletesebben

Tűzfal megoldások. ComNETWORX nap, 2001. I. 30. ComNETWORX Rt.

Tűzfal megoldások. ComNETWORX nap, 2001. I. 30. ComNETWORX Rt. Tűzfal megoldások ComNETORX nap, 2001. I. 30. ComNETORX Rt. N Magamról Hochenburger Róbert MCNI / MCNE MCNI = Master CNI MCNE = Master CNE CNI = Certified Novell Instructor CNE = Certified Novell Engineer

Részletesebben

Az RSVP szolgáltatást az R1 és R3 routereken fogjuk engedélyezni.

Az RSVP szolgáltatást az R1 és R3 routereken fogjuk engedélyezni. IntServ mérési utasítás 1. ábra Hálózati topológia Routerek konfigurálása A hálózatot konfiguráljuk be úgy, hogy a 2 host elérje egymást. (Ehhez szükséges az interfészek megfelelő IP-szintű konfigolása,

Részletesebben

Hálózati architektúrák laborgyakorlat

Hálózati architektúrák laborgyakorlat Hálózati architektúrák laborgyakorlat 4. hét Dr. Orosz Péter, Skopkó Tamás 2012. szeptember Hálózati réteg (L3) Kettős címrendszer Interfész konfigurációja IP címzés: címosztályok, alhálózatok, szuperhálózatok,

Részletesebben

2011. május 19., Budapest IP - MIKRO MOBILITÁS

2011. május 19., Budapest IP - MIKRO MOBILITÁS 2011. május 19., Budapest IP - MIKRO MOBILITÁS Miért nem elég a Mobil IP? A nagy körülfordulási idő és a vezérlési overhead miatt kb. 5s-re megszakad a kapcsolat minden IP csatlakozási pont váltáskor.

Részletesebben

Alkalmazás rétegbeli protokollok:

Alkalmazás rétegbeli protokollok: Alkalmazás rétegbeli protokollok: Általában az alkalmazásban implementálják, igazodnak az alkalmazás igényeihez és logikájához, ezért többé kevésbé eltérnek egymástól. Bizonyos fokú szabványosítás viszont

Részletesebben

Üzenet a Pluto-ra. Delay- and Disruption- Tolerant Networking. Költl Péter. szenior műszaki tanácsadó CCIE #10192 2013. 03. 28.

Üzenet a Pluto-ra. Delay- and Disruption- Tolerant Networking. Költl Péter. szenior műszaki tanácsadó CCIE #10192 2013. 03. 28. Üzenet a Pluto-ra Delay- and Disruption- Tolerant Networking Költl Péter szenior műszaki tanácsadó CCIE #10192 2013. 03. 28. Adatkommunikáció Naprendszer-méretekben Űreszközök, szerverek, kliensek az űrben?

Részletesebben

Internet ROUTER. Motiváció

Internet ROUTER. Motiváció Több internetvonal megosztása egy szerverrel iptables/netfilter és iproute2 segítségével Készítette: Mészáros Károly (MEKMAAT:SZE) mkaroly@citromail.hu 2007-05-22 Az ábrán látható módon a LAN-ban lévő

Részletesebben

Department of Software Engineering

Department of Software Engineering Tavasz 2016 UNIVERSITAS SCIENTIARUM SZEGEDIENSIS UNIVERSITY OF SZEGED Department of Software Engineering Számítógép-hálózatok 2. gyakorlat Wireshark Bordé Sándor S z e g e d i T u d o m á n y e g y e t

Részletesebben

Tartalom. Az adatkapcsolati réteg, Ethernet, ARP. Fogalma és feladatai. Adatkapcsolati réteg. A hálókártya képe

Tartalom. Az adatkapcsolati réteg, Ethernet, ARP. Fogalma és feladatai. Adatkapcsolati réteg. A hálókártya képe Tartalom Az adatkapcsolati réteg, Ethernet, ARP Adatkapcsolati réteg A hálózati kártya (NIC-card) Ethernet ARP Az ARP protokoll Az ARP protokoll által beírt adatok Az ARP parancs Az ARP folyamat alhálózaton

Részletesebben

URL-LEL ADOTT OBJEKTUM LETÖLTÉSE (1) URL-LEL ADOTT OBJEKTUM LETÖLTÉSE

URL-LEL ADOTT OBJEKTUM LETÖLTÉSE (1) URL-LEL ADOTT OBJEKTUM LETÖLTÉSE Programozás III HÁLÓZATKEZELÉS A hálózatkezeléshez használatos java csomag: java. net Hol találkoztunk már vele? Pl.: URL cim = this.getclass().getresource("/zene/valami_zene.wav"); De pl. adott URL-ről

Részletesebben

DNS és IPv6. Jákó András jako.andras@eik.bme.hu BME TIO

DNS és IPv6. Jákó András jako.andras@eik.bme.hu BME TIO DNS és IPv6 Jákó András jako.andras@eik.bme.hu BME TIO Agenda IPv6 információ a DNS-ben DNS használata IPv6 felett Networkshop 2009. DNS és IPv6 2 Forward DNS bejegyzések domain név IP cím AAAA resource

Részletesebben

Léteznek nagyon jó integrált szoftver termékek a feladatra. Ezek többnyire drágák, és az üzemeltetésük sem túl egyszerű.

Léteznek nagyon jó integrált szoftver termékek a feladatra. Ezek többnyire drágák, és az üzemeltetésük sem túl egyszerű. 12. Felügyeleti eszközök Néhány számítógép és szerver felügyeletét viszonylag egyszerű ellátni. Ha sok munkaállomásunk (esetleg több ezer), vagy több szerverünk van, akkor a felügyeleti eszközök nélkül

Részletesebben

Transmission Control Protocol (TCP) (a működés alapelvei)

Transmission Control Protocol (TCP) (a működés alapelvei) Transmission Control Protocol (TCP) (a működés alapelvei) Tartalom Ez a leírás számos különféle forrásból összegyűjtött információ felhasználásával az Óbudai Egyetemen készült, a Számítógép Hálózatok című

Részletesebben

TCP/IP. Szállítási protokollok/4. Szállítási réteg (Transport Layer) TCP/IP protokollkészlet. Szállítási réteg (Transport Layer)

TCP/IP. Szállítási protokollok/4. Szállítási réteg (Transport Layer) TCP/IP protokollkészlet. Szállítási réteg (Transport Layer) Szállítási réteg (Transport Layer) TCP/IP szállítási protokollok Az OSI protokoll készletben a szállítási réteg és az alkalmazási réteg között helyezkedik el a viszony réteg és a megjelenítési réteg. A

Részletesebben

3G / HSDPA. Tar Péter

3G / HSDPA. Tar Péter 3G / HSDPA Tar Péter 2 Hálózati felépítések 3 A GSM rádiócsatorna jellemzői FDMA / TDMA (frekvenciaosztásos/idõosztásos) csatorna-hozzáférés f 1 0 1 2 3 4 5 6 7 idõ f 2 0 1 2 3 4 5 6 7 4 Kapacitás Agner

Részletesebben

Mobil kommunikáció /A mobil hálózat/ /elektronikus oktatási segédlet/ v3.0

Mobil kommunikáció /A mobil hálózat/ /elektronikus oktatási segédlet/ v3.0 Mobil kommunikáció /A mobil hálózat/ /elektronikus oktatási segédlet/ v3.0 Dr. Berke József berke@georgikon.hu 2006-2008 A MOBIL HÁLÓZAT - Tartalom RENDSZERTECHNIKAI FELÉPÍTÉS CELLULÁRIS FELÉPÍTÉS KAPCSOLATFELVÉTEL

Részletesebben

Az internet ökoszisztémája és evolúciója. Gyakorlat 1

Az internet ökoszisztémája és evolúciója. Gyakorlat 1 Az internet ökoszisztémája és evolúciója Gyakorlat 1 GNS3: installálás és konfiguráció GNS3: hálózatszimulátor Valódi router/hoszt image-ek hálózatba kapcsolása emulált linkeken keresztül: CISCO, Juniper,

Részletesebben

Építsünk IP telefont!

Építsünk IP telefont! Építsünk IP telefont! Moldován István moldovan@ttt-atm.ttt.bme.hu BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM TÁVKÖZLÉSI ÉS MÉDIAINFORMATIKAI TANSZÉK TANTÁRGY INFORMÁCIÓK Órarend 2 óra előadás, 2 óra

Részletesebben

vezeték nélküli Turi János Mérnök tanácsadó Cisco Systems Magyarország Kft. jturi@cisco.com

vezeték nélküli Turi János Mérnök tanácsadó Cisco Systems Magyarország Kft. jturi@cisco.com Biztonság és vezeték nélküli hálózat? Turi János Mérnök tanácsadó Cisco Systems Magyarország Kft. jturi@cisco.com 1 Amiről szó lesz - tervezés Mi az a CVD? Hogyan készül Mire e használjuk áju Vezeték nélküli

Részletesebben

A számítástechnika gyakorlata WIN 2000 I. Szerver, ügyfél Protokoll NT domain, Peer to Peer Internet o WWW oftp opop3, SMTP. Webmail (levelező)

A számítástechnika gyakorlata WIN 2000 I. Szerver, ügyfél Protokoll NT domain, Peer to Peer Internet o WWW oftp opop3, SMTP. Webmail (levelező) A számítástechnika gyakorlata WIN 2000 I. Szerver, ügyfél Protokoll NT domain, Peer to Peer Internet o WWW oftp opop3, SMTP Bejelentkezés Explorer (böngésző) Webmail (levelező) 2003 wi-3 1 wi-3 2 Hálózatok

Részletesebben

IPv6 Elmélet és gyakorlat

IPv6 Elmélet és gyakorlat IPv6 Elmélet és gyakorlat Kunszt Árpád Andrews IT Engineering Kft. Tematika Bevezetés Emlékeztető Egy elképzelt projekt Mikrotik konfiguráció IPv6 IPv4 kapcsolatok, lehetőségek

Részletesebben

Elosztott rendszerek

Elosztott rendszerek Elosztott rendszerek NGM_IN005_1 Az Internet, mint infrastruktúra Hálózati történelem 1962 Paul Baran RAND csomagkapcsolt katonai hálózat terve 1969 Bell Labs UNIX 1969 ARPANet m!ködni kezd University

Részletesebben

Számítógép hálózatok

Számítógép hálózatok Számítógép hálózatok Számítógép hálózat fogalma A számítógép-hálózatok alatt az egymással kapcsolatban lévő önálló számítógépek rendszerét értjük. Miért építünk hálózatot? Információ csere lehetősége Központosított

Részletesebben

III. előadás. Kovács Róbert

III. előadás. Kovács Róbert III. előadás Kovács Róbert VLAN Virtual Local Area Network Virtuális LAN Logikai üzenetszórási tartomány VLAN A VLAN egy logikai üzenetszórási tartomány, mely több fizikai LAN szegmensre is kiterjedhet.

Részletesebben

Bevezető. Az informatikai biztonság alapjai II.

Bevezető. Az informatikai biztonság alapjai II. Bevezető Az informatikai biztonság alapjai II. Póserné Oláh Valéria poserne.valeria@nik.uni-obuda.hu http://nik.uni-obuda.hu/poserne/iba Miről is lesz szó a félév során? Vírusvédelem Biztonságos levelezés

Részletesebben

2008 II. 19. Internetes alkalmazások forgalmának mérése és osztályozása. Február 19

2008 II. 19. Internetes alkalmazások forgalmának mérése és osztályozása. Február 19 2008 II. 19. Internetes alkalmazások forgalmának mérése és osztályozása Az óra rövid vázlata kapacitás, szabad sávszélesség ping, traceroute pathcar, pcar pathload pathrate pathchirp BART Sprobe egyéb

Részletesebben

3. előadás. A TCP/IP modell jelentősége

3. előadás. A TCP/IP modell jelentősége 3. előadás A TCP/IP modell. Az ISO/OSI és a TCP/IP modell összevetése. Alapvető fogalmak A TCP/IP modell jelentősége Habár az OSI modell általánosan elfogadottá vált, az Internet nyílt szabványa történeti

Részletesebben

INTERNET. internetwork röviden Internet /hálózatok hálózata/ 2010/2011. őszi félév

INTERNET. internetwork röviden Internet /hálózatok hálózata/ 2010/2011. őszi félév INTERNET A hatvanas években katonai megrendelésre hozták létre: ARPAnet @ (ARPA= Advanced Research Agency) A rendszer alapelve: minden gép kapcsolatot teremthet egy másik géppel az összekötő vezetékrendszer

Részletesebben

Kommunikációs rendszerek programozása. Switch-ek

Kommunikációs rendszerek programozása. Switch-ek Kommunikációs rendszerek programozása ről általában HUB, Bridge, L2 Switch, L3 Switch, Router 10/100/1000 switch-ek, switch-hub Néhány fontosabb működési paraméter Hátlap (backplane) sávszélesség (Gbps)

Részletesebben

A netfilter csomagszűrő tűzfal

A netfilter csomagszűrő tűzfal A netfilter csomagszűrő tűzfal Történelem A linux kernelben 1994 óta létezik csomagszűrési lehetőség. A nagyobb állomásokat, lépcsőket általában a usertérbeli konfigurációs program nevéhez kötik: kernel

Részletesebben

2011.01.24. A konvergencia következményei. IKT trendek. Új generációs hálózatok. Bakonyi Péter c.docens. Konvergencia. Új generációs hálózatok( NGN )

2011.01.24. A konvergencia következményei. IKT trendek. Új generációs hálózatok. Bakonyi Péter c.docens. Konvergencia. Új generációs hálózatok( NGN ) IKT trendek Új generációs hálózatok Bakonyi Péter c.docens A konvergencia következményei Konvergencia Korábban: egy hálózat egy szolgálat Konvergencia: végberendezések konvergenciája, szolgálatok konvergenciája

Részletesebben

2011. május 19., Budapest MOBIL IP

2011. május 19., Budapest MOBIL IP 2011. május 19., Budapest MOBIL IP Mobility vs. Portability Melyik jobb: mobilitás, vagy hordozhatóság? Hordozhatóság: hálózathoz való kapcsolódás megszakad, mialatt a masina helyét változtatja :-( Jövőbeli

Részletesebben

Tisztelt Telepítő! 2. Ellenőrizze, hogy a modul engedélyezve van-e: Szekció [382] Opció 5 (alternatív kommunikátor) BE.

Tisztelt Telepítő! 2. Ellenőrizze, hogy a modul engedélyezve van-e: Szekció [382] Opció 5 (alternatív kommunikátor) BE. Tisztelt Telepítő! A PowerSeries NEO GO alkalmazás segítségével távolról vezérelhetőek a NEO központok. Ehhez a központokat valamely TL280/TL2803G/3G2080 modullal kell bővíteni. A modul verziószámának

Részletesebben

Adatkapcsolati réteg 1

Adatkapcsolati réteg 1 Adatkapcsolati réteg 1 Főbb feladatok Jól definiált szolgáltatási interfész biztosítása a hálózati rétegnek Az átviteli hibák kezelése Az adatforgalom szabályozása, hogy a lassú vevőket ne árasszák el

Részletesebben

HÁLÓZATI BEÁLLÍTÁS. Videorögzítőkhöz

HÁLÓZATI BEÁLLÍTÁS. Videorögzítőkhöz I BEÁLLÍTÁS Videorögzítőkhöz Kérjük olvassa át figyelmesen ezt az útmutatót a készülék használata előtt és tartsa meg jövőben felhasználás céljára. Fenntartjuk a jogot a kézikönyv tartalmának bármikor

Részletesebben

Modbus kommunikáció légkondícionálókhoz

Modbus kommunikáció légkondícionálókhoz Modbus kommunikáció légkondícionálókhoz FJ-RC-MBS-1 Mobus szervezet: -> http://www.modbus.org (néha Modbus-IDA) -> Modbus eszköz kereső motor http://www.modbus.org/devices.php Modbus (RTU) - soros kommunikációs

Részletesebben

Hálózati ismeretek. Az együttműködés szükségessége:

Hálózati ismeretek. Az együttműködés szükségessége: Stand alone Hálózat (csoport) Az együttműködés szükségessége: közös adatok elérése párhuzamosságok elkerülése gyors eredményközlés perifériák kihasználása kommunikáció elősegítése 2010/2011. őszi félév

Részletesebben

MAC címek (fizikai címek)

MAC címek (fizikai címek) MAC címek (fizikai címek) Hálózati eszközök egyedi azonosítója, amit az adatkapcsolati réteg MAC alrétege használ Gyárilag adott, általában ROM-ban vagy firmware-ben tárolt érték (gyakorlatilag felülbírálható)

Részletesebben

2014 UNIVERSITAS SCIENTIARUM SZEGEDIENSIS UNIVERSITY OF SZEGED

2014 UNIVERSITAS SCIENTIARUM SZEGEDIENSIS UNIVERSITY OF SZEGED Tavasz 2014 UNIVERSITAS SCIENTIARUM SZEGEDIENSIS UNIVERSITY OF SZEGED Department of Software Engineering Számítógép-hálózatok 5. gyakorlat Ethernet alapok Deák Kristóf S z e g e d i T u d o m á n y e g

Részletesebben

Alap protokollok. NetBT: NetBIOS over TCP/IP: Name, Datagram és Session szolgáltatás.

Alap protokollok. NetBT: NetBIOS over TCP/IP: Name, Datagram és Session szolgáltatás. Alap protokollok NetBT: NetBIOS over TCP/IP: Name, Datagram és Session szolgáltatás. SMB: NetBT fölötti főleg fájl- és nyomtató megosztás, de named pipes, mailslots, egyebek is. CIFS:ugyanaz mint az SMB,

Részletesebben

Előnyei. Helyi hálózatok tervezése és üzemeltetése 2

Előnyei. Helyi hálózatok tervezése és üzemeltetése 2 VPN Virtual Private Network A virtuális magánhálózat az Interneten keresztül kiépített titkosított csatorna. http://computer.howstuffworks.com/vpn.htm Helyi hálózatok tervezése és üzemeltetése 1 Előnyei

Részletesebben

Cisco Teszt. Question 2 Az alábbiak közül melyek vezeték nélküli hitelesítési módok? (3 helyes válasz)

Cisco Teszt. Question 2 Az alábbiak közül melyek vezeték nélküli hitelesítési módok? (3 helyes válasz) Cisco Teszt Question 1 Az ábrán látható parancskimenet részlet alapján mi okozhatja az interfész down állapotát? (2 helyes válasz) a. A protokoll rosszul lett konfigurálva. b. Hibás kábel lett az interfészhez

Részletesebben

V2V - Mobilitás és MANET

V2V - Mobilitás és MANET V2V - Mobilitás és MANET Intelligens közlekedési rendszerek VITMMA10 Okos város MSc mellékspecializáció Simon Csaba Áttekintés Áttekintés MANET Mobile Ad Hoc Networks Miért MANET? Hol használják? Mekkora

Részletesebben

Nagysebességő Internet Hálózatok

Nagysebességő Internet Hálózatok Nagysebességő Internet Hálózatok Hogyan lehet kihasználni egy Gbit/s sebességő adatcsatorna kapacitását? Telbisz Ferenc RMKI szeminárium 2004 június 14. Nagy sebességő Internet hálózatok 1 Tartalomjegyzék

Részletesebben

2014 UNIVERSITAS SCIENTIARUM SZEGEDIENSIS UNIVERSITY OF SZEGED

2014 UNIVERSITAS SCIENTIARUM SZEGEDIENSIS UNIVERSITY OF SZEGED Tavasz 2014 UNIVERSITAS SCIENTIARUM SZEGEDIENSIS UNIVERSITY OF SZEGED Department of Software Engineering Számítógép-hálózatok 3. gyakorlat Packet Tracer alapok Deák Kristóf S z e g e d i T u d o m á n

Részletesebben

Kommunikációs rendszerek programozása. Wireless LAN hálózatok (WLAN)

Kommunikációs rendszerek programozása. Wireless LAN hálózatok (WLAN) Kommunikációs rendszerek programozása Wireless LAN hálózatok (WLAN) Jellemzők '70-es évek elejétől fejlesztik Több szabvány is foglalkozik a WLAN-okkal Home RF, BlueTooth, HiperLAN/2, IEEE 802.11a/b/g

Részletesebben

2011 TAVASZI FÉLÉV 10. LABORGYAKORLAT PRÉM DÁNIEL ÓBUDAI EGYETEM NAT/PAT. Számítógép hálózatok gyakorlata

2011 TAVASZI FÉLÉV 10. LABORGYAKORLAT PRÉM DÁNIEL ÓBUDAI EGYETEM NAT/PAT. Számítógép hálózatok gyakorlata NAT/PAT Számítógép hálózatok gyakorlata ÓBUDAI EGYETEM 2011 TAVASZI FÉLÉV 10. LABORGYAKORLAT PRÉM DÁNIEL Címkezelés problematikája Az Internetes hálózatokban ahhoz, hogy elérhetővé váljanak az egyes hálózatok

Részletesebben

Információ és kommunikáció

Információ és kommunikáció Információ és kommunikáció Tanmenet Információ és kommunikáció TANMENET- Információ és kommunikáció Témakörök Javasolt óraszám 1. Az internet jellemzői 25 perc 2. Szolgáltatások az interneten 20 perc

Részletesebben

Vezetéknélküli technológia

Vezetéknélküli technológia Vezetéknélküli technológia WiFi (Wireless Fidelity) 802.11 szabványt IEEE definiálta protokollként, 1997 Az ISO/OSI modell 1-2 rétege A sebesség függ: helyszíni viszonyok, zavarok, a titkosítás ki/be kapcsolása

Részletesebben

applikációs protokollok

applikációs protokollok Applikációs protokollok Hálózati szolgáltatások 2. applikációs protokollok: HTTP, HTTPS, FTP, SFTP, POP3, IMAP, SMTP Informatikus (rendszerinformatikus) Az OSI modell viszony-, megjelenítési és alkalmazási

Részletesebben