A fizika története Newtontól napjainkig

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A fizika története Newtontól napjainkig"

Átírás

1 A fizika története Newtontól napjainkig Szegedi Péter Tudománytörténet és Tudományfilozófia Tanszék DT es szoba vagy 6670-es m. és hps.elte.hu

2 Tematika: 1. A klasszikus mechanika: A mechanika paradigmává válása. A mechanika fejlődése és elvei A klasszikus mechanikai világkép felbomlása: Az elektromos és mágneses jelenségek tudományának fejlődése a Maxwell-egyenletekig. A hőtan fejlődése az energiamegmaradás törvényének felfedezéséig. Az újkori atomelmélet.

3 7-11. A kvantumelmélet kifejlődése: Előzmények (hőmérsékleti sugárzás, entrópia, klasszikus statisztikus fizika, fajhő, fényelektromos és Comptonhatás stb.). A mátrix- és hullámmechanika kifejlesztése és értelmezése (Bohr, Heisenberg, de Broglie, Schrödinger). 12. A relativitáselmélet és a kozmológia a XX. században (a tér-idő és univerzum fogalmak átalakulása).

4 A mechanika fejlődése a XVIII. századtól a XIX. század közepéig 1. A mechanisztikus paradigma 2. A matematikai módszerek átalakulása 3. Résztudományok kialakulása 4. A mechanika elvei

5 1. A mechanisztikus paradigma Thomas S. Kuhn ( ) A tudományos forradalmak szerkezete normál tudomány paradigma által vezérelt tudományos forradalom paradigmaváltás tudományfilozófia

6 Az első tudományos paradigma: az óramű világ a világ: egymással kölcsönhatásban lévő (ütköző, taszító, vonzó) mechanikusan mozgó (hely- és helyzetváltoztató) alkotórészek (testek) végső soron csupán néhány mechanikai tulajdonsággal rendelkező korpuszkulák összeadódó rendszere a mozgás matematikailag leírható erők hatására, törvényszerűen megy végbe, minden determinált (ennek következtében ) a világ megérthető

7 2. A matematikai módszerek átalakulása Geometria algebra, analízis Descartes Newton fluxióelméletének kiadása a fizika mozgásegyenletei közelítve a mai formákhoz analitikus = mechanikus az ész hatékonysága a fizikai probléma redukálása matematikai feladattá

8 Leonhard Euler ( ) diplomamunkája: Descartes és Newton nézeteinek összehasonlítása Johann Bernoulli témavezetésével (1723) Mechanika (1736) a newtoni dinamika a matematikai analízis formájában Nova theoria lucis et colorum (1746): levegő-hang~éter-fény analógia a Szaturnusz pályaháborgásainak kiszámítása (1748) személy

9 Mechanica sive motus scientia analytice exposita (1736) a newtoni dinamika másodrendű differenciálegyenletek formájában (az erők csak a helytől és a sebességtől függenek) idealizált tömegpontok szabad egyenes- vagy görbevonalú mozgása vákuumban és közegben felületen történő és egyéb kényszermozgások (pl. ingamozgás) mű

10 Introductio in analysin infinitorum (1748) hullámhossz - szín (1752): maximális = vörös, minimális = ibolya Institutiones calculi differentialis (1755) Theoria motus corporum solidorum (1765) haladó mozgások forgó mozgások Euler-szögek precesszió Institutiones calculi integralis ( ) lineáris differenciálegyenletek elmélete Lettres à une princesse d'allemagne ( ) mechanika (hidrodinamika, akusztika), optika, fizikai csillagászat személy

11 Jean Le Rond d'alembert ( ) Értekezés a dinamikáról (1743) Traité de l'équilibre et du mouvement des fluides (1744) Réflexions sur la cause générale des vents (1747) Recherches sur les cordes vibrantes (1747) Recherches sur la précession des équinoxes et sur la nutation de l'axe de la terre (1749) Encyclopédie (1751) Essai d'une nouvelle théorie de la résistance des fluides (1752) Recherches sur différents points importants du système du monde ( ) személy

12 Traité de dynamique (1743) a fizikát egyszerű elvekre kell alapozni tehetetlenség, mozgások összetétele, egyensúly nem a mozgás okára, hanem eredményére kell figyelni (mozgásmennyiség, eleven erő) d Alembert-elv (F ma = 0) mű

13 3. Résztudományok kialakulása Hidrodinamika Égi mechanika szakosodás, szakmák megjelenése: adott típusú problémák = adott típusú differenciálegyenletek professzionális kezelése

14 Daniel Bernoulli ( ) Velence: Exercitationes quaedam Mathematicae ( ) valószínűségszámítás, folyadék-kifolyás, differenciálszámítás, geometria Szentpétervár: rugalmas testek rezgései, hidrodinamika Bázel: Hidrodinamika (1738) rezgések (akusztika), folyadékok, csillagászat, hajózás, botanika, elektromosság- és mágnességtan személy

15 Hydrodynamica, sive de viribus et motibus fluidorum commentarii (1738) az energiamegmaradás elvén alapul mű

16 kinetikus gázelmélet: p ~ nmv 2 és a hőmérséklettel növekszik (1738) mű

17 Pierre-Simon, marquis de Laplace ( ) Exposition du systéme du monde (1796) a Naprendszer stabilitása, kialakulása Traité de mécanique céleste ( ) Théorie analytique des probabilités (1812) a Laplace-démon személy

18 4. A mechanika elvei a legrövidebb idő elve az optikában (1660) Pierre de Fermat ( ) D Alembert-elv (1743): F=ma F ma = 0

19 a legkisebb hatás elve Gottfried Wilhelm Leibniz ( ) Pierre-Louis Moreau de Maupertuis ( ) Essai de cosmologie (1750) a világegyetemben lévő összes változásban ha felösszegezzük a testek tömegének, a megtett útnak és a sebességnek a szorzatát, akkor az a lehető legkevesebb lesz

20 variációs elvek Joseph-Louis Lagrange ( ) Mécanique analytique (1788) L = T V William Rowan Hamilton ( ) H = T + V

21 A klasszikus mechanikai világkép felbomlása A tudományos megismerés elemei Az elektromos és mágneses jelenségek tudományának fejlődése a Maxwellegyenletekig A hőtan fejlődése az energiamegmaradás törvényének felfedezéséig Az anyag atomos szerkezete a fény problémája az anyag szerkezete

22 A tudományos megismerés elemei 1. a jelenség(ek) felismerése/tudatosítása/ elkülönítése/megfigyelése, a probléma felismerése/megfogalmazása 2. a jelenség viszonylag stabil előállítása 3. első vizsgálatok: kvalitatív megfigyelés, leírás tudományfilozófia

23 4. mérés a) mérhető mennyiségek azonosítása b) mérőeszközök kifejlesztése c) skálák, mértékegységek meghatározása 5. kísérletek 6. közben folyamatosan: hipotézisek (feltevések), elméleti megállapítások, modellek, filozófiai ötletek és alkalmazások gyártása/átvétele magyarázat illetve kipróbálás céljából tudományfilozófia

24 7. közben folyamatosan: a járulékosan felfedezett jelenségekre közben folyamatosan: fogalomalkotás 9. közben folyamatosan: matematizálás 10.átfogó elmélet (törvények) megalkotása magyarázat és előrejelzés céljából 11.gyakorlati alkalmazások kiszélesítése 12.átvitel a) más tudományágakba b) köztudatba (népszerűsítés), világnézetbe tudományfilozófia

25 Az elektromos és mágneses jelenségek tudományának fejlődése a Maxwell-egyenletekig Elektromos és mágneses alapjelenségek kínaiak (i. e. XXVI. sz.?) mágnes az irányok megállapítására görögök (i. e. 800) magnetit (Magnézia - Thesszália) borostyán (elektron) XII. sz. Kína és a Mediterránum: iránytű

26 Petrus Peregrinus [Pierre de Maricourt] (1269, 1558) Epistola Petri Peregrini de Maricourt ad Sygerum de Foucaucourt, militem, de magnete gömb (Föld) alakú mágnes pólusai mágnesezés mágnesek alkalmazásai (pl. iránytű, örökmozgó)

27

28 Gilbert: A mágnesről (1600) Az elektromos jelenségek stabil létrehozása forgómozgás segítségével Otto von Guericke ( )

29 William Gilbert (vagy Gylberd[e] ) Cambridge-ben orvos 1573-tól Londonban praktizál, később Erzsébet királynő háziorvosa 1581-től barátaival vizsgálja a mágnesességet és elektromosságot A mágnesről (1600) személy

30 De Magnete, Magneticisque Corporibus, et de Magno Magnete Tellure összesen mintegy 600 mágneses (és dörzselektromos) kísérlet mágnesvasérc és megmágnesezett vas tulajdonságai pólusok vonzás = taszítás (nincs Peregrinusféle örökmozgó) mű

31 gyógyító hatás (hiánya) hő, fokhagyma stb. hatása a mágneses vonzásra a Föld mint mágnes terella kísérletek (iránytű magyarázata) inklináció (lehajlás) deklináció ( nem tökéletes terella ) mű

32 az elektromosság és mágnesesség különbsége: a közeg szerepe folyadék-modell (humor, effluvium), mint mechanikai kép elektromos vonzás ( vonz mint a borostyán = elektromos ), erő fogalma a földrajzi és mágneses pólusok analógiája a mágnesség mozgató lélek forgás, keringés állásfoglalás a Föld forgása mellett mű

33 William Gilbert (vagy Gylberd[e] ) Cambridge-ben orvos 1573-tól Londonban praktizál, később Erzsébet királynő háziorvosa 1581-től barátaival vizsgálja a mágnesességet és elektromosságot A mágnesről (1600) előbb a királynő, majd ő is meghal pestisben személy

34 Francis Hau(w)ksbee (1670?-1713) folyadékmodell (fluvium)

35 Az elektromosság kvalitatív vizsgálata Stephen Gray ( ) Ennek megfelelően július 2-án délelőtt tízkor elvégeztünk egy kísérletet. Körülbelül négy lábra a galéria végétől volt egy zsinór keresztben, amelynek a végeit a galéria két oldalán szögekkel rögzítettük; a zsinór középső része selyem volt, a többi a két végén spárga. A 80½ láb hosszú vezetéket, amelyre az elefántcsont golyót függesztettük, és amely az elektromosságot a csőből hozzávezette, ráfektettük a keresztben lévő selyemzsinórra, úgyhogy a golyó körülbelül 9 lábnyira alatta függött. A vezeték másik végét egy hurokkal felfüggesztettük az üvegrúdra, a rézlemezt pedig a golyó alatt tartottuk egy darab fehér papíron; amikor a csövet dörzsöltük, a golyó vonzotta a rézlemezt és egy darabig fenn is tartotta.

36

37 Charles François de Cisternay DuFay ( ) kétféle elektromosság - kétfolyadék (effluvium) modell (1733) Pieter van Musschenbroek ( ) leydeni palack (1746)

38 Benjamin Franklin ( ) síkkondenzátor villámhárító egyfolyadék-modell (±)

39 Az elektromosság mérése Jean-Antoine Nollet ( ) az elektroszkóp az elektromosság népszerűsítése

40 Charles-Augustine de Coulomb ( ) Newton+torziós mérleg Coulomb-törvény (1777-) mágneses pólusok Az elektromosság és mágnesség matematizálása Siméon-Denis Poisson ( ) az elektrosztatikai potenciál matematikai elmélete (1813) magnetosztatika George Green ( )

41 Az elektromos áram felfedezése és vizsgálata Luigi Galvani ( ) állati elektromosság (1780)

42 Alessandro Volta ( ) Volta-oszlopok (1799)

43 William Nicholson ( ) vízbontás (1800) Humphry Davy ( ) fémsók bontása (1807) a vezetők ellenállása Ohm áramköri törvénye Gustav Robert Kirchhoff ( ) csomóponti törvény (1854)

44 Georg Simon Ohm ( ) gyermek- és ifjúkorában anyagi és egyéb nehézségekkel küzdött 1811-ben doktorál, majd tanít különböző helyeken a gimnáziumi laborban kísérleti berendezést épít az áramvezetés vizsgálatára árammérés torziós ingával termoelemek (az ingadozó teljesítményű Volta-féle helyett) jeges és forrásban lévő víz legalább 5 órás mérési ciklusok Ohm-törvény (1826) személy

45 elméletileg is alátámasztja (Az áramkör, 1827) csak a 40-es (Anglia), 50-es években ismerik el személy

46 Die galvanische Kette, mathematisch bearbeitet matematikai alapok Fourier hővezetési elmélete nyomán az elektromosság közelhatás a test belsejében a szomszédos (érintkező) részecskék között terjed az elektromos erők különbségével arányosan mű

47 a teljes áramkörre: Egy elektromos áramkörben az áram nagysága egyenesen arányos az összes feszültség összegével és fordítottan az áramkör teljes redukált hosszával. további törvények (pl. Coulomb) lehetővé válik a kívánalmaknak megfelelő áramkörök létrehozása, a telepek teljesítményének növelése, az áramköri elemek cseréje stb. a technikai alkalmazások fejlesztése mű

48 Romantikus közjáték a mechanikai paradigmában a romantikus természetfilozófia Friedrich Schelling ( ) a természeti hatások egyetlen alapelv megnyilvánulásai (1799-ig) a fizikai erők/kölcsönhatások egységének kutatása máig tudományfilozófia

49 Az elektromos és mágneses jelenségek közötti kapcsolat Hans Christian Ørsted ( ) az elektromos áram és a mágnesség kapcsolata (1820) Ampère áramok közötti erőhatások alapfogalmak Faraday elektromos áramok és mágneses tér kapcsolata forgómozgások esetén

50 André-Marie Ampère ( ) csodagyerek 13 évesen: Enciklopédia abc-rendben 17 éves korára: Bernoulli, Euler, Lagrange tanulmányait apja halálakor megszakítja, magántanár 1803-tól tanít, játékelméleti könyv analitikus geometria, variációszámítás, parciális differenciálegyenletek, kémia (részecskedefiníciók), a fény hullámtermészete személy

51 1820: Ørsted után (1 héten belül) pontos és kiterjedt mérések két áram által átjárt drót közötti erőhatás az áram és a mágneses tér erőssége (Ampère-törvény) fogalmak tisztázása: elektromágnesség, elektrodinamika (és sztatika), feszültség, áramerősség Az elektrodinamika (1827) személy

52 Théorie mathématique des phénomènes électro-dynamiques uniquement déduite de l'expérience az alapkísérlet eredményére hivatkozva 4 zéró-kísérlet (visszafordított, meghajlított vezetőkkel, 2-3 áramkörrel) newtoni (Coulomb-féle) erőtörvény az elemi áramokra az elektromágnes és a szolenoid alapján a mágnességet elemi köráramokkal értelmezi mű

53 Michael Faraday ( ) vasárnapi iskola 13 éves korától könyvkötő-inas a Davy-történet európai körút 1820-tól kísérleti vizsgálatok döntően az elektromosság területén a mágnesség: örvénylés higanyban szabadon mozgó vezető körforgása személy

54 kémiai felfedezések elektromos kísérletsorozat eredményei a Royal Societyben és a Philosophical Transactionsban 1831 indukció Az elektromosság kísérleti vizsgálata ( ) 1843 az elektromos töltés megmaradása 1845 a fény polarizációs síkjának elforgatása mágneses térrel személy

55 Experimental Researches in Electricity 3340 pont (kísérlet) 1. sorozat: az akusztikus indukció analógiájára elektromágneses indukció 2. sorozat: elektromos generátor és elektromotor mű

56 3. sorozat: Volta-elem=indukció= generátor=termoelem=elektromosság 5-7. sorozat: folyadékba vezetett áram az elektrolízis alaptörvényei elektrokémia 9. sorozat: önindukció 11. sorozat: a vezetés a felületen történik Faraday-kalitka (4 m-es kockába költözött) mű

57 új fogalmak elterjesztése: elektród, anód, katód, ion, elektrolit, elektrolízis elméleti feltevések (a vasreszelék és Schelling nyomán) mágneses erővonalak közvetítő közeg (mező/tér) az elektromosság, mágnesesség, fény számára erős mágnesek alkalmazása a fény polarizációs síkjának elforgatása mágneses térrel para- és diamágnesesség mű

58 Az átfogó elmélet kidolgozása Maxwell axiomatikus elektrodinamikai elmélet (1) a Coulomb-erőnek megfelelő elektromos tér elektromos töltésből származik div D = ; (2) nincsenek elszigetelt mágneses pólusok, a mágnes pólusai között a Coulomb-erő hat div B = 0; (3) változó mágneses terek elektromos tereket hoznak létre rot E = B/ t; (4) változó elektromos terek és áramok mágneses tereket hoznak létre rot H = D/ t + J.

59 James Clerk Maxwell ( ) 14 évesen cikk az oválisokról és mechanikai szerkesztésükről 16 éves korától egyetemi tanulmányok (matematika, fizika, logika) 1854-ben diploma matematikából 1855: az erővonal fogalmának matematizálása 1856-tól fizika professzor a Szaturnusz-gyűrű problémájának személy megoldása

60 1860-tól kísérleti munka is színérzékelés színtárcsa színes fényképezés kinetikus gázelmélet 1862-ben kiszámítja, hogy az elektromágneses tér terjedése fény sebessége a fény elektromágneses jelenség 1864 a Maxwell-egyenletek első formája személy

61 1866: Maxwell-Boltzmann eloszlás a hő statisztikus molekuláris mozgás 1870-től: megtervezi és felépíti a Cavendish-laboratóriumot Hőelmélet (1871) a közelhatás feltételezése Fourier/Ohm Faraday erővonalai fogaskerék-modellek Értekezés az elektromosságról és mágnességről (1873) személy

62 A Treatise on Electricity and Magnetism bevezetés: fizikai és matematikai alapok fizikai mennyiségek dimenziók mérések matematikai ábrázolás (a Laplaceoperátorig) mű

63 elektrosztatika története korábbi elméletei (folyadék-modellek) korszerű kifejtése elektrosztatikai eszközök elektrokinematika az elektromos áram felfedezése az Ohm-törvény elektrolitikus jelenségek vezetési tulajdonságok stb. mű

64 mágnesesség elemi mágneses jelenségek elméleti megközelítések a Föld mágnesessége mű

65 elektromágnesség Ørsted, Ampère, Faraday eredményei Lagrange-Hamilton formalizmus az elmélet 12 egyenlete az elmélet újratárgyalása (az energia, mértékegységek stb. szempontjából) az elmélet alkalmazásai (pl. eszközökre) a fény elektromágneses elmélete a távolhatást tartalmazó elméletek kritikája az éter mű

66 Gyakorlati következmények elektromágneses távíró Wilhelm Eduard Weber ( )- Johann Carl Friedrich Gauss ( ) 1833 William Fothergill Cook ( )- Charles Wheatston ( ) 1837

67 Samuel Finley Breese Morse ( ) 1837

68 transzatlanti kábel (1866), duplex, quadruplex (1874), időosztásos multiplex, telex telefon (1876), számítógéphálózat (fax és ) elektromos világítás Thomas Alva Edison ( ) villanykörte és hálózat (1878)

69 az elektromosság szerepe mai életünkben a nagy New York-i áramszünetek nov :15-től ÉK-en egy hibásan beállított kanadai relé miatt 12 perc alatt 30 millió ember maradt áram nélkül kb. 12 órára» világítás (az utcai és közlekedési lámpák is)» kommunikáció (bár a tranzisztoros eszközök és a saját generátorral rendelkező adók működtek)» háztartási eszközök (motorok, fűtés, hűtés)» víz és gázszolgáltatás» liftek» közlekedés: légi, vonat, metró: New Yorkban utas rekedt a metróban (10%-uk még éjfélkor is ott volt, de kaptak kávét és enni)» ipari termelés

70 1977. júl :40-től New Yorkban a kiterjedt villámlások miatt 9 millió ember maradt áram nélkül 25 órára» erőszak (3800 letartóztatás), bolti lopás (autókig bezárólag), gyújtogatás (1000 tűzeset)

71 2003. aug :15-től ÉK-en programhiba miatt 55 millió ember maradt áram nélkül kb órára» mobiltelefonok» százezrek gyalogoltak haza (a hidakon is)

72 » a buszok menetideje megduplázódott

73 » 2,5 órán át ürítették ki a metrót» késő estig tartott az emberek kimentése a liftekből

74

75 az elektromágneses hullámok előállítása és alkalmazásai Hertz rádiófrekvenciás hullámok ( ) Guglielmo Marconi ( ) transzatlanti forgalmazás (1901) km (1910) - kapcsolat a hajókkal Alekszandr Sztyepanovics Popov ( )

76 Heinrich Rudolf Hertz ( ) arab, szanszkrit tanulmányok, majd tudomány és technika 1880-ban doktorál mechanika, majd elektrodinamika : rádióhullámok 1887: az ibolyántúli sugárzás ionizál fényelektromos hatás katódsugárcsövek 1892: a katódsugarak képesek áthatolni személy vékony fémfólián (hullámok?)

77 Über Strahlen elektrischer Kraft (1888) fémhurok indukciós tekerccsel és szikraközzel: adó vevő a szikra által létrehozott jelet max. 2 m-re egy gyenge szikra mutatta mű

78 a berendezés mozgatásával a hullámhossz, egy forgó fémtükörrel a frekvencia (és ezek által a sebesség c) mérhető volt további kísérletekkel: egyenes vonalban terjed, visszaverődik, fókuszálható, megtörik mű

79 hangátvitel ( ) rádiós műsorszórás (1920) TV (1923-) radar (1935)

80 A hőtan fejlődése az energiamegmaradás törvényének felfedezéséig A gőz erejének hasznosítása Denis Papin ( ) Papin-fazék (1679) a forrás légnyomásfüggése (1680)

81 zárt termodinamikai folyamatot végző gőzgép leírása, megépítése (1707)

82 Thomas Savery ( ) az első eladott gőzgép (1698)

83 Thomas Newcomen ( ) gőzgép ( )

84 James Watt ( ) szeparált kondenzátor (1765) centrifugális szabályzó stb. (1790-ig)

85 A hőmérséklet mérése Gabriel Daniel Fahrenheit ( ) higanyos hőmérő ( ), skála René-Antoine de Réaumur ( ) alkoholos hőmérő, skála (1730) Anders Celsius ( ) skála (1742)

86 A hő Joseph Black ( ) fajhő, látens hő, hőmennyiség, kalorimetria, kalorikum ( ) Benjamin Thompson [Rumford gróf] ( )

87 Alig szükséges hozzátennem, hogy akármi, amit bármely elszigetelt test, vagy testek rendszere korlátozás nélkül képes szolgáltatni, az nem lehet anyagi szubsztancia: és számomra rendkívül nehéznek, ha nem lehetetlennek tűnik, bármely más gondolatot kialakítani arról, amit létre lehet hozni és továbbítani, azon a módon ahogy a Hőt létrehoztuk és továbbítottuk ezekben a Kísérletekben, mint hogy ez MOZGÁS. (előadás 1798-ban)

88 egy járulékos probléma: a gázok (hőmérséklete, nyomása) John Dalton ( ) a gázok parciális nyomásának problémája (Daltontörvény, 1801) atomhipotézis ( )

89 Joseph Louis Gay- Lussac ( ) gázok hőtágulása (1802) léghajón 7 km magasra - a levegő hőmérsékletét, nyomását és összetételét mérve (1804) gázok térfogati arányai ( ) út az egyesített gáztörvény felé (1826)

90 Elméleti hőtan Fourier a hő mint közelhatás (1822) Carnot reverzibilis körfolyamat kalorikus mechanikai modellje hatásfok (1824) Benoit Paul Emil Clapeyron ( ) Carnot-féle körfolyamatok: fordítva, matematikailag, diagrammokon (1834) ideális gázok állapotegyenlete a folyadékkal egyensúlyban lévő gőz egyenlete

91 Jean Baptiste Joseph Fourier ( ) 16 évesen katonaiskolában matematikát tanít a forradalomban politizál ( börtön) 1795-ben Lagrange és Laplace tanítványa matematikát kutat, tanít 1798-ban Napóleon egyiptomi tudományos tanácsadója, majd Alsó- Egyiptom kormányzója személy

92 1801-től Grenoble prefektusa A hő terjedéséről a szilárd testekben (1807-ben a kifogások miatt nem jelenhet meg) Egyiptom leírása (21 kötetben) bárói cím A hő analitikus elmélete (1822-ben a Francia Tudományos Akadémia kiadja titkárának a könyvét) személy

93 Théorie analytique de la chaleur Előszó Az elsődleges okok ismeretlenek számunkra; de egyszerű és állandó törvényeknek vannak alávetve, amelyeket megfigyelés révén fel lehet fedezni Munkánk célja kifejteni azokat a matematikai törvényeket, amelyeknek ez az elem [ti. a hő] engedelmeskedik. kívül a kalorikum-vitán a hőáramlás a hőmérséklet-különbséggel egyenesen arányos mű

94 a hőmozgás egyenlete speciális alakú testekre (pl. gyűrű) és általánosan dimenzióelmélet a hő terjedése végtelen testek esetében a hővezetés differenciálegyenlete Fourier-sor Fourier-integrál mű

95 Nicolas Léonard Sadi Carnot ( ) apja, Lazare, a matematikus, politikus, a direktóriumi tag, Napóleon hadügyminisztere tanította 16 évesen műegyetemista, két év múlva mérnök, majd hadmérnök később is tanul, kutat (pl. gázelmélet) 1821-es magdeburgi látogatása után kezd gőzgépekkel foglalkozni személy

96 Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance célja a gőzgépek rendkívül alacsony hatásfokának javítása a közérthetőség kedvéért nagyjából matematika nélkül a mozgatóerőt a kalorikum melegebbről hidegebb testre való átvitelének tulajdonítja mű

97 a reverzibilitás (megfordíthatóság) fogalma ideális hőerőgép (Carnot-gép) a vízikerék analógiájára a gép műveleti lépései: a Carnot-ciklus A hő mozgató ereje független attól, hogy milyen közeget alkalmazunk a megvalósítására; mennyisége egyedül a részt vevő testek hőmérsékletén múlik, azaz a kalorikum átvitelén. a termodinamika további megalapozása (pl. gáztörvények, fajhők) mű

98 Az energia Julius Robert Mayer ( ) Az erők okok: ennek megfelelően velük kapcsolatban teljes mértékben alkalmazhatjuk a causa aequat effectum (az ok egyenlő az okozattal) elvet. Ha a c oknak e okozata van, akkor c = e; ha történetesen e egy második f okozatnak az oka, akkor e = f, és így tovább: c = e = f = c. Az okok és okozatok láncolatában egyetlen tag vagy egy tag egyetlen része sem tűnhet el, ahogyan ez világosan következik az egyenlet természetéből. Minden ok eme első tulajdonságát elpusztíthatatlanságuknak nevezzük. (1842)

99 James Prescott Joule ( ) On the Production of Heat by Voltaic Electricity (1840) az áram hőhatása (I 2 R) a hő mechanikai egyenértéke (1843)

100 Hermann Ludwig Ferdinand von Helmholtz ( ) a fiziológiai hő is csak fizikai energiából származhat Azzal a feltevéssel kezdjük, hogy akármilyen természeti testek bármilyen kombinációjával is lehetetlen semmiből folyamatosan erőt előállítani. E tétel révén Carnot és Clapeyron elméletileg levezettek egy sor törvényt, amelyek egy részét a kísérlet bebizonyította, más részét még nem ellenőrizték. Jelen tanulmány célja ezt az elvet ugyanúgy érvényesíteni a fizika összes ágában (előadás 1847-ből)

101 Az anyag atomos szerkezete Az ókori atomizmus Empedoklész (i.e ) 4 őselem mechanikus egyesülése a viszály és a szeretet révén Anaxagorasz (i.e ) a dolgok magvai minőségileg végtelenek Leukipposz (i.e ) Demokritosz (i.e ) atom és űr, alak-sorrend-helyzet szükségszerűség érzékelés

102 Epikurosz (i.e ) clinamen Platón (i.e ) szabályos testek

103 Az újkori atomizmus kezdetei René Descartes ( ) Discours de la méthode + Optika, Meteorológia, Geometria (1637) a fény hordozója az éter (1644) az atomizmushoz való viszonya

104 Pierre Gassendi ( ) az antik atomizmus propagálója: minden létező atomokból áll belső törekvéssel a mozgásra az űr a tér végtelen, megsemmisíthetetlen az atomok száma véges és Isten rakja össze őket a fény korpuszkulákból áll (1649)

105 A fény problémája: korpuszkula vagy hullám? A fényelhajlás felfedezése (1663) Francesco Maria Grimaldi ( ) az első kísérlet hullámelmélet kidolgozására

106

107 a fény korpuszkuláris elmélete Isaac Newton ( ) Newton-gyűrűk ( ) interferencia, diffrakció ( ) Robert Hooke ( ) (éter)hullámelmélet kettős törés az izlandi földpátban (1669) Erasmus Bartholin ( )

108 a fény első igazi hullámelmélete Huygens Értekezés a fényről ( )» a fény az éter rugalmas mozgása» Huygens-elv (elemi hullámok) Newton hatása: Opticks (1704) Valóban nyilvánvaló, hogy a fény egymásután következő vagy egyidőben létező részecskékből áll; ugyanis ugyanazon a helyen felfoghatjuk azt a fényt, amely adott pillanatban odaérkezik, és továbbengedhetjük azt, amit utána érkezik; ugyanakkor adott pillanatban felfoghatjuk a fényt egyik helyen és továbbengedhetjük egy másik helyen.

109 Christian Huygens ( ) jogi tanulmányok után matematika kvadratúrák (területszámítások, pl.: π) távcsövek színhibáinak javítása De Saturni luna observatio nova (1656) a Titán felfedezése a gyűrű azonosítása az ingaóra megépítése csillagászati mérésekhez Horologium (1658) személy

110 1665-től Párizsban él 1669-ben előadás a Royal Societyban a rugalmas testek ütközési törvényei az impulzus megmaradása Horologium Oscillatorium (1673) középponti erő a mechanikai energia megmaradása összefüggés az inga hossza és lengésideje között a cikloidális inga elmélete és gyakorlata személy

111 a körmozgás problémájának megoldása a fenntartó erő meghatározása 1678-ra elkészül fénytana 1681-ben visszaköltözik Hollandiába távcsőkészítés Értekezés a fényről (1690) személy

112 Traité de la Lumière a hullámelmélet alapjai a fénysugarak minden irányban egyenes vonalban (gömbszimmetrikusan) véges sebességgel terjednek (Rømer nyomán) a Descartes-féle közelhatásnak megfelelően az éterrészecskék nem mozdulnak el (lényegesen) egymásnak adják át a lökéseket mint a hang esetében mű

113 Huygens-elv magyarázza a visszaverődést mű

114 a törést általában a légköri fénytörést (pl. a Nap korai felkelését) mű

115 túl az elméleten: kísérletek az izlandi páttal a kettős törés oka a kristályszerkezet? a kettévált sugarak ismét egy pátra bocsátva már nem osztódnak az elmélet alkalmazása az átlátszó testekre (lencsék) Discourse de la cause de la pesanteur mű

116 újabb eredmények a levegő-hang~éter-fény analógia továbbfejlesztése Euler: Nova theoria lucis et colorum (1746) a hullámhossz - szín megfeleltetés Euler: maximális = vörös, minimális = ibolya (1752) a fényerő fordított négyzetes törvénye Johann Heinrich Lambert ( )» Photometria (1760) a hősugarak is egyenes vonalban terjednek Lambert» Pyrometrie (1779)

117 az infravörös sugarak felfedezése (1800) Sir William [Wilhelm Friedrich] Herschel ( )

118 az ultraibolya sugarak felfedezése (1801) William Hyde Wollaston ( ) Johann Wilhelm Ritter ( ) a színképben sötét vonalak vannak (1802) Wollaston

119 a hullámelmélet győzelme Thomas Young ( ) hanginterferencia interferencia (ultraibolya) fényinterferencia ( ) kétréses kísérlet ( )

120

121

122 a fény új hullámelmélete (1815-) Augustine-Jean Fresnel ( )» a diffrakció magyarázata az interferencia» az elemi hullámoknak nem a burkolóját, hanem az interferenciáját kell számolni» Fresnel-zónák» a kísérleti döntés lehetősége: Poisson-folt

123 a fény transzverzális hullám az éterben (1817) Young Fresnel» a fénypolarizáció magyarázata különböző színű fények hullámhossza (1820) Young a kiteljesedett mechanikai fényelmélet (1821) Fresnel» éter: szilárd rugalmas mozdulatlan közeg, amely áthatol pl. az átlátszatlan Földön (és ezáltal nem veszi fel mozgását), de amelyet az átlátszó testek törésmutatójuk arányában magukkal ragadnak

124 Fresnel-lencse világítótoronyba (1822)

125 Jean-Bernard- Léon Foucault ( ) forgótükrös fénysebességmé rés levegőben, vízben: a hullámelmélet mellett (1850)

126 Az anyag szerkezete kinetikus gázelmélet Bernoulli: p ~ nmv 2 és a hőmérséklettel növekszik (1738) korpuszkuláris magyarázatok Mihail Vasziljevics Lomonoszov ( ) 276 заметок по физике и корпускуларяой философии ( ) Слово о происхождения света (1756) Meditationes de Solido et Fluido (1760)

127 a kémia hozzájárulása Antoine-Laurent Lavoisier ( ) a lehető legjobb kísérleti eszközök (1770-)

128

129 rendkívüli gondosság, mindig pontos mennyiségi viszonyok az össztömeg a kémiai reakciók folyamán ugyanaz (1774)

130 A levegő összetétele, az égés oxigénelmélete ( ) A víz összetétele (1783) kémiai nevezéktan (1787) az atomelmélet a kémiában Gay-Lussac és Dalton ( ) molekuláris hipotézis (1811) Amedeo Avogadro ( ) törvénye atomsúlyok az O = 16-hoz viszonyítva ( ) Jöns Jacob Berzelius ( )» 2000 vegyület vizsgálata» új elemek

131 az elemek atomsúlya a hidrogénének egész számú többszöröse (1815) William Prout ( ) a molekulák mérete Young» az első kielégítően pontos becslés (1816) szilárd testeknél a fajhő x atomsúly = állandó (1819) Pierre-Louis Dulong ( ) Alexis-Thérèse Petit ( )

132 a biológia hozzájárulása Robert Brown ( ) A Brief Account of Microscopical Observations made in the Months of June, July, and August, 1827, on the Particles Contained in the Pollen of Plants; and on the General Existence of Active Molecules in Organic and Inorganic Bodies az elektromosságtan hozzájárulása Faraday az elektromos töltés megmaradása (1843)

133 Hőmérsékleti sugárzás és színképelemzés az anomáliák szerepe a tudományban a színkép sötét vonalainak hullámhossza ( ) Joseph Fraunhofer ( )

134 diffrakciós rácsok használata (1821)

135 az elnyelési és kibocsátási vonalak közötti kapcsolat (1849) Foucault a színképelemzés módszerének kidolgozása (1859) Kirchhoff és Robert Wilhelm Bunsen ( )

136 új elemek a Fraunhofervonalak természete a Nap atmoszférával körülvett folyadék ( )

137 a hőmérsékleti sugárzás az abszolút fekete test fogalma Kirchhoff: Monatsbericht der Akademie der Wissenchaften zu Berlin, December 1859 az ugyanolyan hullámhosszal rendelkező sugarakra egy adott hőmérsékleten az emisszió és az abszorpció aránya minden testnél ugyanaz. E λt /A λt = φ(λ, T), A λt = 1 E ~ T 4 (1879) Joseph Stefan ( ) T 0, T d T 4

138 a színképvonalak finomstruktúrája (1881) Albert Abraham Michelson ( ) az eszközökért Nobel-díj (1907)

139 színképvonal-sorozatok (1883-) Heinrich Gustav Johannes Kayser ( ) Carle David Tolmé Runge ( ) Friedrich Paschen ( )

140 a H-atom színképvonalainak összefüggése (1885) Johann Jacob Balmer ( ) 1/λ = R(1/2 2-1/n 2 ), n = 3, 4, 5,...

141 Johannes Robert Rydberg ( ) Recherches sur la constitution des spectres d'émission des éléments chimiques (1890) a színkép összefügg a periódusos rendszerrel hullámszám, Rydberg-állandó, termekkel minden színképvonal leírható - ν = R(1/n 2-1/m 2 ), ν = RZ(1/n 2-1/m 2 )

142 a hőmérsékleti sugárzás eltolódása (1893) Wilhelm Wien ( ) λ m T = cm K Nobel-díj (1911)

143 kísérletek a hőmérsékleti sugárzás eloszlási függvényének meghatározására Lord Rayleigh (John William Strutt, ) James Hopwood Jeans ( ) Wien

144 az UV-nél rövidebb hullámhosszú sugárzás és tulajdonságai (1895) Wilhelm Konrad Röntgen ( ) az első Nobeldíj (1901)

145 a színképvonalak mágneses térben felhasadnak (1896) Pieter Zeeman ( ) Nobel-díj (1902)

146 Max Karl Ernst Ludwig Planck ( ) Kiel 1867 München a Philipp von Jolly eset Berlin (Helmholtz, Kirchhoff) Clausius írásai 1879 A hő mechanikai elméletének második törvénye (doktori) személy

147 1885 Kiel az elméleti fizika professzora az entrópia alkalmazása a kémiában 1889 Berlin a termodinamika alkalmazása az elektrodinamikában a hőmérsékleti sugárzás problémája termodinamikai módszerekkel október 19. A Wien-féle eloszlási törvény módosításáról (előadás) személy

148 mű Wien Planck Rayleigh-Jeans T e u 3 kt c u u a u S u a u S bu u a u S 1 3 T e A u

149 a képlet kísérleti ellenőrzése december 14. A normálspektrum energiaeloszlási törvényének elmélete (előadás majd cikkek) a képlet tartalma» az entrópia Boltzmann-féle valószínűségi értelmezése» új természeti állandó(k) bevezetése (Planck-féle hatáskvantum és Boltzmann-állandó)» hv az atomi rendszerek energiaváltoztatásainak egysége a kvantumhipotézis eredménytelen kísérlet az eredménynek a klasszikus fizikába történő beillesztésére 1918 Nobel díj személy

150 eloszlási törvény: hν (1900) atomi oszcillátorok hatáskvantum

151 Termodinamika és statisztikus fizika abszolút hőmérséklet és skála ( ) Kelvin a folyamatok iránya Clausius (1850) Kelvin (1851) az entrópia (Clausius, 1865) zárt rendszerben állandó (reverzibilis folyamatok) vagy nő (irreverzibilis folyamatok) meghatározza a természeti folyamatok irányát matematikai megformulázása hőhalál

152 William Thomson ( ) 10 évesen kezdi az egyetemet Glasgowban, majd Cambridge és Párizs 22 évesen kezd fizikát tanítani Glasgowban (a nyugdíjig) hőtannal foglalkozik, javasolja az abszolút hőmérsékleti skála bevezetését (1848) A hő dinamikus elméletéről (1851) személy

153 On the Dynamical Theory of Heat, with numerical results deduced from Mr Joule's equivalent of a Thermal Unit, and M. Regnault's Observations on Steam a hő mozgás (nem pedig anyag [kalorikum]) elméleti alapelvek Lehetetlen élettelen anyag közreműködése révén bármely anyagrészből mechanikai hatást nyerni úgy, hogy a környező tárgyak leghidegebbikének hőmérséklete mű alá hűtjük.

154 matematikai megformulázás az elmélet és a mérési eredmények összehasonlítása alkalmazás az elektromosságra (termoelemek, áramvezetés) ismételt minden szempontból korrekt javaslat az abszolút hőmérsékleti skála bevezetésére mű

155 hőtani mérések a Fourier-elmélet alkalmazása a Földre és a Napra vita az evolucionistákkal elektromosságtani vizsgálatok rezgőkörök ( rádiótechnika) jelek továbbítása kábeleken transzatlanti kábel lefektetése lovaggá ütik (1866) Lord Kelvin (1892) elektromos műszerek hidrodinamikai vizsgálatok személy

156 Rudolf Julius Emanuel Clausius ( ) sokgyermekes pedagógus család, apja iskolájában tanul Berlini Egyetem: matematika, fizika Halle: doktori az égbolt színeiről (1848) fizikát tanít egész életében : 9 cikk az entrópiáról és a II. főtételről A hő mozgató erejéről (1850) személy

157 Über die bewegende Kraft der Wärme und die Gesetze, welche sich daraus für die Wärmelehre selbst ableiten lassen amikor a hőerőgépben a hő munkát végez, akkor a közegben is változás történik a valóságos hőerőgépeknél hőveszteség lép fel a hő nem anyag, hanem a testek legkisebb részeinek mozgásában áll mű

158 Ha e két folyamatot felváltva ismételgetnénk, akkor lehetséges lenne minden erő befektetése vagy bármilyen más változás nélkül annyi hőt átvinni egy hidegebb testről egy melegebb testre, amennyit csak akarunk, ez azonban nincs összhangban a hő más viszonyaival, mivel az mindig a hőmérsékletkülönbségek kiegyenlítésére és így a melegebb testekről a hidegebbekre történő átmenetre törekszik. a termodinamika II. főtétele mű

159 az entrópia első képletben való felírása (1854) A hőnek nevezett mozgás (1857) kinetikus gázelmélet: a molekulák forgó- és rezgőmozgása a közepes szabad úthossz (1858) az entrópia szó bevezetése (1865) az elmélet kiterjesztése a világegyetemre (1865) 1. A Világegyetem energiája konstans. 2. A Világegyetem entrópiája egy maximum felé tart. hőhalál-elmélet személy

160 kinetikus gázelmélet Clausius rugalmas ütközés csak a fallal, ugyanazzal az átlagsebességgel, bármilyen irányban egyforma gyakorisággal: p = nmc 2 /3V pv = 2/3 nmc 2 /2 = 2/3 K ~ T (1857) túl nagy sebesség ütközések közötti átlagos szabad úthossz: = l 3 / 2 (1858) Maxwell A hőelmélet (1871)

161 Theory of Heat hőmérséklet, hőmennyiség; mérések és eszközök termodinamikai folyamatok, összefüggések pl. az energia megmaradása hőerőgépek, entrópia, a II. főtétel a gázok termodinamikája törvények alkalmazások pl. hangterjedés mű

162 hősugárzás, hővezetés a folyadékok termodinamikája a testek felépítésének molekuláris elmélete kinetikus és potenciális energia, a hő mibenléte molekuláris hipotézis kinetikus gázelmélet a kis gömbök csak az ütközés pillanatában hatnak kölcsön a sebességkomponensek statisztikus függetlensége Nf(v x )dv x Nf(v x )f(v mű y )f(v z )dv x dv y dv z f(v x )f(v y )f(v z ) = φ(v 2 x + v 2 y + v z2 )

163 valószínűségszámítás: a gázmolekulák sebességeloszlásának statisztikus törvénye f M-B = Cexp(-E/kT) λ = 1/ 2 l 3 / 2 a valódi véletlen szerepe és problémái a fizikában gáztörvények és más termodinamikai tulajdonságok a II. főtétellel kapcsolatos kételyek a Maxwell-démon mű

164 a klasszikus statisztikus fizika megalapozása Boltzmann a második főtétel statisztikai jellege, H-tétel az irreverzibilis folyamatok felé (1872-) a sugárzások termodinamikája a hőmérsékleti sugárzás törvénye (1884) Gibbs sokaságok termodinamikai potenciálok, fluktuációk, ergodikus hipotézis ( )

165 Ludwig Boltzmann ( ) Bécsben tanul és diplomázik (1866) a gázmolekulák sebességeloszlása egyensúlyban ( ) az ideális gázok kinetikus egyenletei (1872) : Grazi Egyetem Kísérleti és Elméleti Fizika Tanszék A mechanikai hőelmélet második főtétele és a valószínűségelmélet közötti kapcsolatról (1877) személy

166 Über die Beziehung zwischen dem zweiten Hauptsatze des mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung entrópianövekedés: a rendszer kevésbé valószínű állapotból valószínűbb állapotba kerül molekulák energiaeloszlásának közelítése 1.: a sebesség egy adott érték egész számú többszöröse (elemi valószínűségszámítás) mű

167 2.: az energiaadagok végtelenül kicsinyek (áttérés összegzésről integrálásra) 3.: nem pontszerű molekulák, külső erők a termodinamika II. főtétele az entrópia és a valószínűség kapcsolata S = klnw általános természeti törvény mű

168 a sugárzások termodinamikája (1884) München, Bécs, Lipcse, Bécs szakmai elismerés hiánya depresszió öngyilkosság személy

169 Josiah Willard Gibbs ( ) a Yale Egyetemen (New Haven, Connecticut) tanul és tanít az első műszaki doktor az USA-ban (1863) 1866-tól 3 évet hallgat Európában 1871-től a matematikai fizika professzora termodinamikai állapotok, folyamatok, grafikus, geometriai ábrázolásai európai vegyészek fordítják németre, franciára (heterogén rendszerek stb.) személy

170 Elementary Principles in Statistical Mechanics Developed with Especial Reference to the Rational Foundation of Thermodynamics (1902) mozgásegyenlet helyett a jellemző tulajdonságok eloszlása a rendszerek sokaságában az alapegyenlet az adott tulajdonságokkal rendelkező rendszerek számának változását mű adja meg

171 a statisztikus mechanika alapegyenletei az állapotsűrűségre, állapottérfogatra és a valószínűségre vonatkozó megmaradási törvények (Liouville-tétel) a Hamiltonegyenletek általánosított koordinátáinak és impulzusainak fázisterében a valószínűség megmaradásának elve az állapotok szórására az állapottérfogat megmaradásának elve mozgásegyenletek mű

172 a kanonikus sokaságok (a valószínűség logaritmusa ~ energia) statisztikus egyensúlyok, eloszlások, átlagok termodinamikai következmények mikrokanonikus sokaság (ua. az energia minden rendszerben) a termodinamikai átmenet részletes vizsgálata hőmérséklet entrópia sok hasonló részecskéből (molekulából) álló rendszerek mű

173 gyakorlatibb eredmények Johann Joseph Loschmidt ( ) 1 cm 3 normál gázban lévő molekulák száma, átmérője ( ) Johannes Diederik van der Waals ( ) reális gáz állapotegyenlete ( ) (p + a/v 2 )(V - b) = RT Nobel-díj a gázok és folyadékok kutatásárért (1910)

174 Az anyag diszkrét szerkezete kételektródos cső + higanyos vákuumszivattyú Johann Heinrich Wilhelm Geissler (1814/5-1879) Geissler-csövek

175

176

177

178 Julius Plücker ( ) színképvizsgálatokhoz (1855) a H első három vonala + a katódsugarak felfedezése, mágneses térben elhajlanak (1858)

179 kémiai elemek periódusos rendszere, atomsúlyok (1869) Dmitrij Ivanovics Mengyelejev ( )

180 ismeretlen elemek jóslása (1871)

181 az elektromos töltés diszkrét mennyiségekből áll (1874) George Johnstone Stoney ( ) a katódsugarak az áramból származó negatívan töltött részecskék (1879) Sir Willam Crookes ( )

182 az elektromos töltésnek van egy hordozó atomja (1881) Stoney a katódsugarak hullámok? Eugen Goldstein ( ) elhajlásuk elektromos térben a csősugarak (1886) a szikraközre eső ultraibolya sugárzás segíti az átütést (1887) H. R. Hertz

183 az elektromos töltés hordozója az elektron Stoney (1891) a katódsugarak képesek áthatolni vékony fémfólián (1892), tehát hullámok? H. R. Hertz a katódsugárzás negatívan töltött részecskék árama (1895) Jean Baptiste Perrin ( )

184 a rádiumsók természetes radioaktivitása (1896) Antoine Henri Becquerel ( ) lumineszcenciakutatások közben fedezi fel szisztematikus kutatás és véletlen felfedezés

185 a radioaktív sugárzás atomi tulajdonság? (1896) Maria Sklodowska-Curie ( ) fizikai-kémiai szeparáció: tórium, polónium, rádium ( ) leukémia

186 a katódsugarak részecskéinek tömege 1/1837-ed része a H atoménak, töltésük stb. (1897) Joseph John Thomson ( ) Nobel-díj (1906)

187

188 a csősugárzás részecskéi atomméretűek (1898) Wien az α és β sugarak, valamint a radon felfedezése (1899) Ernst Rutherford ( ) iskolaalapító: Bohr, Geiger, Haan, Cockroft, Moseley, Oliphant, Chadwick, Kapica, Hariton

189 a γ sugárzás felfedezése (1900) Paul Ulrich Villard ( ) a β negatív töltésű, az α is részecskékből áll (1900) M. Curie a β hasonlít a katódsugárzáshoz (e/m arány, 1900) Becquerel a radioaktivitás ionizációs, fiziológiai stb. hatásai (1901) Nobel-díj (1903)

190 a fényelektromos hatás Philipp Eduard Anton von Lenard ( ) Lenard-ablak (1893) elektronok okozzák (1899) a kilépő elektronok száma (az áram) arányos a fény intenzitásával (1900) a kilépő elektronok maximális kinetikus energiája a fémtől és a fény rezgésszámától (hullámhosszától) függ, egy minimumfrekvencia alatt nincs elektron (1902)

191 a csősugarak elhajlanak elektromos és mágneses térben (1902) Wien tiszta rádiumsó előállítása (1902) M. Curie fizikai Nobel-díj (1903) a radioaktív bomlás elmélete - az atomok átalakulása (1902) Rutherford

192 az α sugarak pozitív töltésű részecskék, megjósolja a transzuránokat (1903) kémiai Nobel-díj (1908) a mazsolás puding atommodell (1903) J. J. Thomson az elektronok csoportosulnak az atomban periódusos rendszer (1904)

193 a planetáris atommodell (1905) Perrin a fényelektromos hatás magyarázata a foton-hipotézissel (1905) Einstein a Brown-mozgás molekuláris-statisztikai elmélete (1905) a szilárd testek fajhője az atomi mozgások is kvantáltak (1907) Nobel-díj (1922)

194 a tömegspektrometria alapelve (1907) J. J. Thomson izotópok vizsgálata ( ) Brown-mozgás kísérletek kolloidokban ( ) Perrin Nobel-díj (1926)

195 eszköz a töltött részecskék észlelésére Rutherford és Geiger (1909) az α részecskék kétszeresen ionizált He atomok Rutherford A cm átmérőjű atommagok felfedezése α bombázással ( ) Rutherford

196 fémrádium előállítása (1910) M. Curie kémiai Nobel-díj (1911)

197 az elektron pontos töltésének megmérése ( ) Robert Andrews Millikan ( ) Nobel-díj (1923)

198

199 a h mechanikai hatás dimenziójának felhasználása (1911) Arnold Johannes Wilhelm Sommerfeld ( ) a fényelektromos hatás Einsteinféle elméletének kísérleti bizonyítása, h mérése (1913) Millikan

200 a Bohr-féle atommodell (1913) Niels Hendrik David Bohr ( )

201

202 atomok gerjesztése és ionizációja elektronnal való bombázással ( ) James Franck ( ) Gustav Ludwig Hertz ( ) Nobel-díj (1925)

203

204 az atommag töltése azonos a rendszámmal (1913) Henry Moseley ( ) röntgenvizsgálatok

205 atommodell a színképvonalak finomszerkezetének magyarázatára Sommerfeld ellipszispályák, azimutális kvantumszám a Zeeman-effektus kvantumelmélete (1916) müncheni elméleti fizikai iskola: Heisenberg, Pauli, Raabi, Debay, Bethe a proton felfedezése ( ) Rutherford

206 mesterséges magátalakítás (1919) Rutherford nitrogén-14 + hélium-4 oxigén-17 + hidrogén-1 a neutron feltételezése (1920) Rutherford

207 mágneses kvantumszám (1920) Sommerfeld korrespondenciaelv ( ) Bohr Nobel-díj (1922)

208 a molekulák sebességének közvetlen megmérése Otto Stern ( ) igazolta Maxwellt (1920)

209 az atom mágneses momentuma - térbeli kvantálás (1922) Walter Gerlach ( ) Stern Nobel-díj (1943)

210 a röntgensugárzás hullámhosszának megváltozása elektronon történő szóráskor - kísérlet és magyarázat (1923) Arthur Holly Compton ( ) Nobel-díj (1927) a kettős természet kiterjesztése az anyagra (1923) L. de Broglie

211 Louis de Broglie ( ) arisztokrata család francia irodalom és történelem fizika I. Világháború: rádiósként az Eiffeltoronyban Marurice de Broglie laboratóriuma: röntgenspektrumok, fényelektromos hatás hőmérsékleti sugárzás, fénykvantumok doktori Paul Langevin témavezetésével személy

212 Recherches sur la théorie des quanta (1924) XVI-XX. sz-i harcok a fény részecske- és hullámtermészete körül, relativitáselmélet, kvantáltsági feltevések utóbbiak összevetése: energia, hullámjelenségek relativisztikus tulajdonságai párhuzamok (analógiák) mű

213 klasszikus mechanika legkisebb hatás elve geometriai optika Fermat-elv az elektron dinamikája (kvantummechanika) hullámoptika az elektronpályák kvantumfeltételei (egész hullámok) alkalmazások mű

214 a disszertáció útja: Langevin Einstein Peter Debay Schrödinger hullámmechanika (1926) Davisson-Germer: kísérleti igazolás (1927) alternatív interpretációk keresése kettős megoldás vezérhullám Nobel-díj a doktoriért (1929) személy

215 a magspin és a mágneses momentum, a kizárási elv (1924) Wolfgang Pauli ( ) a korrespondencia-elv alkalmazása a diszperziós formulára (1925) Hendrik Anthony Kramers ( ) a mátrixmechanika (1925) Werner Karl Heisenberg ( ) a mérhető mennyiségekre vonatkozó Mach-féle recept nincsenek elektronpályák az atomban csak a kísérlet által sugallt fogalmak és matematikai formulák Nobel díj (1932)

216 a hullámmechanika (1926) Erwin Schrödinger ( ) ekvivalenciája a mátrixmechanikával Nobel-díj (1933)

217

218 a hullámfüggvény valószínűségi interpretációja (1926) Max Born ( ) Born-közelítés operátor-fogalom Nobel-díj (1954) a matematikai apparátus továbbfejlesztése (1926) Paul Adrien Maurice Dirac ( ) Nobel-díj (1933) Neumann János ( ) Hilbert-tér ( )

219 a határozatlansági reláció (1927) Heisenberg a spin kvantummechanikája (1927) Pauli Nobel-díj (1945) a kétatomos molekula (1927) Born-Oppenheimer a fémek kvantumelmélete ( ) Sommerfeld elektrongáz

220 a komplementaritási elv ( ) Bohr másodkvantálás ( ) Dirac elektromágneses tér, kvantumtérelmélet, a sugárzás kvantumelmélete, relativisztikus kvantumelmélet pozitron, antirészecskék, vákuumpolarizáció kvantumelektrodinamika (1929) Heisenberg Pauli térkvantálás (1929)

221 Bohr magfizika (1930-) A kvantummechanikai paradigma a világ: egymással (nem csupán mechanikai) kölcsönhatásban lévő (állapotváltoztató) alkotórészek, kettős részecske- és hullámtulajdonsággal rendelkező objektumok (időnként összefonódó) rendszere az állapotváltozás (matematikailag leírható) potenciálok vagy mérések hatására, részben véletlenszerűen megy végbe (mert) a mérés egyben beavatkozás

222 A relativitáselmélet története a parallaxis keresése közben felfedezik az aberrációt ( ) James Bradley ( ) ennek alapján becsülhető a fény sebessége

223 a csillagfény ugyanúgy törik meg a prizmán, akár a Föld mozgásirányában, akár ellenkező irányban halad (1810) Dominique Francois Jean Arago ( ) a Föld a sebességgel arányos mértékben magával ragadja az étert (1818) Fresnel

224 fénysebesség-mérések az éter kimutatására is ( ) mozgó vízben Armand-Hippolyte-Louis Fizeau ( ) részben Foucault-val közösen

225 vízzel töltött távcső (1871) George Biddell Airy ( ) a fény sebessége km/s ( ) Michelson

226 Albert A. Michelson ( ) Németország, 2 évesen USA Tengerészeti Akadémia: tanul, tanít (fizika, kémia) fénysebesség mérések (1878-tól) a színképvonalak finomszerkezete (1881) ötlet egy európai körúton: a Föld éterhez viszonyított sebességének megmérése (Maxwell ötlete) interferométerrel 1883-tól fizikaprofesszor Clevelandben személy

227 más egyetemek 1907 Nobel-díj a pontos mérésekért Edward Williams Morley ( ) vegyész 1869-től professzor Clevelandben kísérletező relatív atomsúlyok gázelemzés személy éterszél kimutatása

228 On the Relative Motion of the Earth and the Luminiferous Ether (1887) az éter-koncepció Platóntól Maxwellig a Föld pályamenti sebessége az interferométer mű

229 a fény hullámtermészetének kihasználása távolságmérésre csillagátmérő rezgésmentesen betontömb higanyban úszik negatív eredmény (táblázatos és grafikus forma) további lehetőségek mű

230 vízzel töltött távcső (1871) George Biddell Airy ( ) a fény sebessége km/s ( ) Michelson interferométer a Föld sebességének mérésére ( ) Morley negatív eredmény

231 kontrakciós hipotézis ( ) George Francis FitzGerald ( ) Hendrik Antoon Lorentz ( ) lokális idő (1895) Lorentz-transzformáció (1904)

232 a speciális relativitáselmélet Einstein A mozgó testek elektrodinamikájáról (1905) a fénysebesség határsebesség a tömeg relatív Jules Henri Poincaré ( ) eredményei ( )

233 a négydimenziós tér-idő (1907) Hermann Minkowski ( ) az általános relativitáselmélet (1916) Einstein a fizika törvényei ugyanolyan formájúak minden vonatkoztatási rendszerben a bizonyítékok a Merkúr perihélium-precessziója a fény gravitációs elhajlása (1919) a gravitációs vöröseltolódás (1960)

234 Albert Einstein ( ) középosztálybeli német zsidó család talán enyhe diszlexiával küzdő gyermeke 1900, Zürich: matematika-fizika középiskolai tanári diploma fizikusi állást nem kap; berni szabadalmi hivatal 1905 Brown-mozgás fényelektromos jelenség személy speciális relativitáselmélet

235 egyetemi állások a relativitáselmélet általánosítása (1915) napfogyatkozás (1919) az Einstein-mítosz (1920-tól) emigráció 1935: Einstein-Podolsky- Rosen cikk törekvés az egységes térelmélet létrehozására személy

236 Die Grundlage der allgemeinen Relativitätstheorie (1916) az elektrodinamika szimmetriái Michelson-Morley kísérlet speciális elmélet: a fizika törvényei ugyanolyan formájúak egymáshoz képest egyenes vonalú egyenletes sebességgel mozgó vonatkoztatási rendszerekben koordinátatranszformációkkal mű

237 Ernst Mach ( ) az abszolút tér és idő kritikája relatív tér és idő relatív tömeg az elmélet általánosítása gyorsuló és gravitációs rendszerekre a gravitációs és tehetetlenségi erők ekvivalenciája Eötvös Loránd ( ) torziós ingája (1886-) a Minkowski-módszerrel új matematikai eszközökkel mű

238 Einstein-egyenlet anyag (energia, impulzus, tömeg) ~ téridő nincs gravitációs erő új tér-idő szemlélet: a görbült tér-idő határesete: a Newton-elmélet az elmélet következményei mérőrudak és órák viselkedése a fény elhajlása gravitációs térben a Merkúr pályájának körbefordulása mű

239 A relativitáselméleti paradigma az univerzum: események (fizikai testek az időben) rendszere a mozgás világvonalak mentén történik a tér és az idő (tér-idő) szoros egységben van egymással, tulajdonságai az anyagi tartalomtól függenek a jelenségek a múlt által tökéletesen determináltak (a Cauchy-probléma megoldható)

240 a relativitáselmélet alkalmazásai relativisztikus energia a magfizikában, a részecskefizikában részecskegyorsítók kozmológia» a spirálködök (galaxisok) felfedezése (XVIII. sz. második fele)» Edwin Powell Hubble ( ) a távolodó galaxisokról ( )

241 » az ősrobbanás (Big Bang = Nagy Bumm) elméletek (1930-as évektől)» a kozmikus háttérsugárzás felfedezése (1965)» a kozmológiai szingularitásokra (ősrobbanás, fekete lyuk) vonatkozó tétel (Stephen Hawking, 1942-)» a kozmológia spekulatívból empirikus tudománnyá válik (elektronika, űrhajózás 1980-as évektől)» a kvantummechanika, magfizika, részecskefizika, egyesített elméletek felhasználása» a sötét anyag (és energia) problémája GPS (1973, 1994, 2000)

242 A kvantummechanika gyermekei Az elektronika az alagút-hatás szilárdtestfizika az elektromos vezetőképesség vizsgálata félvezetők (Ge, Si)» a tranzisztor J. Bardeen ( ), W. Brattain ( ) és W. Shockley ( ) 1947

243 » a vákuumcsövek lecserélése pl. az elektromágneses hullámokat keltő és észlelő erősítőkben légiirányítás, tömegkommunikáció (pl. hordozható eszközök)» integrált áramkörök R. Noyce ( ), 1962

244 számítógépek» 1. generáció: katonai, meteorológiai célok elektroncsövek (1940-es évektől)

245 » 2. generáció: tranzisztorok az 1950-es évek végétől» 3. generáció: integrált áramkörök az 1960-as évek közepétől» 4. generáció: mikroprocesszorok (programozható chipek) az 1970-es évek elejétől

246 A részecskefizika kozmikus sugárzás kvantummechanika részecskék és antirészecskék (Dirac-féle pozitron) mezonok magfizika neutron, neutrínó

247 részecskegyorsítók lineáris ciklotron Ernest Lawrence ( )» költségek szimmetriák és megmaradási törvények, alapvető kölcsönhatások

248 az elemi részecskék problémája az ismert részecskék osztályozása, csoportosítása, feltételezett alkotóelemekből való összerakása a XX. sz. közepétől

249 a kvark-elmélet: Murray Gell-Mann (1929-) tört töltések; 6 kvark; leptonok, neutrínók; bozonok

Romantikus közjáték a mechanikai paradigmában

Romantikus közjáték a mechanikai paradigmában Romantikus közjáték a mechanikai paradigmában a romantikus természetfilozófia Friedrich Schelling (1775-1854) a természeti hatások egyetlen alapelv megnyilvánulásai (1799-ig) a fizikai erők/kölcsönhatások

Részletesebben

a Bohr-féle atommodell (1913) Niels Hendrik David Bohr ( )

a Bohr-féle atommodell (1913) Niels Hendrik David Bohr ( ) a Bohr-féle atommodell (1913) Niels Hendrik David Bohr (1885-1962) atomok gerjesztése és ionizációja elektronnal való bombázással (1913-1914) James Franck (1882-1964) Gustav Ludwig Hertz (1887-1975) Nobel-díj

Részletesebben

a levegő-hang~éter-fény analógia továbbfejlesztése Euler: Nova theoria lucis et colorum (1746) a hullámhossz - szín megfeleltetés

a levegő-hang~éter-fény analógia továbbfejlesztése Euler: Nova theoria lucis et colorum (1746) a hullámhossz - szín megfeleltetés újabb eredmények a levegő-hang~éter-fény analógia továbbfejlesztése Euler: Nova theoria lucis et colorum (1746) a hullámhossz - szín megfeleltetés Euler: maximális = vörös, minimális = ibolya (1752) a

Részletesebben

kinetikus gázelmélet Clausius Maxwell

kinetikus gázelmélet Clausius Maxwell kinetikus gázelmélet Clausius rugalmas ütközés csak a fallal, ugyanazzal az átlagsebességgel, bármilyen irányban egyforma gyakorisággal: p = nmc 2 /3V pv = 2/3 nmc 2 /2 = 2/3 K ~ T (1857) túl nagy sebesség

Részletesebben

A fizika története Newtontól napjainkig

A fizika története Newtontól napjainkig A fizika története Newtontól napjainkig Szegedi Péter Tudománytörténet és Tudományfilozófia Tanszék DT 1-111-es szoba 372-2990 vagy 6670-es m. pszegedi@caesar.elte.hu és hps.elte.hu Tematika: 1. A klasszikus

Részletesebben

A tudományos megismerés elemei. Az elektromos és mágneses jelenségek tudományának fejlődése a Maxwell-egyenletekig

A tudományos megismerés elemei. Az elektromos és mágneses jelenségek tudományának fejlődése a Maxwell-egyenletekig A klasszikus mechanikai világkép felbomlása A tudományos megismerés elemei Az elektromos és mágneses jelenségek tudományának fejlődése a Maxwellegyenletekig A hőtan fejlődése az energiamegmaradás törvényének

Részletesebben

elméletileg is alátámasztja (Az áramkör, 1827) csak a 40-es (Anglia), 50-es években ismerik el személy

elméletileg is alátámasztja (Az áramkör, 1827) csak a 40-es (Anglia), 50-es években ismerik el személy elméletileg is alátámasztja (Az áramkör, 1827) csak a 40-es (Anglia), 50-es években ismerik el személy Die galvanische Kette, mathematisch bearbeitet matematikai alapok Fourier hővezetési elmélete nyomán

Részletesebben

A hőtan fejlődése az energiamegmaradás törvényének felfedezéséig

A hőtan fejlődése az energiamegmaradás törvényének felfedezéséig A hőtan fejlődése az energiamegmaradás törvényének felfedezéséig A gőz erejének hasznosítása Denis Papin (1647-1712) Papin-fazék (1679) a forrás légnyomásfüggése (1680) zárt termodinamikai folyamatot végző

Részletesebben

Termodinamika és statisztikus fizika

Termodinamika és statisztikus fizika Termodinamika és statisztikus fizika abszolút hőmérséklet és skála (1848-1851) Kelvin a folyamatok iránya Clausius (1850) Kelvin (1851) az entrópia (Clausius, 1865) zárt rendszerben állandó (reverzibilis

Részletesebben

A hőtan fejlődése az energiamegmaradás törvényének felfedezéséig Az anyag atomos szerkezete. a fény problémája az anyag szerkezete

A hőtan fejlődése az energiamegmaradás törvényének felfedezéséig Az anyag atomos szerkezete. a fény problémája az anyag szerkezete A klasszikus mechanikai világkép felbomlása A tudományos megismerés elemei Az elektromos és mágneses jelenségek tudományának fejlődése a Maxwellegyenletekig A hőtan fejlődése az energiamegmaradás törvényének

Részletesebben

A tudományos megismerés elemei

A tudományos megismerés elemei A tudományos megismerés elemei 1. a jelenség(ek) felismerése/tudatosítása/ elkülönítése/megfigyelése, a probléma felismerése/megfogalmazása 2. a jelenség viszonylag stabil előállítása 3. első vizsgálatok:

Részletesebben

Hőmérsékleti sugárzás és színképelemzés

Hőmérsékleti sugárzás és színképelemzés Hőmérsékleti sugárzás és színképelemzés az anomáliák szerepe a tudományban Wollaston, Ritter et al. fekete vonalak a színképben (1802) Joseph Fraunhofer (1787-1826) a sötét vonalak hullámhossza (1814-1815)

Részletesebben

Théorie analytique de la chaleur

Théorie analytique de la chaleur Théorie analytique de la chaleur Előszó Az elsődleges okok ismeretlenek számunkra; de egyszerű és állandó törvényeknek vannak alávetve, amelyeket megfigyelés révén fel lehet fedezni Munkánk célja kifejteni

Részletesebben

Hőmérsékleti sugárzás és színképelemzés

Hőmérsékleti sugárzás és színképelemzés Hőmérsékleti sugárzás és színképelemzés az anomáliák szerepe a tudományban fekete vonalak a színképben (1802) Wollaston, Ritter et al. a sötét vonalak hullámhossza (1814-1815) Joseph Fraunhofer (1787-1826)

Részletesebben

A tudományos megismerés elemei

A tudományos megismerés elemei A tudományos megismerés elemei 1. a jelenség(ek) felismerése/tudatosítása/ elkülönítése/megfigyelése, a probléma felismerése/megfogalmazása 2. a jelenség viszonylag stabil előállítása 3. első vizsgálatok:

Részletesebben

Szegedi Péter. Tudománytörténet és Tudományfilozófia Tanszék DT es szoba vagy 6670-es m. és hps.elte.

Szegedi Péter. Tudománytörténet és Tudományfilozófia Tanszék DT es szoba vagy 6670-es m. és hps.elte. Szegedi Péter Tudománytörténet és Tudományfilozófia Tanszék DT 1.111-es szoba 372-2990 vagy 6670-es m. pszegedi@caesar.elte.hu és hps.elte.hu Az elektromos és mágneses jelenségek tudományának fejlődése

Részletesebben

XX. századi forradalom a fizikában

XX. századi forradalom a fizikában XX. századi forradalom a fizikában magfizika részecskefizika 1925 1913 1900 1896 radioaktivitás lumineszcencia kvantummechanika Bohr-modell! színk nkép hőmérsékleti sugárz rzás!?? 1873 elektrodinamika

Részletesebben

Az anyag atomos szerkezete

Az anyag atomos szerkezete Az anyag atomos szerkezete Az ókori atomizmus Empedoklész (i.e. 483-427) 4 őselem mechanikus egyesülése a viszály és a szeretet révén Anaxagorasz (i.e. 500-428) a dolgok magvai minőségileg végtelenek Leukipposz

Részletesebben

a klasszikus statisztikus fizika megalapozása

a klasszikus statisztikus fizika megalapozása a klasszikus statisztikus fizika megalapozása Boltzmann a második főtétel statisztikai jellege, H-tétel az irreverzibilis folyamatok felé (1872-) a sugárzások termodinamikája a hőmérsékleti sugárzás törvénye

Részletesebben

a magspin és a mágneses momentum, a kizárási elv (1924) a korrespondencia-elv alkalmazása a diszperziós formulára (1925)

a magspin és a mágneses momentum, a kizárási elv (1924) a korrespondencia-elv alkalmazása a diszperziós formulára (1925) a magspin és a mágneses momentum, a kizárási elv (1924) Wolfgang Pauli (1900-1958) a korrespondencia-elv alkalmazása a diszperziós formulára (1925) Hendrik Anthony Kramers (1894-1952) a mátrixmechanika

Részletesebben

A kvantummechanika filozófiai problémái

A kvantummechanika filozófiai problémái A kvantummechanika filozófiai problémái Szegedi PéterP Tudományt nytörténet és Tudományfiloz nyfilozófia fia Tanszék D 1-1111 111-es szoba 37-990 990 vagy 6670-es m. pszegedi@caesar.elte.hu http://hps.elte.hu

Részletesebben

A kvantummechanika filozófiai problémái

A kvantummechanika filozófiai problémái A kvantummechanika filozófiai problémái Szegedi PéterP Tudományt nytörténet és Tudományfiloz nyfilozófia fia Tanszék D 1-1111 111-es szoba 372-2990 2990 vagy 6670-es m. pszegedi@caesar.elte.hu http://hps.elte.hu

Részletesebben

A kvantummechanika filozófiai problémái

A kvantummechanika filozófiai problémái A kvantummechanika filozófiai problémái Szegedi PéterP Tudományt nytörténet és Tudományfiloz nyfilozófia fia Tanszék D 1-1111 111-es szoba 37-990 990 vagy 6670-es m. pszegedi@caesar.elte.hu http://hps.elte.hu

Részletesebben

A relativitáselmélet története

A relativitáselmélet története A relativitáselmélet története a parallaxis keresése közben felfedezik az aberrációt (1725-1728) James Bradley (1693-1762) ennek alapján becsülhető a fény sebessége a csillagfény ugyanúgy törik meg a prizmán,

Részletesebben

Théorie mathématique des phénomènes électro-dynamiques uniquement déduite de l'expérience

Théorie mathématique des phénomènes électro-dynamiques uniquement déduite de l'expérience Théorie mathématique des phénomènes électro-dynamiques uniquement déduite de l'expérience az alapkísérlet eredményére hivatkozva 4 zéró-kísérlet (visszafordított, meghajlított vezetőkkel, 2-3 áramkörrel)

Részletesebben

A hőtan fejlődése az energiamegmaradás törvényének felfedezéséig Az anyag atomos szerkezete. a fény problémája az anyag szerkezete

A hőtan fejlődése az energiamegmaradás törvényének felfedezéséig Az anyag atomos szerkezete. a fény problémája az anyag szerkezete A klasszikus mechanikai világkép felbomlása A tudományos megismerés elemei Az elektromos és mágneses jelenségek tudományának fejlődése a Maxwellegyenletekig A hőtan fejlődése az energiamegmaradás törvényének

Részletesebben

Az atombomba története

Az atombomba története Az atombomba története Szegedi Péter TTK Tudománytörténet és Tudományfilozófia Tanszék Déli Tömb 1-111-es szoba 372-2990 vagy 6670-es mellék pszegedi@caesar.elte.hu és http://hps.elte.hu Tematika 1. A

Részletesebben

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA 9. évfolyam Osztályozóvizsga tananyaga A testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás: gyorsulás fogalma, szabadon eső test mozgása 3. Bolygók mozgása: Kepler törvények A Newtoni

Részletesebben

Az optika tudományterületei

Az optika tudományterületei Az optika tudományterületei Optika FIZIKA BSc, III/1. 1. / 17 Erdei Gábor Elektromágneses spektrum http://infothread.org/science/physics/electromagnetic%20spectrum.jpg Optika FIZIKA BSc, III/1. 2. / 17

Részletesebben

Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola

Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola 1047 Budapest, Langlet Valdemár utca 3-5. www.brody-bp.sulinet.hu e-mail: titkar@big.sulinet.hu Telefon: (1) 369 4917 OM: 034866 Osztályozóvizsga részletes

Részletesebben

Osztályozó vizsga anyagok. Fizika

Osztályozó vizsga anyagok. Fizika Osztályozó vizsga anyagok Fizika 9. osztály Kinematika Mozgás és kölcsönhatás Az egyenes vonalú egyenletes mozgás leírása A sebesség fogalma, egységei A sebesség iránya Vektormennyiség fogalma Az egyenes

Részletesebben

Az elektromágneses hullámok

Az elektromágneses hullámok 203. október Az elektromágneses hullámok PTE ÁOK Biofizikai Intézet Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm Ritter Joseph von Fraunhofer Robert

Részletesebben

Vizsgatémakörök fizikából A vizsga minden esetben két részből áll: Írásbeli feladatsor (70%) Szóbeli felelet (30%)

Vizsgatémakörök fizikából A vizsga minden esetben két részből áll: Írásbeli feladatsor (70%) Szóbeli felelet (30%) Vizsgatémakörök fizikából A vizsga minden esetben két részből áll: Írásbeli feladatsor (70%) Szóbeli felelet (30%) A vizsga értékelése: Elégtelen: ha az írásbeli és a szóbeli rész összesen nem éri el a

Részletesebben

Előszó.. Bevezetés. 1. A fizikai megismerés alapjai Tér is idő. Hosszúság- és időmérés.

Előszó.. Bevezetés. 1. A fizikai megismerés alapjai Tér is idő. Hosszúság- és időmérés. SZABÓ JÁNOS: Fizika (Mechanika, hőtan) I. TARTALOMJEGYZÉK Előszó.. Bevezetés. 1. A fizikai megismerés alapjai... 2. Tér is idő. Hosszúság- és időmérés. MECHANIKA I. Az anyagi pont mechanikája 1. Az anyagi

Részletesebben

Atomfizika. Fizika kurzus Dr. Seres István

Atomfizika. Fizika kurzus Dr. Seres István Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés 440 BC Democritus, Leucippus, Epicurus 1660 Pierre Gassendi 1803 1897 1904 1911 19 193 John Dalton Joseph John (J.J.) Thomson J.J. Thomson

Részletesebben

FIZIKA KÖZÉPSZINTŐ SZÓBELI FIZIKA ÉRETTSÉGI TÉTELEK Premontrei Szent Norbert Gimnázium, Gödöllı, 2012. május-június

FIZIKA KÖZÉPSZINTŐ SZÓBELI FIZIKA ÉRETTSÉGI TÉTELEK Premontrei Szent Norbert Gimnázium, Gödöllı, 2012. május-június 1. Egyenes vonalú mozgások kinematikája mozgásokra jellemzı fizikai mennyiségek és mértékegységeik. átlagsebesség egyenes vonalú egyenletes mozgás egyenes vonalú egyenletesen változó mozgás mozgásokra

Részletesebben

Biofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése

Biofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése Mi a biofizika tárgya? Biofizika Csik Gabriella Biológiai jelenségek fizikai leírása/értelmezése Pl. szívműködés, membránok szerkezete és működése, érzékelés stb. csik.gabriella@med.semmelweis-univ.hu

Részletesebben

egyetemi állások a relativitáselmélet általánosítása (1915) napfogyatkozás (1919) az Einstein-mítosz (1920-tól) emigráció 1935: Einstein-Podolsky-

egyetemi állások a relativitáselmélet általánosítása (1915) napfogyatkozás (1919) az Einstein-mítosz (1920-tól) emigráció 1935: Einstein-Podolsky- egyetemi állások a relativitáselmélet általánosítása (1915) napfogyatkozás (1919) az Einstein-mítosz (1920-tól) emigráció 1935: Einstein-Podolsky- Rosen cikk törekvés az egységes térelmélet létrehozására

Részletesebben

Fizika vizsgakövetelmény

Fizika vizsgakövetelmény Fizika vizsgakövetelmény A tanuló tudja, hogy a fizika alapvető megismerési módszere a megfigyelés, kísérletezés, mérés, és ezeket mindig valamilyen szempont szerint végezzük. Legyen képes fizikai jelenségek

Részletesebben

Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz

Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz Atomfizika A hidrogén lámpa színképei - Elektronok H atom emisszió Fényképlemez V + H 2 gáz Az atom és kvantumfizika fejlődésének fontos szakasza volt a hidrogén lámpa színképeinek leírása, és a vonalas

Részletesebben

Atomfizika. Fizika kurzus Dr. Seres István

Atomfizika. Fizika kurzus Dr. Seres István Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés J.J. Thomson (1897) Katódsugárcsővel végzett kísérleteket az elektron fajlagos töltésének (e/m) meghatározására. A katódsugarat alkotó részecskét

Részletesebben

A hőmérsékleti sugárzás

A hőmérsékleti sugárzás A hőmérsékleti sugárzás Alapfogalmak 1. A hőmérsékleti sugárzás Értelmezés (hőmérsékleti sugárzás): A testek hőmérsékletével kapcsolatos, a teljes elektromágneses spektrumra kiterjedő sugárzást hőmérsékleti

Részletesebben

A kvantummechanika kísérleti előzményei A részecske hullám kettősségről

A kvantummechanika kísérleti előzményei A részecske hullám kettősségről A kvantummechanika kísérleti előzményei A részecske hullám kettősségről Utolsó módosítás: 2016. május 4. 1 Előzmények Franck-Hertz-kísérlet (1) A Franck-Hertz-kísérlet vázlatos elrendezése: http://hyperphysics.phy-astr.gsu.edu/hbase/frhz.html

Részletesebben

Tárgymutató. dinamika, 5 dinamikai rendszer, 4 végtelen sok állapotú, dinamikai törvény, 5 dinamikai törvények, 12 divergencia,

Tárgymutató. dinamika, 5 dinamikai rendszer, 4 végtelen sok állapotú, dinamikai törvény, 5 dinamikai törvények, 12 divergencia, Tárgymutató állapottér, 3 10, 107 általánosított impulzusok, 143 147 általánosított koordináták, 143 147 áramlás, 194 197 Arisztotelész mozgástörvényei, 71 77 bázisvektorok, 30 centrifugális erő, 142 ciklikus

Részletesebben

FIZIKA VIZSGATEMATIKA

FIZIKA VIZSGATEMATIKA FIZIKA VIZSGATEMATIKA osztályozó vizsga írásbeli szóbeli időtartam 60p 10p arány az értékelésnél 60% 40% A vizsga értékelése jeles (5) 80%-tól jó (4) 65%-tól közepes (3) 50%-tól elégséges (2) 35%-tól Ha

Részletesebben

AZ ELEKTROMÁGNESES SUGÁRZÁS KETTŐS TERMÉSZETE

AZ ELEKTROMÁGNESES SUGÁRZÁS KETTŐS TERMÉSZETE AZ ELEKTROMÁGNESES SUGÁRZÁS KETTŐS TERMÉSZETE A Planck-féle sugárzási törvény Hipotézis 1.: A hősugárzást (elektromágneses hullámokat) kis, apró rezgő oszcillátorok hozzák létre. Egy ilyen oszcillátor

Részletesebben

ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK

ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK HŐTÁGULÁS lineáris (hosszanti) hőtágulási együttható felületi hőtágulási együttható megmutatja, hogy mennyivel változik meg a test hossza az eredeti hosszához képest, ha

Részletesebben

A fizika története (GEFIT555B, 2+0, 2 kredit) 2010/2011. tanév, 1. félév

A fizika története (GEFIT555B, 2+0, 2 kredit) 2010/2011. tanév, 1. félév A fizika története (GEFIT555B, 2+0, 2 kredit) 2010/2011. tanév, 1. félév Dr. Paripás Béla 6. Előadás (2010.10.27.) Ponthatárok: 0 13 elégtelen (1) 14 18 elégséges (2) 19 22 közepes (3) 23 26 jó (4) 27

Részletesebben

Fizika összefoglaló kérdések (11. évfolyam)

Fizika összefoglaló kérdések (11. évfolyam) I. Mechanika Fizika összefoglaló kérdések (11. évfolyam) 1. Newton törvényei - Newton I. (a tehetetlenség) törvénye; - Newton II. (a mozgásegyenlet) törvénye; - Newton III. (a hatás-ellenhatás) törvénye;

Részletesebben

Budapest, 2010. december 3-4.

Budapest, 2010. december 3-4. Mócsy Ildikó A természettudomány A természettudomány szakágazatai: - alap tudományok: fizika kémia biológia földtudományok csillagászat - alkalmazott tudományok: mérnöki mezőgazdaság orvostudomány - matematika,

Részletesebben

Bevezetés a modern fizika fejezeteibe. 4. (a) Kvantummechanika. Utolsó módosítás: november 15. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 4. (a) Kvantummechanika. Utolsó módosítás: november 15. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 4. (a) Kvantummechanika Utolsó módosítás: 2015. november 15. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum

Részletesebben

a szintetikus elmélet

a szintetikus elmélet VI.1. A Principia jelentősége: a szintetikus elmélet let A forradalmiság g tartalma a szintézis zis a halmozódó tudás s szüks kségszerűen en vezet el az átfogó elmélethez lethez Galilei, Huygens és s mások

Részletesebben

Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet

Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Utolsó módosítás: 2016. május 4. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum

Részletesebben

Sztehlo Gábor Evangélikus Óvoda, Általános Iskola és Gimnázium. Osztályozóvizsga témakörök 1. FÉLÉV. 9. osztály

Sztehlo Gábor Evangélikus Óvoda, Általános Iskola és Gimnázium. Osztályozóvizsga témakörök 1. FÉLÉV. 9. osztály Osztályozóvizsga témakörök 1. FÉLÉV 9. osztály I. Testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás; átlagsebesség, pillanatnyi sebesség 3. Gyorsulás 4. Szabadesés, szabadon eső test

Részletesebben

Időben állandó mágneses mező jellemzése

Időben állandó mágneses mező jellemzése Időben állandó mágneses mező jellemzése Mágneses erőhatás Mágneses alapjelenségek A mágnesek egymásra és a vastárgyakra erőhatást fejtenek ki. vonzó és taszító erő Mágneses pólusok északi pólus: a mágnestű

Részletesebben

A fény mint elektromágneses hullám és mint fényrészecske

A fény mint elektromágneses hullám és mint fényrészecske A fény mint elektromágneses hullám és mint fényrészecske Segítség az 5. tétel (Hogyan alkalmazható a hullám-részecske kettősség gondolata a fénysugárzás esetében?) megértéséhez és megtanulásához, továbbá

Részletesebben

Atommodellek. Az atom szerkezete. Atommodellek. Atommodellek. Atommodellek, A Rutherford-kísérlet. Atommodellek

Atommodellek. Az atom szerkezete. Atommodellek. Atommodellek. Atommodellek, A Rutherford-kísérlet. Atommodellek Démokritosz: a világot homogén szubsztanciájú oszthatatlan részecskék, atomok és a közöttük lévı őr alkotja. Az atom szerkezete Egy atommodellt akkor fogadunk el érvényesnek, ha megmagyarázza a tapasztalati

Részletesebben

KVANTUMMECHANIKA. a11.b-nek

KVANTUMMECHANIKA. a11.b-nek KVANTUMMECHANIKA a11.b-nek HŐMÉRSÉKLETI SUGÁRZÁS 1 Hősugárzás: elektromágneses hullám A sugárzás által szállított energia: intenzitás I, T és λkapcsolata? Példa: Nap (6000 K): sárga (látható) Föld (300

Részletesebben

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István Ez egy gázos előadás lesz! ( hőtana) Dr. Seres István Kinetikus gázelmélet gáztörvények Termodinamikai főtételek fft.szie.hu 2 Seres.Istvan@gek.szie.hu Kinetikus gázelmélet Az ideális gáz állapotjelzői:

Részletesebben

Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek

Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek Atomok elsődleges kölcsönhatás kovalens ionos fémes véges számú atom térhálós szerkezet 3D ionos fémek vegyületek ötvözetek molekulák atomrácsos vegyületek szilárd gázok, folyadékok, szilárd anyagok Gázok

Részletesebben

Termodinamika. Belső energia

Termodinamika. Belső energia Termodinamika Belső energia Egy rendszer belső energiáját az alkotó részecskék mozgási energiájának és a részecskék közötti kölcsönhatásból származó potenciális energiák teljes összegeként határozhatjuk

Részletesebben

A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2015/2016. tanév, 1. félév Dr. Paripás Béla. 7. Előadás (2015.10.29.)

A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2015/2016. tanév, 1. félév Dr. Paripás Béla. 7. Előadás (2015.10.29.) A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2015/2016. tanév, 1. félév Dr. Paripás Béla 7. Előadás (2015.10.29.) Az atomelmélet fejlődése (folyt.) 1, az anyag atomos szerkezetének bizonyítása

Részletesebben

Az Ampère-Maxwell-féle gerjesztési törvény

Az Ampère-Maxwell-féle gerjesztési törvény Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér

Részletesebben

Optika és Relativitáselmélet II. BsC fizikus hallgatóknak

Optika és Relativitáselmélet II. BsC fizikus hallgatóknak Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 2. Fényhullámok tulajdonságai Cserti József, jegyzet, ELTE, 2007. Az elektromágneses spektrum Látható spektrum (erre állt be a szemünk) UV: ultraibolya

Részletesebben

Minek kell a matematika? (bevezetés)

Minek kell a matematika? (bevezetés) Tudomány Minek kell a matematika? (bevezetés) Osváth Szabolcs a tudomány az emberiségnek a világ megismerésére és megértésére irányuló vállalkozása Semmelweis Egyetem a szőkedencsi hétszáz éves hárs Matematika...

Részletesebben

összetevője változatlan marad, a falra merőleges összetevő iránya ellenkezőjére változik, miközben nagysága ugyanakkora marad.

összetevője változatlan marad, a falra merőleges összetevő iránya ellenkezőjére változik, miközben nagysága ugyanakkora marad. A termodinamika 2. főtétele kis rendszerekben Osváth Szabolcs Semmelweis Egyetem Statisztikus sokaságok Nyomás Nyomás: a tartály falával ütköző molekulák, a falra erőt fejtenek ki Az ütközésben a részecske

Részletesebben

SZE, Fizika és Kémia Tsz. v 1.0

SZE, Fizika és Kémia Tsz. v 1.0 Fizikatörténet A fénysebesség mérésének története Horváth András SZE, Fizika és Kémia Tsz. v 1.0 Kezdeti próbálkozások Galilei, Descartes: Egyszerű kísérletek lámpákkal adott fényjelzésekkel. Eredmény:

Részletesebben

Összefoglaló kérdések fizikából 2009-2010. I. Mechanika

Összefoglaló kérdések fizikából 2009-2010. I. Mechanika Összefoglaló kérdések fizikából 2009-2010. I. Mechanika 1. Newton törvényei - Newton I. (a tehetetlenség) törvénye; - Newton II. (a mozgásegyenlet) törvénye; - Newton III. (a hatás-ellenhatás) törvénye;

Részletesebben

Mágneses mező jellemzése

Mágneses mező jellemzése pólusok dipólus mező mező jellemzése vonalak pólusok dipólus mező vonalak Tartalom, erőhatások pólusok dipólus mező, szemléltetése meghatározása forgatónyomaték méréssel Elektromotor nagysága különböző

Részletesebben

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István OPTIKA Fénykibocsátás mechanizmusa Dr. Seres István Bohr modell Niels Bohr (19) Rutherford felfedezte az atommagot, és igazolta, hogy negatív töltésű elektronok keringenek körülötte. Niels Bohr Bohr ezt

Részletesebben

A világtörvény keresése

A világtörvény keresése A világtörvény keresése Kopernikusz, Kepler, Galilei után is sokan kételkedtek a heliocent. elméletben Ennek okai: vallási politikai Új elméletek: mozgásformák (egyenletes, gyorsuló, egyenes, görbe vonalú,...)

Részletesebben

A teljes elektromágneses spektrum

A teljes elektromágneses spektrum A teljes elektromágneses spektrum Fizika 11. Rezgések és hullámok 2019. március 9. Fizika 11. (Rezgések és hullámok) A teljes elektromágneses spektrum 2019. március 9. 1 / 18 Tartalomjegyzék 1 A Maxwell-egyenletek

Részletesebben

Atommodellek. Ha nem tudod egy pincérnőnek elmagyarázni a fizikádat, az valószínűleg nem nagyon jó fizika. Rausch Péter kémia-környezettan tanár

Atommodellek. Ha nem tudod egy pincérnőnek elmagyarázni a fizikádat, az valószínűleg nem nagyon jó fizika. Rausch Péter kémia-környezettan tanár Atommodellek Ha nem tudod egy pincérnőnek elmagyarázni a fizikádat, az valószínűleg nem nagyon jó fizika. Ernest Rutherford Rausch Péter kémia-környezettan tanár Modellalkotás A modell a valóság nagyított

Részletesebben

A modern fizika születése

A modern fizika születése MODERN FIZIKA A modern fizika születése Eddig: Olyan törvényekkel ismerkedtünk meg melyekhez tapasztalatokat a mindennapi életből is szerezhettünk. Klasszikus fizika: mechanika, hőtan, elektromosságtan,

Részletesebben

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 Kérdések. 1. Mit mond ki a termodinamika nulladik főtétele? Azt mondja ki, hogy mindenegyes termodinamikai kölcsönhatáshoz tartozik a TDR-nek egyegy

Részletesebben

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gázegyenlet és általánosított gázegyenlet 5-4 A tökéletes gázegyenlet alkalmazása 5-5 Gáz reakciók 5-6 Gázkeverékek

Részletesebben

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István Ez egy gázos előadás lesz! ( hőtana) Dr. Seres István Kinetikus gázelmélet gáztörvények Termodinamikai főtételek fft.szie.hu 2 Seres.Istvan@gek.szie.hu Kinetikus gázelmélet Az ideális gáz állapotjelzői:

Részletesebben

A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2018/2019. tanév, 1. félév Dr. Paripás Béla. 7. Előadás ( )

A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2018/2019. tanév, 1. félév Dr. Paripás Béla. 7. Előadás ( ) A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2018/2019. tanév, 1. félév Dr. Paripás Béla 7. Előadás (2018.11.08.) Óracsere Itt tartandó rendezvény miatt a 10. előadás (2018. november 29. azaz

Részletesebben

ATOMFIZIKA. óravázlatok

ATOMFIZIKA. óravázlatok ATOMFIZIKA óravázlatok A fizika felosztása 1. Klasszikus fizika Olyan jelenségekkel és törvényekkel foglalkozik, amelyekről a mindennapi életben is szerezhetünk tapasztalatokat. 2. Modern fizika A fizikának

Részletesebben

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet 5-4 A tökéletes gáz egyenlet alkalmazása 5-5 Gáz halmazállapotú reakciók

Részletesebben

Az osztályozóvizsga követelményei fizika tantárgyból 9. osztály

Az osztályozóvizsga követelményei fizika tantárgyból 9. osztály Az osztályozóvizsga követelményei fizika tantárgyból 9. osztály 1. Hosszúság, terület, térfogat, tömeg, sűrűség, idő mérése 2.A mozgás viszonylagossága, a vonatkoztatási rendszer, Galilei relativitási

Részletesebben

A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2018/2019. tanév, 1. félév

A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2018/2019. tanév, 1. félév A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2018/2019. tanév, 1. félév Dr. Paripás Béla 6. Előadás (2018.10. 25.) EMLÉKEZTETŐ Pontszám konverzió (Ha 100% = 32 pont ) Érdemjegy Elégséges (2)

Részletesebben

Atomfizika. FIB1208 (gyakorlat) Meghirdetés féléve 4 Kreditpont 3+2 Összóraszám (elmélet+gyakorlat) 3+2

Atomfizika. FIB1208 (gyakorlat) Meghirdetés féléve 4 Kreditpont 3+2 Összóraszám (elmélet+gyakorlat) 3+2 Tantárgy neve Atomfizika Tantárgy kódja FIB1108 (elmélet) FIB1208 (gyakorlat) Meghirdetés féléve 4 Kreditpont 3+2 Összóraszám (elmélet+gyakorlat) 3+2 Számonkérés módja Kollokvium + gyakorlati jegy Előfeltétel

Részletesebben

ELEMI RÉSZECSKÉK ATOMMODELLEK

ELEMI RÉSZECSKÉK ATOMMODELLEK ELEMI RÉSZECSKÉK ATOMMODELLEK Az atomok felépítése Készítette: Horváthné Vlasics Zsuzsanna Mi van az atomok belsejében? DÉMOKRITOSZ (Kr.e. 460-370) az anyag nem folytonos parányi, tovább nem bontható,

Részletesebben

Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek

Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek Atomok elsődleges kölcsönhatás kovalens ionos fémes véges számú atom térhálós szerkezet 3D ionos fémek vegyületek ötvözetek molekulák atomrácsos vegyületek szilárd gázok, folyadékok, szilárd anyagok Gázok

Részletesebben

Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont)

Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont) Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont) 1. "Az olyan rendszereket, amelyek határfelülete a tömegáramokat megakadályozza,... rendszernek nevezzük" (1) 2. "Az olyan rendszereket,

Részletesebben

100 éves az első Solvay konferencia

100 éves az első Solvay konferencia Radnai Gyula (ELTE) 100 éves az első Solvay konferencia La théorie du rayonement et les quanta Sugárzás elmélet és a kvantumok The theory of radiation and quanta Sugárzás- és kvantumelmélet Brüsszel, Hotel

Részletesebben

FIZIKA középszintű érettségi témakörök 2016/2017-es tanév (nem tételsor!)

FIZIKA középszintű érettségi témakörök 2016/2017-es tanév (nem tételsor!) KRK Szilády Áron Református Gimnázium FIZIKA középszintű érettségi témakörök 2016/2017-es tanév (nem tételsor!) 1. Egyenes vonalú mozgások. a. A kinematika alapfogalmai: pálya, út, elmozdulás. b. Az egyenes

Részletesebben

Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008.

Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Kiss István,Vértes Attila: Magkémia (Akadémiai Kiadó) Nagy Lajos György,

Részletesebben

Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 4. (e) Kvantummechanika Utolsó módosítás: 2014. december 3. 1 A Klein-Gordon-egyenlet (1) A relativisztikus dinamikából a tömegnövekedésre és impulzusra vonatkozó

Részletesebben

8. AZ ATOMMAG FIZIKÁJA

8. AZ ATOMMAG FIZIKÁJA 8. AZ ATOMMAG FIZIKÁJA Az atommag szerkezete (40-44 oldal) A tömegspektrométer elve Az atommag komponensei Izotópok Tömeghiány, kötési energia, stabilitás Magerők Magmodellek Az atommag stabilitásának

Részletesebben

A fény korpuszkuláris jellegét tükröző fizikai jelenségek

A fény korpuszkuláris jellegét tükröző fizikai jelenségek A fény korpuszkuláris jellegét tükröző fizikai jelenségek A fény elektromágneses sugárzás, amely hullámjelleggel és korpuszkuláris sajátosságokkal is rendelkezik. A fény hullámjellege elsősorban az olyan

Részletesebben

9. évfolyam I. MOZGÁSTAN

9. évfolyam I. MOZGÁSTAN 9. évfolyam I. MOZGÁSTAN Mozgástani alapfogalmak: A mozgás hely szerinti jellemzése Hely, hosszúság és idő mérése. A mozgás viszonylagossága, a vonatkoztatási rendszer. A mozgás időbeli jellemzése, a sebesség

Részletesebben

Molekuláris dinamika I. 10. előadás

Molekuláris dinamika I. 10. előadás Molekuláris dinamika I. 10. előadás Miről is szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten minden részecske mozgását szimuláljuk? Hogyan tudjuk megérteni a folyadékok,

Részletesebben

http://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

Stern Gerlach kísérlet. Készítette: Kiss Éva

Stern Gerlach kísérlet. Készítette: Kiss Éva Stern Gerlach kísérlet Készítette: Kiss Éva Történelmi áttekintés 1890. Thomson-féle atommodell ( mazsolás puding ) 1909-1911. Rutherford modell (bolygó hasonlat) Bohr-féle atommodell Frank-Hertz kísérlet

Részletesebben

Christiaan Huygens ( ) 1695) Horologium (1658)

Christiaan Huygens ( ) 1695) Horologium (1658) Christiaan Huygens (1629-1695) 1695) Horologium (1658) rugalmas ütközés (1669) I. Feltevés: : A mozgásban lévő test akadály hiányában változatlanul ugyanazzal a sebességgel és egyenes vonalban folytatja

Részletesebben

Mivel foglalkozik a hőtan?

Mivel foglalkozik a hőtan? Hőtan Gáztörvények Mivel foglalkozik a hőtan? A hőtan a rendszerek hőmérsékletével, munkavégzésével, és energiájával foglalkozik. A rendszerek stabilitása áll a fókuszpontjában. Képes megválaszolni a kérdést:

Részletesebben

a világ rendszere determinizmus: mozgástörvények örvényelmélet tehetetlenség ütközési törvények matematikai leírás

a világ rendszere determinizmus: mozgástörvények örvényelmélet tehetetlenség ütközési törvények matematikai leírás determinizmus: mozgástörvények tehetetlenség ütközési törvények matematikai leírás a világ rendszere örvényelmélet középpontban a Nap örvényében a bolygók ezek másodlagos örvényeiben a holdak kitöltöttség,

Részletesebben