AUTOMATA REAKTOR. Kémiai Technológia Gyakorlat

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "AUTOMATA REAKTOR. Kémiai Technológia Gyakorlat"

Átírás

1 AUTOMATA REAKTOR Kémiai Technológia Gyakorlat Az iparban számos különböző reaktor típust használnak a laboratóriumi munkában is megszokott reakciók kivitelezésére. A reaktorokban lejátszódó folyamatok is kivitelezhetők akár ugyanolyan reakciókörülmények között, mint a laboratóriumi munka során, de legalább egy paraméterben mindenképp eltérnek tőle, a reaktor edény méretében (és az elreagáltatott anyagok mennyiségében). Ez az eltérés alapvető szerepet játszik az ipari szintézisek tervezésénél. Gondoljunk először arra, hogy egy laborreakció során a reakció elegyet a lombik falán keresztül tudjuk fűteni, tehát fontos a reaktor felületének és térfogatának az aránya. Térfogategységre jutó hasznos hőcserélő felület egy gömb alakú edényre: A felszín térfogat arány függ a mérettől! Egy 250 cm 3 -s lombik félig meg van töltve adott reakcióeleggyel. A reakcióelegy egységnyi térfogatára jutó hőcserélő felület: 0,77 cm 2 /ml. Ugyanez az arány egy 1 m 3 -es reaktor esetében: 0,048 cm 2 /ml. Ebből látható, hogy egy méretnövelés során a reakcióelegy fűtése és hűtése nehezebben megoldható a laboratóriumi méretekhez képest. Egy reakció méretnövelése során további problémák is adódnak, ilyen például még az elegy homogenizálása és megfelelő kevertetése. Ezért ipari eljárások tervezése során a laboratóriumban megvalósított reakció nagyüzembe történő átvitele előtt alaposan meg szokták vizsgálni a reakció méretnövelhetőségét. A gyakorlat során egy automatizált modell reaktorral fogunk dolgozni és a mért paraméterek alapján megpróbálunk a vizsgált reakció méretnövelhetőségére becsléseket végezni. A reaktorok típusai és üzemeltetési módjaik: Először tekintsük át röviden az iparban leggyakrabban használt reaktortípusok tulajdonságait különös tekintettel a szakaszos kevert tartályreaktorokéra. A reaktorokat termikus szempontból két nagy csoportra oszthatjuk: beszélhetünk izoterm és adiabatikus reaktorokról. Az első eset akkor áll fenn, ha a reakcióelegyet állandó hőmérsékleten tartjuk (folyamatos hűtés vagy forralás), a második eset pedig akkor, ha a reakcióelegy és a köpeny között nincs hőcsere. A gyakorlatban a reaktorok a két határeset között működnek. (Mi a gyakorlaton izoterm körülményeket próbálunk majd megvalósítani.) A reaktorok üzemeltetési módját tekintve beszélhetünk szakaszos, félfolyamatos és folyamatos üzemű reaktorokról. Szakaszos reaktorokat rendszerint kis mennyiségű termékek előállítására használnak, így például a gyógyszeriparban vagy a finomvegyiparban. A szakaszos reaktorok beruházási költsége általában alacsonyabb, mint a folyamatos üzeműeké és univerzálisan használhatók több fajta reakcióhoz is, vagyis ez egy rugalmas gyártási módszer, amelyben könnyen át

2 lehet állni más termékek előállítására is. A lassabb reakciókat szintén szakaszos reaktorban érdemes elvégezni, folyamatos reaktorokban rendszerint a gyors reakciók kivitelezhetők. Előnye még a szakaszos reaktornak a folyamatos üzemmel szemben, hogy egyetlen edényben egymás után több művelet is végrehajtható. Így a felmelegítés, reagáltatás, forralás, lehűtés, desztillálás, kristályosítás, bepárlás; míg folyamatos üzemben minden művelethez külön berendezés szükséges. Ugyanakkor a szakaszos reaktorok üzemeltetése jelentős emberi munkát és felügyeletet igényel. A szabályozást, a műveletek egymás utáni indítását, stb. A szakaszos üzem automatizálása nehezebben megoldható, mint a folyamatos üzemé. A szakaszos üzem hátránya még, hogy jelentős holtidővel kell számolni. Holtidőnek számítanak azok az időintervallumok, amik nem hasznosak közvetlenül a termék előállítása szempontjából. Holtidő a reaktor ürítése, tisztítása, töltése, melegítése és hűtése. Folyamatos üzemű reaktorokat rendszerint a nagymennyiségben előállított anyagok gyártása során használnak. A folyamatos üzemű rendszerek automatikus szabályozása könnyebb. Bár kiépítésük nagyobb beruházást igényel, az állandó aktív munkaerő kisebb. A könnyebb szabályozás segítségével a reakciókörülmények állandó érték közelében tarthatók, így az előállított termék minősége is állandóbb. Nincs holtidő, ugyanakkor a folyamatos üzemű rendszer csak egy termék előállítására alkalmas. Új termék előállítására rendszerint új berendezések beszerzése szükséges. Nagyon gyors, exoterm reakciók esetében a reaktáns adagolása folyamatosan történik. Így a reakció sebessége és a hőmérséklet az adagolás sebességével szabályozható. Ezt félfolyamatos eljárásnak nevezzük. Ezekben az esetekben veszélyes lehet a nem megfelelően megválasztott adagolási sebesség, ami a reagens felhalmozódásához, túlzott hőfejlődéshez és mellékreakciókhoz, esetleg balesethez vezethet. Előnyös lehet még a félfolyamatos üzem akkor is, ha a kívánt szelektivitáshoz a reagens kis koncentrációja szükséges. A kevert tartály: A folyadékfázisú reakciók leggyakrabban használt reaktortípusa a kevert tartály. Szakaszos és folyamatos gyártásnál is egyaránt használják. A tartályt rendszerint köpeny veszi körül, melyben a termosztáló közeg kering. A köpenyben az áramlási sebesség kicsi, a hőátadási viszonyok rosszak. A közeg áramlásának az irányát úgy választják meg, hogy az a természetes konvekció irányával megegyező legyen (hűtés közben lentről felfelé, melegítés során fentről lefelé). A hőátadó felület növelését különböző segédeszközökkel érik el. A reakcióelegybe merülő csőkígyó vagy a tartályon kívül elhelyezett csőköteges hőcserélő biztosítja a hőcserélő felület növelését. Ez utóbbi a gőzfázis kondenzálására is használható. Az izoterm körülmények biztosítására jól bevált módszer, hogy a reakciót az elegy forráspontján végezzük. Ilyenkor a reakcióhő forráshő formájában távozik a rendszerből.

3 Az automata reaktor felépítése és használata: Az automata reaktor egy 250 cm 3 hasznos térfogatú edényből és az azt kiszolgáló apparátusból álló kevert tartály: dupla falú termosztálható üst (duplikátor) (1), keverő (2), hűtő (3), mérlegek (4), vegyszerpumpák (5), hőmérők (6-10), hőfluxus mérők (11), termosztát (6) és számítógépes vezérlés. A mérés célja egy reakció termodinamikai paramétereinek a mérése és az üzemi megvalósítás modellezése. A készülék felépítése: Hőmérők: termosztát (6) fürdőköpeny (ki- és belépő (7))

4 reakcióelegy (8) kondenzátum (9) hűtővíz (ki- és belépő (10)) Hőfluxusmérők: az edény falán keresztül áramló hő mérése (hőcsere hatékonysága a termosztáló közeg és a reakcióelegy között) (11) folyadékszint meghatározása (hasznos hőcserélő felület számítása) Termosztát: a duplafalú köpenyben keringetett folyadékkal termosztálja a reakcióelegy hőmérsékletét (6). Mérhető a fürdő hőmérséklete a köpenyben a kilépő és a belépő pontnál (7). Mérlegek: betáplált reagensek mennyiségének mérése (4) Vegyszerpumpák: adagolás szabályozása (5) Hűtő: Keverő: Fűtőszál: refluxhűtő (3). Mérhető a kondenzátum hőmérséklete (9), a hűtővíz kilépő és belépő hőmérséklete (10), valamint az áramlási sebessége (12). a reakcióelegy keverését végzi (2) r/min között szabályozható. a reakcióelegybe merülve, azt közvetlenül képes fűteni (13). A kalibrációnál használjuk. A felsorolt paraméterek alapján a mérési adatokból meghatározható a reakció során használt hőcserélő felület nagysága, a hőátadási koefficiens és a reakcióhő. Kiszámolhatók további paraméterek is, melyek a méretnövelésnél szintén számottevőek, pl. a reagens akkumulációja. Az eddigiek összegzéseképp a szabályozható és meghatározható paraméterek: Szabályozható: 1. kevertetés 2. adagolás 3. fürdőköpeny hőmérséklet Mérhető: 1. hőmérséklet (termosztát, reakc. elegy, kondenz., hűtő) 2. hőfluxus 3. folyadékszint 4. reagensek tömege Ezen felül pedig a további, számolással meghatározható paraméterek: 1. hasznos hőcserélő felület 2. hőátadási koefficiens 3. betáplált és elnyelt hő 4. reakcióhő 5. akkumuláció a reagens beadagolása végén A mérés végrehajtása: A készülék előkészítése után megszerkesztjük a mérési programot. E szerint fogja a számítógép vezérelni a mérést az adagolástól kezdve az utolsó mérési pontig. A programban szerepelnie kell a reagensek beadagolásának, a folyamatos kevertetésnek és a kalibrációs lépéseknek. Az adatgyűjtés a program kezdetétől a program végéig folyamatosan tart. Egy példa egy egyszerű reakció programjára:

5 1. We add g of water through instrumentally of the pump #2 with a flow of g/min. with a flow of g/min 2. We stir the reaction medium to We regulate the temperature 20 C 4. We wait 25 minutes 5. We evaluate the Cp to T J-T M= 7.0 C during 14 minutes. 6. We wait 25 minutes 7. We calibrate the reflux system 8. We wait 20 minutes 9. We add g of acetic anhydride through instrumentally of the pump #1 with a flow of g/min. with a flow of g/min 10. We wait 1 hour(s) 11. We calibrate the reflux system 12. We wait 20 minutes 13. We evaluate the Cp to T J-T M= 7.0 C during 14 minutes. 14. We wait 25 minutes A mérés végeztével a kiértékelés is automatikusan történik, néhány paraméter beállítása mellett. Egy ilyen mérési program után kapott tipikus hőmérséklet-idő függvény: kalibráció reagens beadagolásának kezdete kalibráció A kiértékelés során a hőmérséklet-, hőfluxus- vagy tömeg-idő függvényeken beállított pontok (beadagolás kezdete, vége, reakció vége, stabil hőmérsékleti szakaszok) alapján automatikusan történik a kiértékelés.

6 A megkapott eredmények alapján a reakcióentalpia, a hőátadási tényező, az akkumuláció és a reakció lejátszódásához szükséges idő ismeretében végezzünk becslést a nagyüzemi reaktor kivitelezésére! 1. Milyen hőmérsékletemelkedést tapasztalnánk, ha a reagenst egyszerre tennénk bele (nem adagolnánk)? Mennyi idő alatt állna vissza az eredeti hőmérséklet? (Kis méret és nagy méret esetén (pl.: 1 mol 10 kmol).) 2. Mit tapasztalnánk, ha nagy méret esetén (10 kmol) is ugyanannyi idő alatt adagolnánk hozzá a reagenst, illetve ha ugyanolyan áramlási sebességgel adagolnánk? Mit tudunk megállapítani a hőmérsékletemelkedésről, a visszahűtés sebességéről és az akkumulációról? 3. Készítsünk vázlatos tervet egy kevert tartály reaktorról! A reaktor legyen duplafalú, csőkígyóval ellátott reaktor, mely ugyanolyan hőátadási tényezővel rendelkezik, mint a modell reaktor! Mekkora tartály és mekkora csőkígyó szükséges, hogy a folyamat hasonló idő alatt kivitelezhető legyen (10 kmol-esetén)? Hogyan történne az adagolás?

Sók oldáshőjének és jég olvadáshőjének meghatározása anizotermés hővezetéses kaloriméterrel

Sók oldáshőjének és jég olvadáshőjének meghatározása anizotermés hővezetéses kaloriméterrel Sók oldáshőjének és jég olvadáshőjének meghatározása anizotermés hővezetéses kaloriméterrel Előadó: Zsély István Gyula Készült Sziráki Laura, Szalma József 2012 előadása alapján Laborelőkészítő előadás,

Részletesebben

Modellezési esettanulmányok. elosztott paraméterű és hibrid példa

Modellezési esettanulmányok. elosztott paraméterű és hibrid példa Modellezési esettanulmányok elosztott paraméterű és hibrid példa Hangos Katalin Számítástudomány Alkalmazása Tanszék Veszprémi Egyetem Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 1/38 Tartalom

Részletesebben

Kiegészítő desztillációs példa. 1. feladatsor. 2. feladatsor

Kiegészítő desztillációs példa. 1. feladatsor. 2. feladatsor Kiegészítő desztillációs példa D3. példa: Izopropanol propanol elegy rektifikálása tányéros oszlopon 2104 kg/h 45 tömeg% izopropanol-tartalmú propanol izopropanol elegyet folyamatos üzemű rektifikáló oszlopon,

Részletesebben

9.3 Szakaszos adiabatikus reaktor vizsgálata

9.3 Szakaszos adiabatikus reaktor vizsgálata 9.3 Szakaszos adiabatikus reaktor vizsgálata A reaktortechnikai alapfogalmak részletes ismertetése a Vegyipari Félüzemi Praktikum Keverős tartályreaktor és csőreaktor vizsgálata c. mérés 9.1 fejezetében

Részletesebben

ALKÍMIA MA Az anyagról mai szemmel, a régiek megszállottságával.

ALKÍMIA MA Az anyagról mai szemmel, a régiek megszállottságával. ALKÍMIA MA Az anyagról mai szemmel, a régiek megszállottságával www.chem.elte.hu/pr Kvíz az előző előadáshoz 1. Mely mennyiségek között teremt kapcsolatot a bizonytalansági reláció? A) a koordináta értéke

Részletesebben

1. feladat Összesen 25 pont

1. feladat Összesen 25 pont 1. feladat Összesen 25 pont Centrifugál szivattyúval folyadékot szállítunk az 1 jelű, légköri nyomású tartályból a 2 jelű, ugyancsak légköri nyomású tartályba. A folyadék sűrűsége 1000 kg/m 3. A nehézségi

Részletesebben

2. Technológiai rendszerek- Sisteme de producţie

2. Technológiai rendszerek- Sisteme de producţie 2. Technológiai rendszerek- Sisteme de producţie Mint láttuk a technológiai folyamat legegyszerűbb ábrázolása a blokk séma. A 2.1. ábrán is látható a transzformációs folyamatba a betáplált nyersanyag és

Részletesebben

Lemezeshőcserélő mérés

Lemezeshőcserélő mérés BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR Épületgépészeti és Gépészeti Eljárástechnika Tanszék Lemezeshőcserélő mérés Hallgatói mérési segédlet Budapest, 2014 1. A hőcserélők típusai

Részletesebben

Folyamatos, kevert tartályreaktor vizsgálata

Folyamatos, kevert tartályreaktor vizsgálata Folyamatos, kevert tartályreaktor vizsgálata 1. Elméleti összefoglaló Folyamatos, tökéletesen kevert tartályreaktor A reagáló anyagokat folyamatosan vezetük a reaktorba és a reakcióelegy egy részét elvezetük,

Részletesebben

Számítástudományi Tanszék Eszterházy Károly Főiskola.

Számítástudományi Tanszék Eszterházy Károly Főiskola. Networkshop 2005 k Geda,, GáborG Számítástudományi Tanszék Eszterházy Károly Főiskola gedag@aries.ektf.hu 1 k A mérés szempontjából a számítógép aktív: mintavételezés, kiértékelés passzív: szerepe megjelenítés

Részletesebben

5. Sók oldáshőjének meghatározása kalorimetriás módszerrel. Előkészítő előadás

5. Sók oldáshőjének meghatározása kalorimetriás módszerrel. Előkészítő előadás 5. Sók oldáshőjének meghatározása kalorimetriás módszerrel Előkészítő előadás 2019.02.04. Célja: hő mérése A kalorimetriás mérések Használatával meghatározható: átalakulási hő reakcióhő oldáshő hidratációs

Részletesebben

Folyamatirányítás. Számítási gyakorlatok. Gyakorlaton megoldandó feladatok. Készítette: Dr. Farkas Tivadar

Folyamatirányítás. Számítási gyakorlatok. Gyakorlaton megoldandó feladatok. Készítette: Dr. Farkas Tivadar Folyamatirányítás Számítási gyakorlatok Gyakorlaton megoldandó feladatok Készítette: Dr. Farkas Tivadar 2010 I.-II. RENDŰ TAGOK 1. feladat Egy tökéletesen kevert, nyitott tartályban folyamatosan meleg

Részletesebben

Food Processing Equipment. NEAEN Unicook ATMOSZFÉRIKUS NYOMÁSON SZAKASZOSAN ÜZEMELŐ FŐZŐÜST

Food Processing Equipment. NEAEN Unicook ATMOSZFÉRIKUS NYOMÁSON SZAKASZOSAN ÜZEMELŐ FŐZŐÜST Food Processing Equipment NEAEN Unicook ATMOSZFÉRIKUS NYOMÁSON SZAKASZOSAN ÜZEMELŐ FŐZŐÜST Az univerzális szakaszosan üzemelő NEAEN Unicook főzőüst hatékony és kedvező megoldást kínál különböző élelmiszer

Részletesebben

Gőz-folyadék egyensúly

Gőz-folyadék egyensúly Gőz-folyadék egyensúly UNIFAC modell: csoport járulék módszer A UNIQUAC modellből kiindulva fejlesztették ki A molekulákat különböző csoportokból építi fel - csoportokra jellemző, mért paraméterek R és

Részletesebben

Többjáratú hőcserélő 3

Többjáratú hőcserélő 3 Hőcserélők Q = k*a*δt (a szoftver U-val jelöli a hőátbocsátási tényezőt) Ideális hőátadás Egy vagy két bemenetű hőcserélő Egy bemenet: egyszerű melegítőként/hűtőként funkcionál Design mód: egy specifikáció

Részletesebben

8.8. Folyamatos egyensúlyi desztilláció

8.8. Folyamatos egyensúlyi desztilláció 8.8. olyamatos egyensúlyi desztilláció 8.8.1. Elméleti összefoglalás olyamatos egyensúlyi desztillációnak vagy flash lepárlásnak nevezzük azt a desztillációs műveletet, amelynek során egy folyadék elegyet

Részletesebben

NEAEN VarioT KAPARTFALÚ HŐCSERÉLŐ

NEAEN VarioT KAPARTFALÚ HŐCSERÉLŐ Food Processing Equipment NEAEN VarioT KAPARTFALÚ HŐCSERÉLŐ A NEAEN VarioT kapartfalú hőcserélő professzionális, a lehető legjobb megoldást jelenti különböző gyártási folyamatokban. A termék tulajdonságaitól,

Részletesebben

MŰANYAG HULLADÉK HASZNOSÍTÓ BERENDEZÉS

MŰANYAG HULLADÉK HASZNOSÍTÓ BERENDEZÉS MŰANYAG HULLADÉK HASZNOSÍTÓ BERENDEZÉS HÍDFŐ-PLUSSZ IPARI,KERESKEDELMI ÉS SZOLGÁLTATÓ KFT. Székhely:2112.Veresegyház Ráday u.132/a Tel./Fax: 00 36 28/384-040 E-mail: laszlofulop@vnet.hu Cg.:13-09-091574

Részletesebben

DL drainback napkollektor rendszer vezérlése

DL drainback napkollektor rendszer vezérlése DL drainback napkollektor rendszer vezérlése Tartalom Rendszer jellemzői Rendszer elemei Vezérlés kezelőfelülete Működési elv/ Állapotok Menüfunkciók Hibaelhárítás Technikai paraméterek DL drainback rendszer

Részletesebben

Fázisátalakulások vizsgálata

Fázisátalakulások vizsgálata Fázisátalakulások vizsgálata Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 10/12/2011 Beadás ideje: 10/19/2011 1 1. A mérés rövid leírása Mérésem

Részletesebben

Ellenáramú hőcserélő

Ellenáramú hőcserélő Ellenáramú hőcserélő Elméleti összefoglalás, emlékeztető A hőcserélő alapvető működésével és az egyszerűsített számolásokkal a Vegyipari műveletek. tárgy keretében ismerkedtek meg. A mérés elvégzéséhez

Részletesebben

A problémamegoldás lépései

A problémamegoldás lépései A problémamegoldás lépései A cél kitűzése, a csoportmunka megkezdése egy vagy többféle mennyiség mérése, műszaki-gazdasági (például minőségi) problémák, megoldás célszerűen csoport- (team-) munkában, külső

Részletesebben

Az extrakció. Az extrakció oldószerszükségletének meghatározása

Az extrakció. Az extrakció oldószerszükségletének meghatározása Az extrakció Az extrakció oldószerszükségletének meghatározása Az extrakció fogalma és fajtái olyan szétválasztási művelet, melynek során szilárd vagy folyadék fázisból egy vagy több komponens kioldását

Részletesebben

Hogyan mûködik? Mi a hõcsõ?

Hogyan mûködik? Mi a hõcsõ? Mi a hõcsõ? olyan berendezés, amellyel hõ közvetíthetõ egyik helyrõl a másikra részben folyadékkal telt, légmentesen lezárt csõ ugyanolyan hõmérséklet-különbség mellett 000-szer nagyobb hõmennyiség átadására

Részletesebben

Alvin Kereskedőház Zrt. CIEMME oldószer regeneráló és eszköz mosó berendezések

Alvin Kereskedőház Zrt. CIEMME oldószer regeneráló és eszköz mosó berendezések Alvin Kereskedőház Zrt. CIEMME oldószer regeneráló és eszköz mosó berendezések Tartalom: Oldószer regeneráló berendezések K2 típus... 3 K16 EX típus... 3 K16 TUV típus... 4 J16 típus... 4 K30 EX típus...

Részletesebben

Fiziko-kémiai módszerek a finomkémiai ipar hulladékvizeinek kezelésére

Fiziko-kémiai módszerek a finomkémiai ipar hulladékvizeinek kezelésére Fiziko-kémiai módszerek a finomkémiai ipar hulladékvizeinek kezelésére Környezettudományi Doktori Iskolák Konferenciája 2012. 08. 31. Tóth András József 1 Dr. Mizsey Péter 1, 2 andras86@kkft.bme.hu 1 Kémiai

Részletesebben

1. feladat Összesen 8 pont. 2. feladat Összesen 18 pont

1. feladat Összesen 8 pont. 2. feladat Összesen 18 pont 1. feladat Összesen 8 pont Az ábrán egy szállítóberendezést lát. A) Nevezze meg a szállítóberendezést!... B) Milyen elven működik a berendezés?... C) Nevezze meg a szállítóberendezést számokkal jelölt

Részletesebben

Dinamikus modellek felállítása mérnöki alapelvek segítségével

Dinamikus modellek felállítása mérnöki alapelvek segítségével IgyR - 3/1 p. 1/20 Integrált Gyártórendszerek - MSc Dinamikus modellek felállítása mérnöki alapelvek segítségével Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék IgyR - 3/1 p. 2/20

Részletesebben

Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27

Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27 Az egyensúly 6'-1 6'-2 6'-3 6'-4 6'-5 Dinamikus egyensúly Az egyensúlyi állandó Az egyensúlyi állandókkal kapcsolatos összefüggések Az egyensúlyi állandó számértékének jelentősége A reakció hányados, Q:

Részletesebben

Projektfeladatok 2014, tavaszi félév

Projektfeladatok 2014, tavaszi félév Projektfeladatok 2014, tavaszi félév Gyakorlatok Félév menete: 1. gyakorlat: feladat kiválasztása 2-12. gyakorlat: konzultációs rendszeres beszámoló a munka aktuális állásáról (kötelező) 13-14. gyakorlat:

Részletesebben

ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK

ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK HŐTÁGULÁS lineáris (hosszanti) hőtágulási együttható felületi hőtágulási együttható megmutatja, hogy mennyivel változik meg a test hossza az eredeti hosszához képest, ha

Részletesebben

Gépészeti Eljárástechnika Tanszék. Szakaszos rektifikálás mérés

Gépészeti Eljárástechnika Tanszék. Szakaszos rektifikálás mérés BME Gépészeti Eljárástechnika Tanszék zakaszos rektifikálás mérés Budapest, 006 1. Elméleti összefoglaló A mérés célja: laboratóriumi rektifikáló oszlopban szakaszos rektifikálás elvégzése, etanol víz

Részletesebben

Belső energia, hőmennyiség, munka Hőtan főtételei

Belső energia, hőmennyiség, munka Hőtan főtételei Belső energia, hőmennyiség, munka Hőtan főtételei Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak.

Részletesebben

Food Processing Equipment. NEAEN Cook n chill SZAKASZOSAN ÜZEMELŐ FŐZŐ ÉS FAGYASZTÓ-BERENDEZÉS

Food Processing Equipment. NEAEN Cook n chill SZAKASZOSAN ÜZEMELŐ FŐZŐ ÉS FAGYASZTÓ-BERENDEZÉS Food Processing Equipment NEAEN Cook n chill SZAKASZOSAN ÜZEMELŐ FŐZŐ ÉS FAGYASZTÓ-BERENDEZÉS Darabos és törékeny ételek széles választékának nagy teljesítményű főzésére/előfőzésére tervezték. Az előfőzést/főzést

Részletesebben

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdasá Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI

Részletesebben

Energia. Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia

Energia. Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia Kémiai változások Energia Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia Potenciális (helyzeti) energia: a részecskék kölcsönhatásából származó energia. Energiamegmaradás

Részletesebben

Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből november 28. Hővezetés, hőterjedés sugárzással. Ideális gázok állapotegyenlete

Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből november 28. Hővezetés, hőterjedés sugárzással. Ideális gázok állapotegyenlete Fizika feladatok 2014. november 28. 1. Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással 1.1. Feladat: (HN 19A-23) Határozzuk meg egy 20 cm hosszú, 4 cm átmérőjű hengeres vörösréz

Részletesebben

Linia PastaCook TÉSZTAFŐZŐ ÉS HŰTŐGYÁRTÓSOR

Linia PastaCook TÉSZTAFŐZŐ ÉS HŰTŐGYÁRTÓSOR Food Processing Equipment Linia PastaCook TÉSZTAFŐZŐ ÉS HŰTŐGYÁRTÓSOR A tészta az ipari élelmiszertermelés egyik legnehezebb terméke, mivel hagyományosan a főzést követően néhány percen belül tálalni kell.

Részletesebben

Folyadékok és szilárd anyagok sűrűségének meghatározása különböző módszerekkel

Folyadékok és szilárd anyagok sűrűségének meghatározása különböző módszerekkel Folyadékok és szilárd anyagok sűrűségének meghatározása különböző módszerekkel Név: Neptun kód: _ mérőhely: _ Labor előzetes feladatok 20 C-on különböző töménységű ecetsav-oldatok sűrűségét megmérve az

Részletesebben

Folyamatirányítási Fejlesztési Kft. Chemiflex Compact. H-1043 Budapest, Dugonics u.11. Telefon: +36-1-363-8813 Fax: +36-1-468-2592

Folyamatirányítási Fejlesztési Kft. Chemiflex Compact. H-1043 Budapest, Dugonics u.11. Telefon: +36-1-363-8813 Fax: +36-1-468-2592 Folyamatirányítási Fejlesztési Kft Chemiflex Compact R e a k t o r F o l y a m a t i r á n y í t ó R e n d s z e r H-1043 Budapest, Dugonics u.11. Telefon: +36-1-363-8813 Fax: +36-1-468-2592 www.batchcontrol.hu

Részletesebben

hőátadás, hőátvitel, hőcsere Pécsi Tudományegyetem Gyógyszertechnológiai Intézet

hőátadás, hőátvitel, hőcsere Pécsi Tudományegyetem Gyógyszertechnológiai Intézet hőátadás, hőátvitel, hőcsere Pécsi Tudományegyetem Gyógyszertechnológiai Intézet 1 A hő minden olyan energiaváltozás ami nem fordítódik munkára termodinamikai rendszerek kölcsönhatása során. Pécsi Tudományegyetem

Részletesebben

Hőszivattyús rendszerek

Hőszivattyús rendszerek Hőszivattyús rendszerek A hőszivattyúk Hőforrások lehetőségei Alapvetően háromféle környezeti közeg: Levegő Talaj (talajkollektor, talajszonda) Talajvíz (fúrt kút) Egyéb lehetőségek, speciális adottságok

Részletesebben

BEPÁRLÁS. A bepárlás előkészítő művelet is lehet, pl. porlasztva szárításhoz, kristályosításhoz.

BEPÁRLÁS. A bepárlás előkészítő művelet is lehet, pl. porlasztva szárításhoz, kristályosításhoz. Bepárlás fogalma: Az olyan oldatok esetében amelyekben az oldott anyag gőztenziója gyakorlatilag nulla, az oldatot forrásban tartva, párologtatással az oldószer eltávolítható, az oldat besűríthető. Az

Részletesebben

5. Laboratóriumi gyakorlat

5. Laboratóriumi gyakorlat 5. Laboratóriumi gyakorlat HETEROGÉN KÉMIAI REAKCIÓ SEBESSÉGÉNEK VIZSGÁLATA A CO 2 -nak vízben történő oldódása és az azt követő egyensúlyra vezető kémiai reakció az alábbi reakcióegyenlettel írható le:

Részletesebben

Hőtan I. főtétele tesztek

Hőtan I. főtétele tesztek Hőtan I. főtétele tesztek. álassza ki a hamis állítást! a) A termodinamika I. főtétele a belső energia változása, a hőmennyiség és a munka között állaít meg összefüggést. b) A termodinamika I. főtétele

Részletesebben

Pozitron emittáló izotópok. [18F]FDG előállítása. Általunk használt izotópok. Magreakció: Dual Beam 18F. Felezési idő (min) 109,7

Pozitron emittáló izotópok. [18F]FDG előállítása. Általunk használt izotópok. Magreakció: Dual Beam 18F. Felezési idő (min) 109,7 Pozitron emittáló izotópok [F]FDG előállítása Nuklid Felezési idő (min) 109,7 20,4 10 2,05 F 11C 13 N 15 2 Általunk használt izotópok Izotóp Molekula Mit mutat ki Fontosabb klinikai jelentősége F dezoxiglükóz

Részletesebben

Működésbiztonsági veszélyelemzés (Hazard and Operability Studies, HAZOP) MSZ

Működésbiztonsági veszélyelemzés (Hazard and Operability Studies, HAZOP) MSZ Működésbiztonsági veszélyelemzés (Hazard and Operability Studies, HAZOP) MSZ-09-960614-87 Célja: a szisztematikus zavar-feltárás, nyomozás. A tervezett működési körülményektől eltérő állapotok azonosítása,

Részletesebben

1. feladat Összesen 21 pont

1. feladat Összesen 21 pont 1. feladat Összesen 21 pont A) Egészítse ki az alábbi, B feladatrészben látható rajzra vonatkozó mondatokat! Az ábrán egy működésű szivattyú látható. Az betűk a szivattyú nyomócsonkjait, a betűk pedig

Részletesebben

KÖZEG. dv dt. q v. dm q m. = dt GÁZOK, GŐZÖK ÉS FOLYADÉKOK ÁRAMLÓ MENNYISÉGÉNEK MÉRÉSE MÉRNI LEHET:

KÖZEG. dv dt. q v. dm q m. = dt GÁZOK, GŐZÖK ÉS FOLYADÉKOK ÁRAMLÓ MENNYISÉGÉNEK MÉRÉSE MÉRNI LEHET: GÁZOK, GŐZÖK ÉS FOLYADÉKOK ÁRAMLÓ MENNYISÉGÉNEK MÉRÉSE MÉRNI LEHET: AZ IDŐEGYSÉG ALATT ÁTÁRAMLÓ MENNYISÉG TÉRFOGATÁT TÉRFOGATÁRAM MÉRÉS q v = dv dt ( m 3 / s) AZ IDŐEGYSÉG ALATT ÁTÁRAMLÓ MENNYISÉG TÖMEGÉT

Részletesebben

HIDROSZTATIKA, HIDRODINAMIKA

HIDROSZTATIKA, HIDRODINAMIKA HIDROSZTATIKA, HIDRODINAMIKA Hidrosztatika a nyugvó folyadékok fizikájával foglalkozik. Hidrodinamika az áramló folyadékok fizikájával foglalkozik. Folyadékmodell Önálló alakkal nem rendelkeznek. Térfogatuk

Részletesebben

5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével

5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével 5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével 5.1. Átismétlendő anyag 1. Adszorpció (előadás) 2. Langmuir-izoterma (előadás) 3. Spektrofotometria és Lambert Beer-törvény

Részletesebben

1. feladat Összesen: 7 pont. 2. feladat Összesen: 8 pont

1. feladat Összesen: 7 pont. 2. feladat Összesen: 8 pont 1. feladat Összesen: 7 pont Hét egymást követő titrálás fogyásai a következők: Sorszám: 1. 2. 3. 4. 5. 6. 7. Fogyások (cm 3 ) 20,25 20,30 20,40 20,35 20,80 20,30 20,20 A) Keresse meg és húzza át a szemmel

Részletesebben

ROTAMÉTER VIZSGÁLATA. 1. Bevezetés

ROTAMÉTER VIZSGÁLATA. 1. Bevezetés ROTMÉTER VIZSGÁLT. Bevezetés 0.0. 4. rotaméter az áramlási mennyiségmérők egyik ajtája. rotamétert egyaránt lehet áramló olyadékok és gázok térogatáramának mérésére használni, mégpedig kis (labor) méretektől

Részletesebben

Művelettan 3 fejezete

Művelettan 3 fejezete Művelettan 3 fejezete Impulzusátadás Hőátszármaztatás mechanikai műveletek áramlástani műveletek termikus műveletek aprítás, osztályozás ülepítés, szűrés hűtés, sterilizálás, hőcsere Komponensátadás anyagátadási

Részletesebben

8. oldaltól folytatni

8. oldaltól folytatni TARTÁLY ÉS TORONY JELLEGŰ KÉSZÜLÉKEK KIVÁLASZTÁSA, MEGHIBÁSODÁSA, KARBANTARTÁSA 8. oldaltól folytatni 2015.09.15. Németh János Tartály jellegű készülékek csoportosítása A készülékekben uralkodó maximális

Részletesebben

Kémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai

Kémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai Kémiai átalakulások 9. hét A kémiai reakció: kötések felbomlása, új kötések kialakulása - az atomok vegyértékelektronszerkezetében történik változás egyirányú (irreverzibilis) vagy megfordítható (reverzibilis)

Részletesebben

Folyamatok tervezése és irányítása - BME VEFK M /19/02 Oktatók: Dr. Mizsey Péter, Dr. Havasi Dávid, Stelén Gábor, Dr. Tóth András József

Folyamatok tervezése és irányítása - BME VEFK M /19/02 Oktatók: Dr. Mizsey Péter, Dr. Havasi Dávid, Stelén Gábor, Dr. Tóth András József Tervezési feladat A feladat a vegyipari folyamatszintézis egyes lépéseinek és feladatainak tanulmányozása egy kumol előállító üzem részletes megtervezése, modellezése és optimalizálása során. A kumolt

Részletesebben

Követelmények: f - részvétel az előadások 67 %-án - 3 db érvényes ZH (min. 50%) - 4 elfogadott laborjegyzőkönyv

Követelmények: f - részvétel az előadások 67 %-án - 3 db érvényes ZH (min. 50%) - 4 elfogadott laborjegyzőkönyv Fizikai kémia és radiokémia B.Sc. László Krisztina 18-93 klaszlo@mail.bme.hu F ép. I. lépcsőház 1. emelet 135 http://oktatas.ch.bme.hu/oktatas/konyvek/fizkem/kornymern Követelmények: 2+0+1 f - részvétel

Részletesebben

Használati meleg víz termelés

Használati meleg víz termelés Használati meleg víz termelés Alap ismeretek és alapelvek Méretezési szempontok 1. Optimum meghatározása (gazdasági szempont). Tároló tartály térfogatásnak meghatározása 0 v >0 3. Fűtő felület Méretezés

Részletesebben

IX. Alkalmazott Informatikai Konferencia Kaposvári Egyetem február 25.

IX. Alkalmazott Informatikai Konferencia Kaposvári Egyetem február 25. Kaposvári Egyetem 2011. február 25. Egedy Attila, Varga Tamás, Chován Tibor Pannon Egyetem, Mérnöki Kar, Folyamatmérnöki Intézeti Tanszék Veszprém, 8200 Egyetem utca 10. Bevezetés Cellás modellezés Kvalitatív

Részletesebben

A jegyzőkönyvvezetés formai és tartalmi követelményei

A jegyzőkönyvvezetés formai és tartalmi követelményei A jegyzőkönyvvezetés formai és tartalmi követelményei A szerves kémiai laboratóriumi gyakorlatokon irodalmi leírás szerint a kiindulási anyagokból a reakciót végrehajtva, a feldolgozás lépései után kapjuk

Részletesebben

Vegyipari műveletek III. Kémiai reaktorok

Vegyipari műveletek III. Kémiai reaktorok Vegyipari műveletek III. Kémiai reaktorok Reaktorok csoportosítása I Kevert tartályreaktor Szakaszos Félfolyamatos Folyamatos Izoterm Adiabatikus Hűtött Reaktánsadagolása Termék elvétele (csak izoterm!)

Részletesebben

Megújuló energiaforrások

Megújuló energiaforrások Megújuló energiaforrások Energiatárolási módok Marcsa Dániel Széchenyi István Egyetem Automatizálási Tanszék 2015 tavaszi szemeszter Energiatárolók 1) Akkumulátorok: ólom-savas 2) Akkumulátorok: lítium-ion

Részletesebben

Hulladékfogadás, együttes rothasztás, biogáz hasznosítás hatékonyságának növelése a DÉL-PESTI SZENNYVÍZTISZTÍTÓ TELEPEN

Hulladékfogadás, együttes rothasztás, biogáz hasznosítás hatékonyságának növelése a DÉL-PESTI SZENNYVÍZTISZTÍTÓ TELEPEN Hulladékfogadás, együttes rothasztás, biogáz hasznosítás hatékonyságának növelése a DÉL-PESTI SZENNYVÍZTISZTÍTÓ TELEPEN SZERVES HULLADÉK FELDOLGOZÁS Az EU-s jogszabályok nem teszik lehetővé bizonyos magas

Részletesebben

1. számú ábra. Kísérleti kályha járattal

1. számú ábra. Kísérleti kályha járattal Kísérleti kályha tesztelése A tesztsorozat célja egy járatos, egy kitöltött harang és egy üres harang hőtároló összehasonlítása. A lehető legkisebb méretű, élére állított téglából épített héjba hagyományos,

Részletesebben

MOSÓ, STERILIZÁLÓ ÉS SZÁRÍTÓ SZÁLLÍTÓSZALAG BERENDEZÉS

MOSÓ, STERILIZÁLÓ ÉS SZÁRÍTÓ SZÁLLÍTÓSZALAG BERENDEZÉS Food Processing Equipment NEAEN CleanJar MOSÓ, STERILIZÁLÓ ÉS SZÁRÍTÓ SZÁLLÍTÓSZALAG BERENDEZÉS A berendezést üveg, fém és műanyagkannák, üveg és más tartályok tisztítására és sterilizálására tervezték

Részletesebben

TANULÓI KÍSÉRLET (párban végzik-45 perc) Kalorimetria: A szilárd testek fajhőjének meghatározása

TANULÓI KÍSÉRLET (párban végzik-45 perc) Kalorimetria: A szilárd testek fajhőjének meghatározása TANULÓI KÍSÉRLET (párban végzik-45 perc) Kalorimetria: A szilárd testek fajhőjének meghatározása A kísérlet, mérés megnevezése, célkitűzései: A kalorimetria (jelentése: hőmennyiségmérés) (http://ttk.pte.hu/fizkem/etangyakpdf/1gyak.pdf)

Részletesebben

Termodinamika (Hőtan)

Termodinamika (Hőtan) Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi

Részletesebben

Ózon fertőtlenítéshez és oxidációhoz ProMinent Környezetbarát ózon előállítás és adagolás

Ózon fertőtlenítéshez és oxidációhoz ProMinent Környezetbarát ózon előállítás és adagolás Ózon fertőtlenítéshez és oxidációhoz ProMinent Környezetbarát ózon előállítás és adagolás Printed in Germany, PT PM 020 07/08 H MT18 A 01 07/08 H Ózon előállítás és adagolás OZONFILT OZVa ózonberendezések

Részletesebben

Lemezes hőcserélő XGF100-034, -035, -050, -066

Lemezes hőcserélő XGF100-034, -035, -050, -066 Lemezes hőcserélő XGF100-034, -035, -050, -066 Leírás A Danfoss XGF lemezes hőcserélőket kifejezetten olyan távfűtési energia alkalmazásokra fejlesztették ki, mint a távfűtés és távhűtés, hogy az ön igényeit

Részletesebben

A keverés fogalma és csoportosítása

A keverés fogalma és csoportosítása A keverés A keverés fogalma és csoportosítása olyan vegyipari művelet, melynek célja a homogenizálás (koncentráció-, hőmérséklet-, sűrűség-, viszkozitás kiegyenlítése) vagy a részecskék közvetlenebb érintkezésének

Részletesebben

Csőköteges hőcserélők korrózióálló / saválló acélból Típus: EHC6; EHC13; EHC20; EHC26 Általános ismertető

Csőköteges hőcserélők korrózióálló / saválló acélból Típus: EHC6; EHC13; EHC20; EHC26 Általános ismertető Csőköteges hőcserélők korrózióálló / saválló acélból Típus: EHC6; EHC13; EHC20; EHC26 Általános ismertető A felhasználói igényekhez igazodva 2017-től jelentősen kibővítettük méret és teljesítményválasztékunkat!

Részletesebben

Termodinamika. 1. rész

Termodinamika. 1. rész Termodinamika 1. rész 1. Alapfogalmak A fejezet tartalma FENOMENOLÓGIAI HŐTAN a) Hőmérsékleti skálák (otthoni feldolgozással) b) Hőtágulások (otthoni feldolgozással) c) A hőmérséklet mérése, hőmérők (otthoni

Részletesebben

TOLNATEJ ZRT. 7100 Szekszárd, Keselyűsi út 26. KAZÁNHÁZI REKONSTRUKCIÓ. Gőzkazán rendszer. Vízkezelés. Budapest, 2006. december.

TOLNATEJ ZRT. 7100 Szekszárd, Keselyűsi út 26. KAZÁNHÁZI REKONSTRUKCIÓ. Gőzkazán rendszer. Vízkezelés. Budapest, 2006. december. PORTA Mérnöki és Kereskedelmi Kft. Levélcím: 1147 Budapest, Zsolnay u. 8. Iroda: 1033 Budapest, Szentendrei út 17. Tel./Fax: 388-7381 E-mail: portakft@t-online.hu Internet: www.portakft.com TOLNATEJ ZRT.

Részletesebben

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet 5-4 A tökéletes gáz egyenlet alkalmazása 5-5 Gáz halmazállapotú reakciók

Részletesebben

6 Ionszelektív elektródok. elektródokat kiterjedten alkalmazzák a klinikai gyakorlatban: az automata analizátorokban

6 Ionszelektív elektródok. elektródokat kiterjedten alkalmazzák a klinikai gyakorlatban: az automata analizátorokban 6. Szelektivitási együttható meghatározása 6.1. Bevezetés Az ionszelektív elektródok olyan potenciometriás érzékelők, melyek valamely ion aktivitásának többé-kevésbé szelektív meghatározását teszik lehetővé.

Részletesebben

Az alábbi rövid anyagban néhány hasznos tanácsot szeretnék adni Daikin Altherma levegő-víz hőszivattyús rendszerek tervezéséhez kivitelezéséhez.

Az alábbi rövid anyagban néhány hasznos tanácsot szeretnék adni Daikin Altherma levegő-víz hőszivattyús rendszerek tervezéséhez kivitelezéséhez. Az alábbi rövid anyagban néhány hasznos tanácsot szeretnék adni Daikin Altherma levegő-víz hőszivattyús rendszerek tervezéséhez kivitelezéséhez. A következő oldalakon levő kialakítás csak javaslat, az

Részletesebben

Kontrollált erjesztés

Kontrollált erjesztés Kontrollált erjesztés Első Magyar Házisörfőző Egyesület Mezei Krisztián www.elsosor.hu 2015.03.15 Bevezetés Sörfőzés lépései: -Recept tervezés -Sör főzése cefrézés máslás komló forralás -Hűtés (oltási

Részletesebben

MÉRÉSI JEGYZŐKÖNYV. A mérési jegyzőkönyvet javító oktató tölti ki! Kondenzációs melegvízkazám Tanév/félév Tantárgy Képzés

MÉRÉSI JEGYZŐKÖNYV. A mérési jegyzőkönyvet javító oktató tölti ki! Kondenzációs melegvízkazám Tanév/félév Tantárgy Képzés MÉRÉSI JEGYZŐKÖNYV Kondenzációs melegvízkazám Tanév/félév Tantárgy Képzés 2008/09 I félév Kalorikus gépek Bsc Mérés dátuma 2008 Mérés helye Mérőcsoport száma Jegyzőkönyvkészítő Mérésvezető oktató D gépcsarnok

Részletesebben

Kémiai reakciók sebessége

Kémiai reakciók sebessége Kémiai reakciók sebessége reakciósebesség (v) = koncentrációváltozás változáshoz szükséges idő A változás nem egyenletes!!!!!!!!!!!!!!!!!! v= ± dc dt a A + b B cc + dd. Melyik reagens koncentrációváltozását

Részletesebben

V átlag = (V 1 + V 2 +V 3 )/3. A szórás V = ((V átlag -V 1 ) 2 + ((V átlag -V 2 ) 2 ((V átlag -V 3 ) 2 ) 0,5 / 3

V átlag = (V 1 + V 2 +V 3 )/3. A szórás V = ((V átlag -V 1 ) 2 + ((V átlag -V 2 ) 2 ((V átlag -V 3 ) 2 ) 0,5 / 3 5. gyakorlat. Tömegmérés, térfogatmérés, pipettázás gyakorlása tömegméréssel kombinálva. A mérési eredmények megadása. Sóoldat sőrőségének meghatározása, koncentrációjának megadása a mért sőrőség alapján.

Részletesebben

AZ ALUMINUM KORRÓZIÓJÁNAK VIZSGÁLATA LÚGOS KÖZEGBEN

AZ ALUMINUM KORRÓZIÓJÁNAK VIZSGÁLATA LÚGOS KÖZEGBEN Laboratóriumi gyakorlat AZ ALUMINUM KORRÓZIÓJÁNAK VIZSGÁLATA LÚGOS KÖZEGBEN Az alumínium - mivel tipikusan amfoter sajátságú elem - mind savakban, mind pedig lúgokban H 2 fejldés közben oldódik. A fémoldódási

Részletesebben

Fázisátalakulások vizsgálata

Fázisátalakulások vizsgálata Klasszikus Fizika Laboratórium VI.mérés Fázisátalakulások vizsgálata Mérést végezte: Vanó Lilla VALTAAT.ELTE Mérés időpontja: 2012.10.18.. 1. Mérés leírása A mérés során egy adott minta viselkedését vizsgáljuk

Részletesebben

ÜZEMBEHELYEZÉSI ÚTMUTATÓ CPC U-Pipe vákuumcsöves kollektorhoz

ÜZEMBEHELYEZÉSI ÚTMUTATÓ CPC U-Pipe vákuumcsöves kollektorhoz ÜZEMBEHELYEZÉSI ÚTMUTATÓ CPC U-Pipe vákuumcsöves kollektorhoz Készült: 2009.03.02. "U-Pipe" vákuumcsöves napkollektor CPC tükörrel Az "U-Pipe" vákuumcsöves napkollektor jelenti a kollektorok fejlődésének

Részletesebben

1. feladat Összesen: 26 pont. 2. feladat Összesen: 20 pont

1. feladat Összesen: 26 pont. 2. feladat Összesen: 20 pont É 2048-06/1/ 1. feladat Összesen: 26 pont ) z alábbi táblázatban fontos vegyipari termékeket talál. dja meg a táblázat kitöltésével a helyes információkat! termék lapanyagok Előállítás megnevezése Felhasználás

Részletesebben

ÉLELMISZERIPAR ISMERETEK

ÉLELMISZERIPAR ISMERETEK ÉRETTSÉGI VIZSGA 2017. október 20. ÉLELMISZERIPAR ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2017. október 20. 8:00 Időtartam: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Részletesebben

MIÉRT MÉRJÜK MEG AZ ELŐKELTETŐGÉP HŐMÉRSÉKLET-EGYENLŐTLENSÉGÉT?

MIÉRT MÉRJÜK MEG AZ ELŐKELTETŐGÉP HŐMÉRSÉKLET-EGYENLŐTLENSÉGÉT? Az előkeltetőgépek hőmérséklet-egyenlőtlenségének Az előkeltetőgépek hőmérsékletegyenlőtlenségének MIÉRT MÉRJÜK MEG AZ HŐMÉRSÉKLET-EGYENLŐTLENSÉGÉT? Az előkeltetőgépeken belüli és azok közötti hőmérséklet-egyenlőtlenségek

Részletesebben

A szennyvíztisztítás üzemeltetési költségeinek csökkentése - oxigén beviteli hatékonyság értékelésének módszere

A szennyvíztisztítás üzemeltetési költségeinek csökkentése - oxigén beviteli hatékonyság értékelésének módszere A szennyvíztisztítás üzemeltetési költségeinek csökkentése - oxigén beviteli hatékonyság értékelésének módszere Gilián Zoltán üzemmérnökség vezető FEJÉRVÍZ Zrt. 1 Áttekintő 1. Alapjellemzés (Székesfehérvár

Részletesebben

Hőszivattyúk - kompresszor technológiák Január 25. Lurdy Ház

Hőszivattyúk - kompresszor technológiák Január 25. Lurdy Ház Hőszivattyúk - kompresszor technológiák 2017. Január 25. Lurdy Ház Tartalom Hőszivattyú felhasználások Fűtős kompresszor típusok Elérhető kompresszor típusok áttekintése kompresszor hatásfoka Minél kisebb

Részletesebben

1.1 Emisszió, reflexió, transzmisszió

1.1 Emisszió, reflexió, transzmisszió 1.1 Emisszió, reflexió, transzmisszió A hőkamera által észlelt hosszú hullámú sugárzás - amit a hőkamera a látómezejében érzékel - a felület emissziójának, reflexiójának és transzmissziójának függvénye.

Részletesebben

Szakaszos üzemű folyadékkeverő berendezés vezérlése A technológiai feladat két különböző folyadék összeelegyítése és adott hőmérsékletre melegítése.

Szakaszos üzemű folyadékkeverő berendezés vezérlése A technológiai feladat két különböző folyadék összeelegyítése és adott hőmérsékletre melegítése. Szakaszos üzemű folyadékkeverő berendezés vezérlése A technológiai feladat két különböző folyadék összeelegyítése és adott hőmérsékletre melegítése. 1. ábra Keverőtartály a kezelőtáblával A berendezés

Részletesebben

BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Épületgépészeti és Gépészeti Eljárástechnika Tanszék HALLGATÓI SEGÉDLET

BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Épületgépészeti és Gépészeti Eljárástechnika Tanszék HALLGATÓI SEGÉDLET BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Épületgépészeti és Gépészeti Eljárástechnika Tanszék HALLGATÓI SEGÉDLET Keverő ellenállás tényezőjének meghatározása Készítette: Hégely László, átdolgozta

Részletesebben

REAKCIÓKINETIKA ÉS KATALÍZIS

REAKCIÓKINETIKA ÉS KATALÍZIS REAKCIÓKINETIKA ÉS KATALÍZIS ANYAGMÉRNÖK MESTERKÉPZÉS VEGYIPARI TECHNOLÓGIAI SZAKIRÁNY MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR KÉMIAI INTÉZET PETROLKÉMIAI KIHELYEZETT (TVK) INTÉZETI TANSZÉK Miskolc,

Részletesebben

ÉPÜLETGÉPÉSZET ISMERETEK

ÉPÜLETGÉPÉSZET ISMERETEK ÉRETTSÉGI VIZSGA 2017. május 17. ÉPÜLETGÉPÉSZET ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2017. május 17. 8:00 Időtartam: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Épületgépészet

Részletesebben

Fázisátalakulások vizsgálata

Fázisátalakulások vizsgálata KLASSZIKUS FIZIKA LABORATÓRIUM 6. MÉRÉS Fázisátalakulások vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. szeptember 28. Szerda délelőtti csoport 1. A mérés célja A mérés

Részletesebben

Természetes vizek, keverékek mindig tartalmaznak oldott anyagokat! Írd le milyen természetes vizeket ismersz!

Természetes vizek, keverékek mindig tartalmaznak oldott anyagokat! Írd le milyen természetes vizeket ismersz! Összefoglalás Víz Természetes víz. Melyik anyagcsoportba tartozik? Sorolj fel természetes vizeket. Mitől kemény, mitől lágy a víz? Milyen okokból kell a vizet tisztítani? Kémiailag tiszta víz a... Sorold

Részletesebben

A nyomás. IV. fejezet Összefoglalás

A nyomás. IV. fejezet Összefoglalás A nyomás IV. fejezet Összefoglalás Mit nevezünk nyomott felületnek? Amikor a testek egymásra erőhatást gyakorolnak, felületeik egy része egymáshoz nyomódik. Az egymásra erőhatást kifejtő testek érintkező

Részletesebben

FOLYAMATOS ÜZEMŰ SZÁLLÍTÓSZALAG- BERENDEZÉS MÉLY OLAJSÜTŐ

FOLYAMATOS ÜZEMŰ SZÁLLÍTÓSZALAG- BERENDEZÉS MÉLY OLAJSÜTŐ Food Processing Equipment ProfiFry FOLYAMATOS ÜZEMŰ SZÁLLÍTÓSZALAG- BERENDEZÉS MÉLY OLAJSÜTŐ A ProfiFry univerzális, folyamatos üzemű, mély olajsütő egy megbízható és univerzális megoldás termékek széles

Részletesebben

Fizikai kémia 2 Reakciókinetika házi feladatok 2016 ősz

Fizikai kémia 2 Reakciókinetika házi feladatok 2016 ősz Fizikai kémia 2 Reakciókinetika házi feladatok 2016 ősz A házi feladatok beadhatóak vagy papír alapon (ez a preferált), vagy e-mail formájában is az rkinhazi@gmail.com címre. E-mail esetén ügyeljetek a

Részletesebben

Egy részecske mozgási energiája: v 2 3 = k T, ahol T a gáz hőmérséklete Kelvinben 2 2 (k = 1, J/K Boltzmann-állandó) Tehát a gáz hőmérséklete

Egy részecske mozgási energiája: v 2 3 = k T, ahol T a gáz hőmérséklete Kelvinben 2 2 (k = 1, J/K Boltzmann-állandó) Tehát a gáz hőmérséklete Hőtan III. Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak. Rugalmasan ütköznek egymással és a tartály

Részletesebben